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Abstract

When cooperation has a direct cost and an indirect benefit, a selfish behavior is more likely to be selected for than an
altruistic one. Kin and group selection do provide evolutionary explanations for the stability of cooperation in nature, but
we still lack the full understanding of the genomic mechanisms that can prevent cheater invasion. In our study we used
Aevol, an agent-based, in silico genomic platform to evolve populations of digital organisms that compete, reproduce, and
cooperate by secreting a public good for tens of thousands of generations. We found that cooperating individuals may
share a phenotype, defined as the amount of public good produced, but have very different abilities to resist cheater
invasion. To understand the underlying genetic differences between cooperator types, we performed bio-inspired genomics
analyses of our digital organisms by recording and comparing the locations of metabolic and secretion genes, as well as the
relevant promoters and terminators. Association between metabolic and secretion genes (promoter sharing, overlap via
frame shift or sense-antisense encoding) was characteristic for populations with robust cooperation and was more likely to
evolve when secretion was costly. In mutational analysis experiments, we demonstrated the potential evolutionary
consequences of the genetic association by performing a large number of mutations and measuring their phenotypic and
fitness effects. The non-cooperating mutants arising from the individuals with genetic association were more likely to have
metabolic deleterious mutations that eventually lead to selection eliminating such mutants from the population due to the
accompanying fitness decrease. Effectively, cooperation evolved to be protected and robust to mutations through
entangled genetic architecture. Our results confirm the importance of second-order selection on evolutionary outcomes,
uncover an important genetic mechanism for the evolution and maintenance of cooperation, and suggest promising
methods for preventing gene loss in synthetically engineered organisms.
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Introduction

The evolution of cooperation in microbial populations is a

fascinating, rich and controversial evolutionary problem [1–6].

The theoretical understanding of cooperation has been gradually

advancing for decades, and recently those insights have also been

applied to practical, medical problems, such as the treatment of

infections triggered by cooperating, pathogenic bacteria [7,8].

Most evolutionary explanations of cooperation rely on kin

selection and group selection theories and are constantly being

improved and refined by a host of mathematical tools [9,10].

Among them, the game theory and meta-population models have

proved to be especially useful in the analysis of long term versus

short term, as well as the individual versus population benefit of

cooperation [11–14]. However, those methods tell us practically

nothing about the evolutionary pressure on the structure of

genomes that encode the cooperative traits. They typically do not

distinguish between genotypes and phenotypes and consider only a

finite set of possible behaviors (often only two: cooperate or not)

with a constant extrinsic probability of switching between them.

Although some recent papers do go further than evolving classical

binary behavior by considering more complex stochastic strategies

that take into account past interactions [15], they also remain ‘‘one

locus = one parameter’’ models, unable to consider genetic

architecture of cooperation genes. Several experimental studies

have shown the need to go beyond these limitations to understand

cooperation in microbial systems. Specifically, Foster et al.

demonstrated that the pleiotropic effect of a Dictyostelium discoideum

gene involved in a cooperative behavior (differentiation into

prestalk cells) causes the mutations inducing cheating behavior to

be associated with a direct fitness cost to the individual [16].

Similarly, cheating mutations induce a cost in Pseudomonas

aeruginosa because of co-regulation of public and ‘‘private’’ goods

via the same quorum-sensing mechanism [17].

We postulate that genomic architecture of metabolic and

secretion genes – achieved by sense-antisense coding or frameshifts

– can provide a mechanism for the evolution and maintenance of

cooperation that is similar but more basic than ones relying on

genetic pleiotropy or co-regulation. Here we investigate how two

specific types of genomic architecture of cooperation genes may

affect the evolutionary fate of cooperation itself. The first type

relies on the concept of operons, already well described and

investigated in the context of co-regulation or co-transfer of genes

in the same operon [18,19]. We specifically consider metabolic

and secretion genes that have the same promoter and terminator

sequence, thus sharing an operon. The second architecture type is
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the overlap, base-pair sharing between metabolic and secretion

genes due to being in different reading frames or on different DNA

strands. Although more rare in bacterial context, gene overlaps

may be caused by the strong constraints on maximum genome size

and have similar evolutionary explanations and properties as

operons [20]. We describe and quantify the role of both these

genetic architecture types and show that physical association of

cooperation and metabolic genes, via operon and overlap,

introduces an evolutionary constraint, pleiotropy in the broad

sense, which prevents non-cooperating, cheater individuals from

prospering and protects cooperation. Even though the same DNA

coding for multiple proteins can, in a broad sense, be viewed as

pleiotropy at the sequence level, as far as we know, its importance

has never been described in the context of cooperation.

In all our experiments we use the Aevol platform [21,22], an in

silico experimental evolution system. While similar to existing

individual-based, genetic-algorithm simulations, Aevol embodies a

number of features inspired by microbial genetics that make it

especially well suited for our study. For example, the phenotype of

an Aevol digital organism is a continuous function comprised of a

potentially unlimited number of biological processes and their

performance level, which in turn allows for a continuous

cooperating phenotype instead of the classical binary one. When

it evolves, the cooperation among individuals is based on a public

good molecule that diffuses and degrades in the environment.

Individuals live in a spatially structured world, suitable for the

evolution of cooperation [23,24] and more similar to natural

microbial populations than classical meta-population models. The

public good is costly to secrete but may benefit any neighboring

organisms. Both indirectly selected secretion genes and metabolic

genes contributing to fitness directly are encoded in the double-

stranded genomes strings of zeros and ones. A set of rules for

transcription, translation and protein synthesis governs the

complex genotype to phenotype to fitness mapping. Phenotypi-

cally similar or even identical individuals can have different

genotypes, thus also having different evolvability, robustness, and

evolutionary fate [25]. All these properties of Aevol set the stage

for evolutionary experiments where genetic architecture con-

straints of cooperation can be both observed and described. We

first demonstrate the existence of differences in the resistance to

cheater invasion among several phenotypically equivalent popu-

lations. We then correlate the maintenance of cooperation genes

with the abundance of promoter sharing or overlapping between

metabolic and secretion genes. We hypothesize that such non-

random encoding of the secretion is indirectly selected for in

situations when cooperation is favored. Indeed, when evolving

populations start from a naive, non-secreting ancestor, the

cooperators employed this protective encoding, and more so

when the cooperation cost was high. Mutational analysis

confirmed that the constrained genetic architecture resulted in

cooperation-destroying mutations also having a direct negative

fitness effect. Overall, our results highlight the need for considering

appropriately detailed and realistic computational systems and

generally show the importance of second-order selection pressures

and genetic architecture in the study and understanding of the

evolution and maintenance of cooperation.

Results

Creating a bank of cooperators: General properties
In our modified version of Aevol dedicated to the study of

cooperation, the phenotype is divided into two groups of traits:

metabolism (biological processes allowing the individual to live and

reproduce) and secretion (processes relating to the costly secretion

of a diffusible public good molecule). Starting from an ancestor

with a single, metabolic gene, we independently evolved 50
populations for 20,000 generations. We effectively put cooperation

under direct selection by using a particular fitness calculation in

which secretion genes were treated the same as the metabolic ones

during evolution. At the end of this phase, we chose the fittest

individual from each replicate and, by simply reassigning half of

the phenotype from metabolism to secretion, obtained 50
cooperators with high secretion levels. Specifically, their average

secretion was 96:2% of the maximal secretion in Aevol, and the

standard deviation in secretion was 3:89% of the mean. These

individuals had generally comparable metabolic and secretion part

of their phenotype with on average 19:2 genes in each.

Cheater invasion dynamics differs between populations
Using the cooperators from previous experiments, we started

with 50 clonal populations that we then let evolve for an additional

5,000 generations with a possibility of secreting at a moderately

high cost (c~0:4, see Materials and Methods for the effect of

public good cost and fitness calculation details). Each of these

populations was replicated 50 times, for a total of 2500
experiments. In all cases the amount of secretion greatly

decreased, but not by the same amount or at the same rate

(Fig. 1). To quantify these differences, we performed a one-way

ANOVA on the average secretion between generation 200 and

generation 1,000, the visually chosen time interval during which

cooperation is stabilizing to a new level after a quick and strong

decay. We found a highly significant between groups effect

(F~138:2, pv10{37), each group consisting of the 50 populations

that share a common ancestor, confirming that some cooperators

are intrinsically more resistant to cheater invasion than others,

even though they initially had very similar phenotypes. Moreover,

there was no significant correlation between the ancestral

cooperation level and the final one (r~0:11, p~0:44), eliminating

the possibility of our results being driven by an initial difference in

the population cooperation level.

When visually inspecting the phenotype of a randomly chosen

cooperator and its descendants from the previous experiment, we

Author Summary

Cooperation is a much studied and debated phenomena
in the microbial world marked by a key question: Given the
survival of the fittest evolutionary paradigm, why do
individuals act in seemingly altruistic ways, paying a cost
to help others? Kin selection and group selection, together
with mathematical tools from areas such as economics and
game theory, have provided some answers. However, they
largely ignored the underlying genetic and genomic
mechanisms that drive the evolution of cooperation. In
this study, we show that the architecture of the genomes
has a major role in shaping the fate of cooperating
populations. Specifically, we use an in silico evolution
platform and discover that genes for cooperative traits are
‘‘hiding’’ behind metabolic ones by overlapping their
sequences or sharing operons. In conditions where
cheaters may outcompete the cooperators, this entangled
architecture evolves spontaneously and effectively pro-
tects cooperation from invasion by cheater mutants. We
describe a novel genetic mechanism for the evolution and
maintenance of cooperation and, by taking into account
the second order selection pressures on the genomes,
highlight the need for going beyond simple game theory
models in its study.

Genetic Architecture Promotes Cooperation
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also noticed that it was the same secretion genes that survived

cheater invasion between several independent replicates of

evolution. One such example, where the phenomenon was

especially striking, is presented in Fig. 2. While we did not

perform any statistical analysis because of the computational

difficulty of tracking every protein for several thousands of

generations, this observation motivated further experiments: it

supports the idea that our 50 populations are different (in their

resistance to cheater invasion) because their secretion genes are

somehow different.

Genetic architecture and resistance to cheater invasion
To quantify the genetic architecture of 50 ancestral organisms

we measured the percentage of secretion genes that (1) share an

operon with at least one metabolic gene, (2) overlap with at least

one metabolic gene, (3) satisfy at least one of (1) and (2), or (4)

satisfy both (1) and (2) (see Material and Methods for more details).

We then compared the genetic architecture measures with the

resistance to cheater invasion, expressed as the average remaining

secretion between generation 200 and generation 1,000, as before

(Fig. 3). We found that all four genetic architecture properties

strongly correlate with the remaining secretion amount (r~0:60

and pv10{5 for operon sharing, r~0:57 and pv10{4 for

overlapping, r~0:63 and pv10{5 for at least one of them,

r~0:56 and pv10{4 for both of them), supporting our hypothesis

that physical linkage between secretion and metabolic genes

confers resistance to cheater invasions.

Mutation effects and resistance to cheater invasion
In order to confirm the effect of genetic architecture on cheater

resistance, rather than examining the exact locations and

interactions between genes and using them to infer population’s

evolutionary fate, we directly quantified the effect of mutations on

secretion and fitness. We constructed 10,000,000 mutants of each

of the 50 ancestors, and calculated the mutational effect as the

percentage of mutations that decrease the amount secreted

without decreasing metabolic fitness, weighted by their negative

effect on secretion. We found significant correlations between the

Figure 1. Cheater invasion dynamics in phenotypically similar starting populations. In the main figure each line represents the average
secretion, over time, of 50 replicate populations started from the same ancestor. For clarity, we did not include the standard error of each group of
replicate populations. The insert figure shows all 50 replicate populations for the two most extreme population groups, zoomed in on the time period
of interest for our analyses. Specifically, of all the population groups sharing a common ancestor, the blue populations had the highest and red the
lowest average secretion between generation 200 and generation 1,000. Note that average secretion in the inset represents the average secretion
within each population, whilst in the main figure it is the average of the secretion of all the individuals from the 50 replicate populations that share
the same ancestor.
doi:10.1371/journal.pcbi.1003339.g001

Genetic Architecture Promotes Cooperation
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mutation effect and both the robustness to cheater invasion

(calculated as before, r~{0:367, p~8:8|10{3) and the genetic

architecture (here defined as the percentage of secretion genes

sharing an operon or overlapping with at least one metabolic gene,

r~{0:430, p~1:8|10{3). Simply put, the individuals with

genetic architecture that groups together metabolism and secretion

genes exhibit higher resistance to cheaters, because they are

subject to fewer mutations that would convert cooperators into

cheaters without any direct fitness loss.

We thus have two measures that predict well the resistance to

cheater invasion: genetic architecture and accessibility of muta-

tions. Since the generation range used to quantify cheater

resistance was chosen ad hoc, we also examined the effect of

different ranges on the correlations. Interestingly, we found that

genetic architecture is better correlated with cheater resistance

when it is measured between generations 1,000 and 2,000

(r~0:62 and p~1:4|10{6) than between generations 1 and

500 (r~0:50 and p~2:1|10{4). Conversely, mutational effects

are better correlated with cheater resistance measured in the early

(generations 1 to 500, r~{0:56 and p~2:1|10{5) than late

interval (generation 1,000 to 2,000, r~{0:26 and

p~6:6|10{2). Overall, both genetic architecture and mutation

effects are good predictors of how easily cooperators may be

invaded by cheaters, but genetic architecture is better at predicting

long-term effects, while mutational effects are more strongly

correlated with short-term ones. Mutations may affect long-term

maintenance of cooperation in many ways and genetic architec-

ture captures but one of them. As we elaborate in the Discussion

section below, these results indicate that while all mutational

constraints play a role, it is the overlap and operon ones that have

the strongest long-term evolutionary consequences.

Preferential maintenance of secretion genes based on
genetic architecture

We tested the importance of gene overlap and operon sharing in

maintenance of cooperation by examining the extent of genomic

connections between secretion and metabolism before and after

the increase in secretion cost and the accompanying decrease in

cooperation. After 2,000 generations of evolution at a higher cost,

the secretion genes still present are over 7 times more likely to

overlap or share an operon with metabolic genes than the

secretion genes a the start of the experiment (Fig. 4), with the

Figure 2. Example of the preferential maintenance of certain secretion genes of a single cooperator from our bank. The bottom row
of the graph (ancestor) shows the location on the phenotypic axis of the genes coding for secretion proteins in one cooperator organism from our
bank. Above, the secretion genes from the best individual after 1,000 generations of evolution in each of the 50 replicate populations descending
from this ancestor are shown. Colors represent the height of the proteins encoded by the genes (see Materials and Methods for detailed explanation
of protein properties in Aevol).
doi:10.1371/journal.pcbi.1003339.g002
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difference being highly significant (Welch’s t test, pv10{4). The

proportion of all four categories of association between metabolic

and secretion genes (share an operon, overlap, do at least one of

them, do both) has increased, and all increases were significant

(Welch’s t test, pv10{5 for operon sharing, p~1:9|10{3 for

overlapping, p~1:1|10{5 for doing at least one of them,

p~6:8|10{4 for doing both). Note that these categories do not

exactly correspond to the partitioning done on Fig. 4 (see Material

and Methods for detailed explanation), but capture the same

general properties of genetic architecture.

Evolution of genetic links between metabolic and
cooperation genes

In the previous experiments we worked with already evolved

cooperators, measured their resistance to cheater invasion and

genetic architecture. We now turn to de novo evolution of

cooperation, in order to show that gene overlap and operon

sharing will evolve, via indirect selection pressures, in conditions

moderately favorable for cooperation. Naive ancestors evolved for

20,000 generations with cooperation cost of 0:3. In the final

populations, individuals on average had 19 metabolic genes and

1:8 secretion genes. While the number of secretion genes is low, by

pooling data of all 1024 individuals from each population we

obtained a large number of genes that we could analyze. We

compare the shared operons and gene overlap for metabolic and

secretion genes with the same measures applied only within

metabolic genes, as a control. The genetic architecture links

between metabolic and secretion genes are on average 3 times

stronger than within metabolic genes alone, the difference being

highly significant (Fig. 5a, comparing the sum of the three bottom

categories – dark blue, light blue and green –, Welch’s t test,

p~1:0|10{3). The proportion of all four genetic architecture

categories differed between the two gene groupings, and all

differences were significant (Welch’s t test, p~2:6|10{3 for

operon sharing, p~3:0|10{3 for overlapping, p~1:0|10{3 for

at least one of them, p~6:4|10{3 for both). We repeated the

analysis for 50 more populations that evolved under a lower

secretion cost (c~0:01) and we observed no difference in genetic

association between metabolic and secretion genes compared to

associations with metabolic genes alone (Fig. 5b, Welch’s t test,

p~0:50). Comparison of the two sets of experiments performed at

different secretion costs shows that the preferential association

Figure 3. Correlation between the genetic architecture of cooperation genes and the resistance to cheater invasion. Resistance is
measured by the amount of secretion surviving cheater invasion. The four types of associations between secretion and metabolic genes shown here
are: sharing an operon (A, dark blue), overlapping (B, green), having at least one of the previous two properties (C, red), and having both of them (D,
light blue).
doi:10.1371/journal.pcbi.1003339.g003
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between secretion and metabolic genes evolves only when the cost

of cooperation is relatively high.

Discussion

Our research was motivated by two simple observations: (1)

phenotypically near-identical populations have different evolu-

tionary fates (Fig. 1), and (2) for a given cooperator, the secretion

genes that survive cheater invasion seem to be always the same

between several replicates (Fig. 2); and by two straightforward

questions: what were the differences between theses populations,

and what were the differences between these genes? In our initial

experiments we found that when populations cooperating at near-

maximal level suddenly faced a direct, high cost of public good

secretion, the cheaters were quick to invade. However, the

invasion dynamic was qualitatively different across populations,

with some ancestors predictably evolving into populations without

any cooperation, while others kept low but non-zero levels of

secretion (Fig. 1).

We propose that these diverging evolutionary fates for otherwise

phenotypically similar populations are due to differences in the

ancestral genetic architecture of cooperative traits. In a previous

paper we showed that the accessibility of mutations impacting

secretion may lead to different future secretion dynamics for

phenotypically similar individuals [25]. Here we show that in the

case of cooperation decay, beyond the simple effect triggered by

the accessibility of mutations impacting secretion, the way

secretion genes ‘‘share’’ the genome with metabolic genes also

has an effect on the selection of these mutations. More precisely,

we suggest that secretion genes that are physically connected with

a metabolic gene, for example belonging to the same operon, or

physically overlapping, are more robust to cheater invasion: a

deleterious mutation in one of these genes is more likely to also

deleteriously affect a metabolic gene, and thus is less likely to be

selected for. Similar mechanisms, coupling cooperative traits with

metabolic, individualistic traits have been described before

[16,17], but instead of relying on gene coregulation or genes with

multiple effect, we report a more basic genetic mechanism of

entanglement for genes with singular effects. Additionally, these

studies remain two isolated data-points and are thus not enough to

show the existence of second order selection pressures leading to

such architecture. Bio-informatics methods could provide much

more information to support or deny this hypothesis, however

there have been very few relevant studies of the genes involved in

Figure 4. Secretion genes at generation 0 and at generation 2,000 partitioned between four categories: (a) sharing a promoter (i:e:
being on the same operon) without overlapping with a metabolic gene (dark blue), (b) overlapping and sharing an operon with a metabolic gene
(light blue), (c) overlapping without sharing an operon with a metabolic gene (green), (d) neither sharing an operon nor overlapping with a metabolic
gene (red). Error bars represent one standard error of the mean (fifty original cooperators). The color of the error bars corresponds to the genetic
architecture category which they relate to.
doi:10.1371/journal.pcbi.1003339.g004
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cooperative behavior, the primary reason being the difficulty of

identifying such genes. There is one notable exception [26], where

the authors use the prediction of cellular localization: outer

membrane and excreted proteins are more likely to be related to

cooperative traits than cytoplasmic, inner membrane and

periplasmic proteins. Their main result is about the role of

horizontal transfer in the evolution of cooperation, however they

also show that genes coding for outer membrane and excreted

proteins are more likely than others to be ‘‘genome neighbors’’ of

addictive systems (e.g. toxin-antitoxin). As the experimental data is

suggestive but overall still insufficient, the use of an appropriate

individual based model dedicated to the study of evolutionary

processes and selection pressures acting on the genome, such as

Aevol, is a way to fill the void. Of course, each model has biases

and limitations, however, the strong point of Aevol is that we

implement only simple, easy to understand, small-scale rules

inspired by bacterial genomics, and all other properties and

processes are emergent. For example, in Aevol there is no

parameter like ‘‘probability that two neighboring genes overlap’’.

Thus, the outcomes we describe here are not directly driven by the

model and are not something we necessarily expected to evolve.

Using Aevol we were able to directly test our hypothesis about

the effects of genetic architecture on the evolution and mainte-

nance of cooperation we generated and analyzed a total of

500,000,000 mutant organisms. About half of the mutants are

phenotypically perfectly similar to the original individual (no

mutations or only neutral mutations happened). The calculated

probability of having no mutations for typical organism with

genome length of 10,000 is 0:18. The calculated probability of

having exactly one mutation is 0:31, and the one of having strictly

more than one mutation is 0:51. We emphasize that a large part of

the analyzed mutations are neutral but of course focus on the ones

that change organisms fitness and secretion. We recorded the

effect of all mutations, specifically searching among ‘‘cheating’’

mutations, the ones that would decrease the amount of secretion,

for mutations that do not simultaneously decrease metabolic

fitness, and may thus be selected for, or at least not immediately

purged by selection. We find that the proportion of these

mutations, weighted by their negative effect on secretion, directly

and significantly correlates with the population’s vulnerability to

cheater invasion, which supports our hypothesis. Interestingly,

when we measured the remaining cooperation later in time it

correlated more strongly with amount of genetic architecture

linkage between secretion and metabolism than the measured

effect of the introduced mutations. The higher durability of genetic

architecture constraints, compared to immediate mutation effects,

may be due to the higher durability of the genetic architecture

itself. As we saw from the comparison between different gene

association categories at generation 0 and generation 2,000, it is

exactly the secretion genes that do overlap or share an operon with

metabolic genes that may be preserved (Fig. 4). On the other hand,

our mutational analysis explored only a small, nearby portion of

the immense fitness landscape. As organisms evolve, and move

around that landscape, the particular mutants we constructed and

analyzed may become less accessible via mutations and thus also

less relevant for the evolutionary dynamics. Finally, the enrich-

ment of genotypically connected metabolic and secretion genes

among all secretion genes present in the individuals strongly

suggests that this type or architecture may generally be created

and maintained via indirect selection in cooperative systems.

We should note that in our first set of experiments we used

individuals that evolved under an altered fitness calculation regime

that enabled us to directly select for future cooperators of similar

phenotype but different genotype. We could have as well designed

these individuals by hand, directly writing the zeros and ones in

their genomes. However, this would have likely generated fragile

and generally poorly adapted individuals, as evolution is typically

better in organism design than us humans. The change between

the alternative fitness calculation and the regular one may appear

somewhat artificial or arbitrary, but it can also be seen as a

transition from producing a private, non-secreted good, to a

public, secreted one. Still, while these results show the effect that

Figure 5. Genetic architecture associations after 20,000 generation of de novo evolution of cooperation, at (A) high, c = 0:3 and (B)
low, c = 0:01 secretion cost. In both cases, we quantified the presence of operons or overlaps between secretion genes and metabolic genes (S vs
M) as well as between metabolic genes and other metabolic genes (M vs M). Genes were partitioned in four categories, labeled as in the Fig. 4:
sharing a promoter (an operon) without overlapping with a metabolic gene (dark blue), overlapping and sharing an operon with a metabolic gene
(light blue), overlapping without sharing an operon with a metabolic gene (green), not sharing an operon nor overlapping with any metabolic gene
(red). Error bars represent plus and minus one standard error of the mean for the fifty replicate populations and their color corresponds to the genetic
architecture category they relate to.
doi:10.1371/journal.pcbi.1003339.g005
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architecture may have on cooperation, they do not by themselves

prove the existence of second order selection pressure that would

be sufficient to create operon and overlap type constraints during

the evolution and maintenance of cooperation. We thus turn to

our second set of experiments, in which secretion evolves de novo,

without ever being directly selected for.

The results of this second set of evolution experiments strongly

support the hypothesis that when costly cooperation does evolve

and persist, there is a selection pressure grouping secretion genes

with metabolic genes to protect them from removal. Such selection

pressure is necessarily indirect, since cooperation via public good

secretion does not directly increase the fitness of the cooperating

organisms. Additionally, it would not prevent any ‘‘cheaters’’ from

appearing but would reduce their likelihood of having a greater

fitness than cooperators and spreading, making overall conditions

more favorable for cooperation by reducing the effective mutation

rate for switching from being a cooperator to being a potentially

invading cheater. Previous work has already established this

‘‘mutation rate’’ (in a binary, game theory vocabulary) is one of the

very important parameters controlling the dynamics of coopera-

tion in spatially structured populations [27,28]. Here we extend

these results by showing a specific genetic mechanisms that would

allow evolution to modulate the rate of switching between

potentially invading cheaters and cooperators. The total rate of

production of cheaters may not be different between populations,

but because of the genetic entanglement of cooperation and

metabolism, a large proportion of cheaters is unable to invade and

thus such cheater mutants are evolutionary dead-ends.

The role of constraints introduced by second-order selection,

such as the one we exemplified here, in assuring the best long-term

outcomes has been proposed before in a more general and abstract

context [29]. Specifically, our results may provide a set of new

potential explanations for the evolution of operons and overlaps,

important building blocks of life. While in the past operon and

overlap existence has been linked to co-regulation and co-transfer

of genes working together and belonging to the same sets of

biological processes [19], here we highlight their role as an

evolutionary constraint. Specifically, operons and overlaps may

protect genes that are at risk of removal because of a short-term

cost and in spite of the long-term benefit they may provide. Of

course, the particular combination of short-term cost and long-

term benefit is not unique to cooperation and it underlies other

biological processes, most notably sex and recombination, which

also continue to be intensely studied [30]. In terms of cooperation

itself, genetic architecture constraints may be highly relevant in

understanding the much studied siderophore-mediated coopera-

tion in P. aeruginosa, where cooperative as well as essential

metabolic traits are under the control of a quorum sensing

mechanism [17]. However, our idea also has large implications

outside of the field of cooperation: going beyond explaining

evolutionary outcomes, the genetic architecture coupling mecha-

nism we describe here could be actively used to prevent mutations

from removing of genes introduced into bio-engineering organ-

isms, one of the major problems in the field of synthetic biology

[31].

Conclusion
The study of the evolution and maintenance of cooperation is

rich in theories, majority of which rely on higher level properties of

individuals, such as relatedness, fitness, or group structure. Our

experiments investigate basic, genome-level properties and show

that the presence of genetic associations between metabolism and

secretion genes aids the maintenance of cooperation across

thousands of generations. Operon sharing and gene overlap are

selected for when cooperation is costly and directly change

populations’ evolutionary fate. Second order selection is known to

play a major role in the rapid evolution of microbial populations

[32] and here we contribute to understanding the specific and

much studied case of cooperation via public good secretion. We

used an in silico experimental platform, Aevol, which has enabled

us to collect and analyze genetic architecture and evolutionary

dynamics data in detail previously unattainable with either

mathematical or experimental systems. The role of second-order

selection and genetic constraints in evolution will undoubtedly

continue to motivate experimental and theoretical research but in

our case it also has the potential to inform bio-engineering and

synthetic biology applications.

Materials and Methods

Aevol digital evolution system
In this study we use the Aevol platform, an individual-based

model of evolution, especially well suited for the study of selection

pressures on genomic architecture [21,22,25,33]. It is free and

open-source software and is downloadable from http://www.

aevol.fr/download. The specific version of the platform we used in

this study, including analysis routines, parameter files, other minor

modifications, is available on request. Aevol has already been used

in several peer-reviewed publications including some that studied

cooperation, so we invite the reader to refer to [34] for more

information on how cooperation has been implemented and for

characterization of the related parameters, and to [22,35] for more

general details about the original version of Aevol that did not

incorporate cooperation.

In Aevol, the individuals are living on a toroidal, two-

dimensional square grid, with each location being occupied by

exactly one individual. In our experiments the grid contains

32|32 positions, for a total of 1024 individuals. Selection and

reproduction are performed locally in a synchronous way: at each

generation, for each position in the grid, we compete the nine

individuals in the neighborhood to determine which one’s

descendant in going to occupy this position in the next generation.

The phenotype of an individual is represented by a two-

dimensional curve describing the level of performance for each

point of a continuous set of abstract biological processes. This is a

very general way of encoding a phenotype without any restriction

on the type of biological processes that can be represented. The

genotype is a string of zeros and ones, which is transcribed and

translated according to a bacterial genomics-inspired process:

promoters and terminators are identified to allow transcription,

then the transcribed sequences are searched for ribosomal binding

site and start codon, followed by what will be a gene and then by

an in-frame stop codon, to allow translation.

Our genetic code is an abstract mathematical function

transforming the gene, i.e. the binary sequence between the start

and stop codons, into three numbers, interpreted as a triangle on

the axis of biological processes. These three numbers are M (mean

position of the triangle on the phenotypic axis), W (half-width of

the triangle), and H (height of the triangle). Base-pairs are read

three by three, and our amino-acid space has eight symbols:

START and STOP, M0 and M1 which are used to specify M, W0

and W1 which are used to specify W , H0 and H1 which are used

to specify H (Fig. 6). Each of these eight amino-acids is assigned to

exactly one of the eight (23) possible triplets. There is no

redundancy in the codon–amino-acid mapping, however there is

still a large redundancy in the gene–protein mapping because

codons inside genes can be reordered without impacting

phenotype. Specifically, what matters is the order of codons
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specifying the same triangle property (M, W , or H), while the

relative order of codons for different properties can be altered

freely. Once a coding sequence has been detected using the rules

explained above and transformed into an amino-acid sequence, we

extract from there three binary words (for M, W and H )

according to the following process: amino acid X0 adds a 0 to the

binary word of X and X1 adds a 1 to the binary word of X , where

X is any of M, W, or H. We obtain an integer value for each of the

three binary words by interpreting them using Gray code. Gray

code is an alternative binary encoding in which two successive

integers are encoded by binary numbers differing in only one digit.

The integer values are then normalized by 2n{1 where n is the

number of codons used, and scaled to a [0, 1] interval for M, [0,

0:033] for W , and [{1, 1] for H . Finally the H value is multiplied

by the transcription efficiency – a property of the promoter

explained below. The mean position specifies the primary trait the

protein affects, and as it is a real number, it allows for an infinite

number of different traits. The height specifies protein’s perfor-

mance level for the primary trait, while the width determines all

the traits a protein affects. Individual’s phenotype is computed by

summing up all the triangles encoded in its genome. There is no

genetic regulation via transcription factors in this version of Aevol,

however there are protein-protein interactions (two proteins

contributing to the same biological processes) and transcription

efficiency is regulated by the strength of the promoter (defined as

the distance to a consensus sequence). As in natural systems such

as bacteria or phages, this genomics allows two genes to cluster on

the same mRNA (operon) or to physically use the same DNA basis

in different reading frames or different senses (overlap). Examples

of these different configurations are represented on Fig. 7.

The environment is represented by a two-dimensional curve

indicating what is, for every possible biological process, the

optimal level of performance in the given environment. The fitness

of an individual is a decreasing function of the distance between

the individual’s phenotype and the optimal phenotype. Individuals

are locally selected according to their rank in the neighborhood,

with a probability of reproduction exponentially decreasing with

the rank. The chosen individual will undergo reproduction with

mutations (insertion, deletion or substitution of a small number of

basis and duplication, inversion, translocation or deletion of a

larger portion of the genome). The rates of different mutation

types are parameters of the model and have been set to 5|10{5

per basis for small mutations, and 5|10{6 for large mutations.

Ancestral genome is 5,000 bases long and contains a single gene,

while the typical genome length after several thousands of

generations of evolution is around 104 basis. Aevol is a stochastic

simulation, the variability coming from the randomness of

mutations and the probabilistic selection. One of the parameter

is the random seed used to initialize the random number

generator. We can replicate an experiment by running it several

times with the same exact parameters, but different random seeds.

In our experiments, we distinguish two categories of biological

processes: the ‘‘metabolic’’ ones (all traits positioned before

M~0:5 on the axis of the biological processes), that allow an

individual performing them to live and reproduce, and the

‘‘secretion’’ ones (position after M~0:5 on the axis), that

determine the level of the production of the public good. We

note that under our setup, while genes are generally pleiotropic,

simultaneously influencing multiple traits, it is not possible for a

gene to affect both metabolic and secretion traits. The public good

is costly to secrete, but diffuses in the environment and is beneficial

to every individual that comes in contact with it. The cost for the

production of one unit of public good varies in our experiments,

but is always equal to the cost coefficient (parameter we set)

multiplied by the amount of the public good produced. The fitness

of an individual is given by this equation:

Fm|(1z0:2|(GetPG{cost|ProducePG))

Where Fm is metabolic fitness (calculated as explained before but

only considering the left part of the axis), GetPG is the amount of

public good present in the environment at the location the

individual inhabits, cost is the per-unit cost of the public good

production, and ProducePG is the amount of pubic good produced

by the individual (computed similarly to metabolic fitness but

Figure 6. Aevol genetic code. Here we use an example of a functioning gene from an Aevol individual to explain the transcription and the
translation processes. The gene is flanked by a promoter and terminator regions and preceded by a ribosome binding site (RBS). The codons for
mean position, the width, and the height of the protein are identified, transformed into Gray code using the Genetic code table (box on the right),
and finally scaled and normalized, as we summarize in the box on the left and describe in more detail in the Methods. Note that a gene with re-
shuffled codons, for example H1 H1 M1 M1 M0 W1 W0 W1, would encode exactly the same protein. START codon may occasionally be found inside a
gene, in which case it is interpreted as H0. The promoter differs from the consensus sequence by 1 base out of the maximal 4 differences allowed,
giving it a 0:80 efficiency.
doi:10.1371/journal.pcbi.1003339.g006
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considering the right part of the axis). 0:2 is a constant chosen

based on previous experiments [25].

The diffusion parameter is 0:05 per generation, meaning that

five percent of the public good present at one position will diffuse

in each of the eight neighboring positions during one generation.

The degradation rate is set to 0:10 per generation, meaning that

ten percent of the public good at each location will degrade during

one generation. This degradation can be thought of as replacing

any explicit consumption of the public good, but also as specifying

the public good durability. Overall, in all our experiments, 54% of

the public good present at generation n at some position will

remain at this position at generation nz1. In the Supporting Text

S1, we experimentally show that the secretion mechanism

implemented in Aevol, as described above, leads to the usual

cooperation dilemma.

Evolving a bank of cooperators
To evolve a large number of strong cooperators, we assigned

biological processes that were usually in the secretion part of the

phenotype to the metabolic part of the phenotype, allowing a

strong direct selection on them. After 20,000 generations of

evolution under these conditions, the whole phenotype of the

individuals closely matches the target phenotype. Thus, when

picking the best individual and re-assigning half of the trait axis

back to secretion, we get a ‘‘near-perfect’’ cooperator, one that

secretes close to the maximal possible amount of the public good.

Evolving cooperators in this way makes secretion genes evolve in

the same way as the metabolic ones, to a high level, increasing the

potential signal in further experiments. We repeated this

experiment 50 times, extracted the fittest individual from each

population, and obtained a bank of 50 independently evolved

cooperators.

Analysis of the genomic architecture
For each of the 50 cooperators we evolved in the first set of

experiments, we analyzed the architecture of all its secretion genes

and classified them in four different categories: (1) genes that share

an operon with at least one metabolic gene without overlapping

with a metabolic gene, (2) genes that overlap with at least one

metabolic gene without sharing an operon with a metabolic gene

(this is possible because our digital DNA is double stranded and

thus allows for two reading senses, in addition to three reading

frames for each sense), (3) genes that overlap with at least one

metabolic gene and share an operon with at least one metabolic

gene (not necessarily the same one), and (4) genes that share

neither operon nor overlap with a metabolic gene. There are

multiple ways one could classify the different genes, for example,

by distinguishing the number of metabolic genes a secretion gene

overlaps or shares an operon with. The four categories we chose

have the benefit of intuitive simplicity in addition to including all

secretion genes in exactly one category, and we have used them in

Fig. 4 and Fig. 5. The number of genes in each category is always

shown as a percentage of all the secretion genes and standardized

by the genes’ phenotypic area. Here, the phenotypic area refers to

the area of the protein (triangle) the gene encodes for, and allows

us to give more weight to the genes that have a strong impact on

secretion as well as enable comparison between replicate

experiments that may have different secretion levels.

However, when performing the statistical analyses to deter-

mine the correlation between the presence of overlap and the

resistance to cheater invasion, it does not makes sense to, for

example, exclude the secretion genes that also share an operon

(in addition to overlapping) with a metabolic gene. So we use

slightly different, larger, categories for secretion genes: share an

operon with at least one metabolic gene (which is exactly the

addition of categories 1 and 3 of our previously explained

partitioning), overlap with at least one metabolic gene (addition

of categories 2 and 3), do at least one of them (addition of

categories 1, 2 and 3), do both of them (same than category 3),

do none of them (same than category 4). The difference is that

these categories are no longer exclusive: one gene can be in

more than one of the new categories at the same time. The

genes are standardized by their phenotypic area, as before.

These regrouped categories are used in the statistical analyses

throughout the paper, and can easily be visually inferred from

the categories of the bar graphs in Fig. 4 and Fig. 5.

Figure 7. Examples of constrained genetic architecture in Aevol. (A) As is often the case in natural systems, here the two digital genes belong
to the same operon. They share a promoter and a terminator sequence and are thus being expressed at the same level. These hypothetical genes
would belong to the ‘‘operon only’’ category from Fig. 4 and Fig. 5. (B) These two genes also share the same operon but additionally their sequences
overlap, putting them in the ‘‘operon and overlap’’ category. In this case, the genes are in different reading frames and do not share a STOP codon,
although such configuration is also possible. As the black gene boxes indicate, the left STOP codon corresponds to the left START codon, while the
right STOP codon corresponds to the right START codon. (C, D) Two examples of genes from the ‘‘overlap only’’ category which are encoded on
different strands. This is not an exhaustive list of possible genetic constraints, as a gene may, for example, share an operon with a gene on the same
strand while simultaneously overlapping with a gene on an opposite strand.
doi:10.1371/journal.pcbi.1003339.g007
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De novo evolution of cooperation
In these experiments, each population starts from a randomly

constructed organism with a 5,000 base pair genome. As random

sequences of 0’s and 1’s are generated, they are screened for the

presence of open reading frames with genes. Thousands of

sequences are tested and the first one that has exactly one

metabolic gene with a positive effect on fitness is selected. This

genome is then cloned to fill the population grid and form the

starting population. Reason for starting with a single, valid gene

rather than an organism with effectively empty genome is that in

both cases all the genes except the first one have a very high

probability of evolving from duplication followed by divergence of

one already existing gene. Indeed, promoters and ribosome

binding sites are hard to evolve from scratch. Starting from purely

random sequence would only greatly slow down the evolution

process (genomes could evolve for thousands of generation before

the first gene appears [22]) without qualitatively changing the

understanding of the evolutionary process in our system. After

20,000 generations of de novo evolution, we pooled the proteins

from all the individuals in each replicate to obtain a measure of

average genetic architecture within a population. As before, rather

than using just a protein count, we standardized the contribution

of each protein by its phenotypic area.

Supporting Information

Figure S1 Individuals are tempted to stop cooperating.
For each of the 50 populations, we plot the average fitness increase

an individual would experience if it would individually stop

cooperating, i.e. the temptation to defect, against the average

amount secreted by an individual in the population. Except in the

populations where no cooperation has evolved (red points), the

temptation is always greater than zero.

(PDF)

Figure S2 Groups of cooperators do better than groups
of defectors. For each of the 50 populations, we plot the benefit

of cooperation, i.e. the average fitness drop individuals would

experience if cooperation was disabled, against the average

amount secreted by an individual in the population. Except in

the populations where no cooperation has evolved (red points), the

benefit is always greater than zero.

(PDF)

Figusre S3 Individuals that cooperate more are the ones
that benefit more from secretion. For each of the 50
populations, we plot the correlation between how much

individuals secrete, and how much they benefit from secretion

(i.e. the average fitness drop individuals would experience if

cooperation was disabled), against the average amount secreted by

an individual in the population. Except in the populations where

no cooperation has evolved (red points), the correlation is

significant and positive for all but 3 populations.

(PDF)

Text S1 Secretion of a public good in Aevol satisfies the
two usual requirements for a social dilemma. The fitness

of an individual would always increase if it would stop cooperating

(Supporting Figure S1), and in a group of cooperators the

individuals have a higher fitness than in a group of cheater

(Supporting Figure S2).

(PDF)
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