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Abstract

Purpose

To assess the different impact of two enface OCTA image simultaneously acquired by

means of a new prototype of Spectral-Domain Optical Coherence Tomography Angiogra-

phy (SD-OCTA) on quantitative retinal vascular metrics.

Methods

In this prospective observational cross-sectional study 28 healthy subjects were enrolled.

Macular (3x3 mm) OCTA images were acquired for all participants using Solix Fullrange

OCT (Optovue Inc, Freemont CA, USA). The main outcome measurements were: Perfusion

density (PD), vessel length density (VLD), and vessel diameter index (VDI) of both superfi-

cial capillary plexus (SCP) and deep capillary plexus (DCP), and choriocapillaris (CC) total

flow-deficits area. Quantitative retinal vascular metrics were measured on binarized and

skeletonized OCTA images by comparing not averaged and fast automated multiple aver-

aged en face OCTA images.

Results

In both SCP and DCP, PD significantly increased (p = 0,005 and p = 0,030, respectively),

and VLD significantly decreased (p<0,001 and p = 0,004, respectively), and VDI increased

(p<0,001 and p = 0,068, respectively), and total CC flow deficits area significantly decreased

(p<0,001) by averaging multiple OCTA images.
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Conclusions

In this study, we found a significant difference of quantitative retinal metrics by comparing

two different image acquisition modes using a novel and fully automated averaging OCTA

system in young healthy subjects.

Introduction

Optical coherence tomography angiography (OCTA) is a new, fast, safe, and dyeless method,

widely spread into clinical practice. It can easily reveal the features of retinal vascular layers

that usually are not visualized with other imaging techniques [1]. OCTA is mainly used to

image both retinal superficial capillary plexus (SCP) and deep capillary plexus (DCP), and the

choriocapillaris (CC) which is the tiny innermost part of the choroid. Moreover OCTA, unlike

to the standard Fluorescein Angiography (FA), is able to quantify new functional metrics such

as perfusion density (PD), and vessel length density (VLD), and vessel diameter index (VDI)

useful for evaluating vascular changes in different retinal diseases and for monitoring their

treatment response [2, 3]. Although OCTA is considered to be a new paradigm shift for the

retinal assessment, it has some limitations of which image noise and blur that may lead to both

erroneous detections of a vessel structure and estimation of quantitative OCTA metrics [4].

Recent studies have shown that averaging multiple en face OCTA images improves both image

quality and quantitative metrics, because of it increase the signal-to-noise ratio [5]. This study

aimed to evaluate the difference of retinal vascular metrics by comparison of two image acqui-

sition mode using a novel SD-OCTA prototype instrument.

Methods

In this prospective observational cross-sectional study, healthy volunteers between 21 and 33

years of age were enrolled. The study was performed at the Ophthalmology Clinic of the Uni-

versity G. d’Annunzio, Chieti-Pescara, Italy between December 2019 and February 2020. The

study adhered to the tenets of the Declaration of Helsinki and was approved by the Institu-

tional Review Board (IRB) (Department of Medicine and Science of Ageing, University G.

d’Annunzio Chieti-Pescara). Informed consent was obtained before the scanning session. All

subjects received a comprehensive ophthalmic examination, which included the measurement

of best-corrected visual acuity (BCVA) using Early Treatment Diabetic Retinopathy Study

chart, slit-lamp biomicroscopy, intraocular pressure (IOP) with Goldmann applanation

tonometry, and dilated funduscopic examination using a 78 D (diopters) lens. Inclusion crite-

ria were BCVA of 20/25 or better, spherical refraction within ±3.0 D, and cylinder correction

within ±2.0 D. Exclusion criteria ware evidence or history of previous ocular disease, presence

of lens opacities, previous surgery, laser or medical treatments, evidence or history of systemic

disease with ocular involvement.

Imaging protocol

All subjects were imaged with Solix Fullrange OCT (Optovue Inc, Freemont CA, USA), a new

ultra-high-speed SD-OCTA device (version 2019 V1.0.0.305) which operates at 120,000 A-

scans per second with the split spectrum amplitude-decorrelation angiography (SSADA) algo-

rithm. This latter, as previously and widely reported, creates a contrast between static and

non-static tissue that allows the visualization of the blood flow in the capillary bed by
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calculating the decorrelation signal amplitude from consecutive B-scans at the same retinal

location [6]. The Solix device is able to perform two different OCTA protocol scans: a standard

single not-averaged scan volume, and a multi-volume merge average four scan volumes to

deliver high-density images with pristine clarity. Before imaging, each subject’s pupils were

dilated with a combination of 0.5% tropicamide and 10% phenylephrine. Study participants

underwent both scanning protocols, consisting of 3x3 mm (304x304 pixels in the transverse

dimension) field of view centered on the fovea. An internal fixation light was used to center

the scanning area. The imaging protocol was acquired by a single trained operator by captur-

ing, in one randomly selected eye of each patient, a couple of 3x3 mm en face OCTA angio-

gram, consecutively: one for single and other for multi-volume scans, respectively.

Randomization was achieved using the random number generator Pro 2.17 (free software that

is available on https://random-number-generator-pro.soft112.com/). These scans included

two volumetric and orthogonal OCT data set for the not averaged en face OCTA images and

eight volumetric and orthogonal OCT data set for the averaged en face OCTA images, each

one captured in about 2,5 seconds, respectively. After completion of the volumetric OCT data

sets, the software applied Motion Correction Technology (MCT), a patented post-processing

tool that enables true three-dimensional (3D) correction of distortion in all directions for

ultra-precise motion correction. Low-quality scans (i.e., if the subject blinked or the scan had

significant motion artifacts) were excluded and repeated until good-quality scans were

achieved with a signal strength was�8. New segmentation algorithms embedded in the device

were used to rightly assess SCP, DCP (Fig 1), and CC layers, as previously reported [7]. The

3D projection artifact removal (PAR) 2.0 was applied to rapidly remove the projection artifact

from the DCP and CC to simplify image interpretation ad produce more reliable quantifica-

tion. Before image processing, two retinal specialists independently (LDA and PV) carefully

visualized all selected images to ascertain the correctness of the position of the upper and

lower boundaries of segmentation such as the inner limiting membrane (ILM) and retinal pig-

ment epithelium (RPE), respectively. If segmentation errors were present, the user could man-

ually correct few or all affected B-scans and then propagate the correction through a user-

selected region or throughout the entire scan volume to enhance the definition of en face

OCTA slab for both qualitative and quantitative analysis.

Image processing

The main outcome measures were: (i) SCP perfusion and vessel length densities; (ii) DCP per-

fusion and vessel length densities; (iii) SCP and DCP vessel diameter index; (iiii) the total sig-

nal void area, which represents a measure of the total area of CC vascular dropout (absence of

flow or flow below the slowest detectable threshold) as a percentage of each analyzed area

[Flow Deficits(FD)].

To quantify these variables, a slight modification of a previously reported algorithm was

employed [5, 8–11]. In brief, for each eye, we first exported en face OCTA images (resolution

of 304x304 pixels) segmented at the SCP and DCP levels, then they were imported into ImageJ

software version 1.50 (National Institutes of Health, Bethesda, MD; available at http://rsb.info.

nih.gov/ij/index.html) and consequently were processed with a ‘‘top-hat” filter. Each image

was duplicated and two different binarization methods were then performed on the 2 resultant

images: (i) 1 image was first processed by a ’’hessian’’ filter, followed by global thresholding

using the ’’Huang’s fuzzy’’ method; (ii) the other (duplicate) image was binarized using the ’’

median local’’ thresholding. Finally, the two obtained images were combined. The perfusion

density (PD) was thus calculated as a unitless proportion of the number of pixels over the

threshold divided by the total number of pixels in the analyzed area. Successively, the SCP and
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DCP images obtained after binarization were skeletonized and these images were employed to

measure the vessel length density (VLD) calculated as the total length of the perfused vascula-

ture divided by the total number of pixels in the analyzed area on the skeletonized image (Fig

2) [5, 12]. The vessel diameter index (VDI) which represents the average vessel caliber, was cal-

culated by dividing the total vessel area in binarized image by the total vessel length in the skel-

etonized image in both SCP and DCP (Fig 2) [9]. Consequently, en face CC images were

imported into ImageJ and using automatic local thresholding of the resultant raw data with

the Phansalkar method (radius, 15 pixels) it was possible to binarize the CC images (Fig 3).

Obtained images were processed with the ’Analyze Particles’ command, to assess the total sig-

nal void area and to count and measure the signal voids (CC flow deficits) [13]. The analysis of

OCTA imaging measurements was reviewed by two retinal experts (LDA and PV).

Statistical analysis

All qualitative characteristics of the subjects were summarized as frequency and percentage;

quantitative characteristics were summarized as the mean and standard deviation. The

Fig 1. Representation of the structural SD-OCT layers segmentation for superficial capillary plexus (SCP) and deep capillary plexus (DCP).

https://doi.org/10.1371/journal.pone.0243074.g001
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reproducibility was evaluated by calculating the concordance correlation coefficient (CCC).

The CCC evaluates the degree to which pairs of observations fall on the 45˚ line through the

origin [14]. It contains a measurement of precision ρ (the Pearson correlation coefficient,

which measures how far each observation deviates from the best-fit line) and accuracy Cb (a

bias correction factor that measures how far the best-fit line deviates from the 45˚ line through

the origin): ρc = ρCb; in addition, CCC suggests a poor strength of agreement for value below

0.90, moderate from 0.90 to 0.95, substantial from 0.95 to 0.99 and perfect > 0.99 [15]. The

Bland-Altman’s method was used to compare the two different techniques (V1 and V4).

Bland-Altman’s method consists of plotting the average of the two methods on the x-axis

towards the differences between the two methods on the y-axis to evaluate the bias. The bias is,

therefore, a systematic error, i.e. the tendency by one of the observers to overestimate or

underestimate the variable being measured. It simply quantifies the bias and a range of agree-

ment, within which 95% of the differences between one measurement and the other are

Fig 2. Panel A: Representation of the OCTA assessment of the superficial capillary plexus (SCP). The SCP was investigated in two different OCTA scan modalities: (i)

3x3-mm single volume scan (V1) (Top left), and (ii) 3x3 multiple-volume scan (V4) (bottom left). The SCP binarized (middle) and skeletonized (right) images, for both

protocol scans, were analyzed to investigate both perfusion density (PD), and vessel length density (VLD), respectively. Panel B: Representation of the OCTA

assessment of the deep capillary plexus (DCP). The DCP was investigated in two different OCTA scan modalities: (i) 3x3-mm single volume scan (V1) (top left), and

(ii) 3x3 multiple-volume scan (V4) (bottom left). The DCP binarized (middle) and skeletonized (right) images, for both protocol scans, were analyzed to investigate

both perfusion density (PD), and vessel length density (VLD), respectively.

https://doi.org/10.1371/journal.pone.0243074.g002
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included. It is possible to say that the bias is significant when the value zero (line of equality)

will not be within its 95% confidence interval. The normal distribution of the data was assessed

using the Shapiro-Wilk test. Statistical analysis was performed using MedCalc Statistical Soft-

ware version 19.5.1 (MedCalc Software bvba, Ostend, Belgium; http://www.medcalc.org;

2019).

Results

A total of 28 eyes of 28 healthy subjects (12 males and 16 females) aged 26.0 ± 4.0 years were

included in this prospective observational cross-sectional study. The demographic characteris-

tics of the study population are reported in Table 1. We found a significant statistical difference

in terms of OCTA quantitative metrics by comparing the two different scanning protocols:

single volume (V1) versus multi-volume merge averages four scan volumes (V4). We found a

significant difference in PD, VLD, and VDI measurements at the level of both SCP and DCP

(Table 2). In detail, the percentage of PD was significantly greater in V4 than V1, 69.7 ± 2.2 vs

68.2 ± 1.4, respectively (p = 0.005) at the level of SCP. The percentage of VLD was significantly

greater in V1 compared to V4, 7.7 ± 0.4 vs 7.2 ± 0.6 respectively (p<0.001) at the level of SCP.

The percentage of PD was significantly greater in V4 than V1, 57.9 ± 1.2 vs 57.1 ± 1.6 respec-

tively (p = 0.030) at the level of DCP. The percentage of VLD was significantly greater in V1

Fig 3. Representation of the OCTA assessment of the choriocapillaris (CC). The CC was investigated in two

different scans: (i) 3x3-mm single volume scan (V1) (top left), and (ii) 3x3 multiple-volume scan (V4) (bottom left).

The CC binarized (right) image was analyzed to investigate CC flow deficits.

https://doi.org/10.1371/journal.pone.0243074.g003

Table 1. Patient characteristis expressed as mean ± SD or n (column %).

Variable Mean ± SD or n (Column %)

SEX Female 16 (57.1%)

Male 12 (42.9%)

AGE (years) 26.0 ± 4.0

Intraocular pressure (mm Hg) 16.4 ± 1.5

https://doi.org/10.1371/journal.pone.0243074.t001
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than V4, 9.1 ± 0.3 vs 8.8 ± 0.4 respectively (p = 0.004) at the level of DCP. Conversely, VDI

measurement resulted significantly greater in V4 than in V1, 9.5 ± 0.8 vs 9.0 ± 0.7 (p<0.001)

for SCP, and 6.5 ± 0.4 vs 6.3 ± 0.3 (p = 0.068) for DCP. The total CC signal void area was signif-

icantly greater in V1 than to V4, 33.7 ± 2.4 vs 25.0 ± 2.7, respectively (p<0.001). The inter-

method repeatability of the measurements evaluated by the calculation of CCC showed a poor

strength of agreement for all variables considered (Table 3). A Bland-Altman plot was used to

assess concordance between methods by reporting mean and differences between methods

(Fig 4). We found disagreement between all the measurements except for VDI of DCP

(p = 0.068).

Discussion

Since its introduction, OCTA has been widely used, into clinical practice, for imaging and for

quantifying retinal microcirculation in healthy [16] and eye diseased [2], and overcoming the

use of standard FA [17]. Also, quantitative analyses of OCTA images have the potential to

become common use in clinical research settings [18]. Coscas et al firstly reported a normative

database to assess vascular density and in superficial and deep capillary plexuses by using a

software build-constructed into commercially SD-OCTA device. They showed high repeatabil-

ity and reproducibility of the measurements [19]. Corvi et al demonstrated that vessel density

significantly differs across seven different instruments tested in a cohort of healthy subjects,

showing poor reliability among the devices [20]. They recommend the use of the same device

to assess the same patient during a clinical setting. That latter can be easily explained because

of different algorithms used are not interchangeable nor results readily comparable. Pedinielli

and colleagues firstly informed about the impact of different post-processing OCTA imaging

by reporting different retinal vessel density values quantified by using three different analytical

methods [21]. These results are recently validated by other studies that confirmed the impor-

tance to use the same device, same binarization thresholding, as well as OCTA image

Table 2. Retinal vascular metrics expressed as mean ± SD evaluated for V1 (%), V4 (%) and differences.

Variable V1 (%) V4 (%) Δ (V1- V4) p-value

SCP PD 68.2 ± 1.4 69.7 ± 2.2 -1.4±2.0 0.005

SCP VLD 7.7 ± 0.4 7.2 ± 0.6 0.5±0.5 <0.001

SCP VDI 9.0 ± 0.7 9.5 ± 0.8 -0.5±0.4 <0.001

DCP PD 57.1 ± 1.6 57.9 ± 1.2 0.8±1.4 0.030

DCP VLD 9.1 ± 0.3 8.8 ± 0.4 0.3±0.3 0.004

DCP VDI 6.3 ± 0.3 6.5± 0.4 -0.2±0.4 0.068

CC Flow Deficit 33.7 ± 2.4 25.0 ± 2.7 8.7±2.4 <0.001

https://doi.org/10.1371/journal.pone.0243074.t002

Table 3. Inter-methods repeatability of measurements: CCC = concordance correlation coefficient.

OCTA (V1) vs OCTA (V4) CCC

SCP PD 0.308 [0.056 to 0.523]

SCP VLD 0.315 [0.084 to 0.513]

DCP PD 0.429 [0.148 to 0.645]

DCP VLD 0.357 [0.087 to 0.578]

SCP VDI 0.728 [0.453 to 0.876]

DCP VDI 0.395 [-0.072 to 0.720]

CC Flow Deficits 0.080 [0.020 to 0.140]

https://doi.org/10.1371/journal.pone.0243074.t003
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averaging, to improve retinal functional metric measurements [10, 22]. But, several studies

performed OCTA image averaging firstly by recording and exporting multiple images [5], and

then by processing them by using external open-source software. It is well known that the

combination of more procedures is time-consuming, and can reduce measurement reliability

as well as clinical value.

Lauermann et al, firstly speculated that the use of integrated multiple images averaging

from on OCTA manufacturer improves image quality parameters [23]. In this prospective

observational cross-sectional study, we assessed the quantitative retinal vascular measurements

in young healthy subjects. To the author’s knowledge, a comparison of results obtained from

two image acquisition modes (not averaged versus multiple averaged OCTA images) by using

a novel Ultra-High-Speed SD-OCTA prototype has not been conducted to the date.

We found a significant difference between the measurements obtained by two different

image acquisition modes. Particularly, the measurement of perfusion vessel density increased,

the measurement of vessel length density decreased, and the measurement vessel diameter

index increased using multiple averaged OCTA volume as compared with unaveraged, on

both superficial and deep capillary plexuses. Furthermore, we found a decreased percentage of

choriocapillaris total flow deficits area measured by using multiple averaged OCTA volume

data as compared with unaveraged. These results are in agreement with those reported by

other studies [5, 23]. Uji et al speculated that improvement in image quality, by increasing the

signal-to-noise ratio, could impact the quantitative analysis from en face OCTA images [5]. It

has been widely established that a higher background noise level could reduce the thresholding

level for binarization. Thus, multiple en face OCTA image averaging is more reliable than a

single image for the assessment of retinal functional parameters. Moreover, the averaged

image was rated to have more intensity signal and better continuity of retinal vessels in both

Fig 4. Bland-Altman plots to assess concordance between methods reporting mean between methods for SCP PD, SCP VLD, DCP PD, and DCP VLD variables

(A) and SCP VDI, DCP VDI, and CC flow deficits variables (B) reporting on x-axis and differences between methods on the y-axis.

https://doi.org/10.1371/journal.pone.0243074.g004
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SCP and DCP, as well as the evaluation of CC microcirculation that closely resembled the his-

tology [24]. Previous findings suggested that the benefit of image averaging is largely obtained

from three acquisitions [5]. Schmidt et al proposed an averaging of ten-volume OCTA frames.

Their study determined limited benefit in acquiring and averaging more than five frames [4].

It is well known that increasing the number of images may improve data quantification, but it

requires more acquisition time. In our study, we performed four volumetric OCT data sets

each of 5 seconds, for a total acquisition time of about 20 seconds. An acceptable, and fast

scanning time if compared to the previous study that reported a mean acquisition time of

about 29 seconds [23] or more, and apparently less time-consuming if compared to standard

FA [17]. Another consideration to point out is that an automated fully-integrated averaging

image system appears to be less suffering by misalignments between the registered frames [5,

24]. These latter phenomena may erroneously enlarge the vessel caliber, which in turn could

not corroborate the quantification of vascular parameters. Our study has several limitations.

First, we reported on a small sample size with 28 subjects. Second, another limitation is that we

did not verify the validity of the OCTA scans through the intrasession repeatability calculation,

although it has been widely reported by means of SSADA algorithm [19]. Third, we enrolled

only young subjects in a relatively narrow age range. It is well known as vascular biomarkers

could change with age. Fourth, this study was limited to healthy eyes, accordingly, the exami-

nation time may be shorter than in older patients or patients with poor fixation due to

maculopathies. Further studies should be addressed to assess the reliability of quantitative

measurements by means of automated averaging multiple OCTA images in subjects affected

by retinal vascular disease. Fifth, the acquisition of multiple en face OCTA images is more

time-consuming compared to the single image. This latter aspect may have implications for

daily and busy clinical practice. In summary, our findings showed a significant difference in

quantitative measurements between the single and averaged images. PD and VLD have been

reported to be clinically relevant quantitative metrics from OCTA imaging. The increased PD

and the decreased VLD of both retinal plexuses have highlighted that noise and the evident

vessel discontinuity in a single image have a significant impact on these quantitative

parameters.

In addition, it does not seem surprising that increasing of VDI values were more significant

in SCP than DCP. Indeed, as previously discussed, the benefits of averaging are due to the

background noise reduction, and to improvement of vessel continuity which become smooth

and of uniform caliber, showing statistically significant values only on the SCP.

In particular, we hypothesize that the significant difference for SCP is due to greater expo-

sure of this plexus being composed of large vessels that affected more by the average system.

On the contrary, the DCP is certainly a denser plexus and composed by homogeneous thin

capillary vortex converging radially toward an epicenter. This could explain why there is not

significant difference for this latter plexus in terms of VDI.

Finally, the decrease of CC flow deficit confirms our results allowing to obtain a CC mor-

phological model very similar to the histologically observed reticulum and might allow the

generation of more precise quantitative metrics. Although these promising results, obtained by

using a new OCTA device, are in agreement with previous reports, further validation studies

are needed, before they can be widely used.
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