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Abstract In recent years, the development of bispecific antibodies (bsAbs) has been rapid, with many

new structures and target combinations being created. The boom in bsAbs has led to the successive issu-

ance of industry guidance for their development in the US and China. However, there is a high degree of

similarity in target selection, which could affect the development of diversity in bsAbs. This review pre-

sents a classification of various bsAbs for cancer therapy based on structure and target selection and ex-

amines the advantages of bsAbs over monoclonal antibodies (mAbs). Through database research, we have

identified the preferences of available bsAbs combinations, suggesting rational target selection options

and warning of potential wastage of medical resources. We have also compared the US and Chinese

guidelines for bsAbs in order to provide a reference for their development.
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1. Introduction
Over the last three decades, therapeutic antibodies have become a
key component of cancer treatment due to their specificity and
sensitivity1. The first monoclonal antibody, Muromonab-CD3
(OKT3), was approved for marketing in 19862, Since then,
antibody-based drugs have developed rapidly and have become
one of the most important types of drugs. In oncology therapy,
monoclonal antibody drugs have demonstrated excellent thera-
peutic effects, such as Rituximab (anti-CD20) and Trastuzumab
(anti-HER2), which have been approved for the treatment of
B-cell malignancies and breast cancer with promising results3,4.

Bispecific antibodies have been developed to address drug
resistance and improve efficacy5. Combination therapies of
monoclonal antibodies targeting different receptors or epitopes
can enhance treatment efficacy and help to overcome drug resis-
tance6. However, these therapies may also cause higher toxicity7,8.
Bispecific antibodies can improve efficacy and safety by simul-
taneously recognizing and binding two different antigens or
antigenic epitopes9. Additionally, they have the unique advantage
of redirecting cytotoxic effector cells10.

Bispecific antibodies have not been widely explored until the
last decade, even though they have shown a specific benefit. Since
the first bispecific antibody (Catumaxomab) was launched in
200911, nine bsAbs (seven for tumors) were approved for mar-
keting, and five of them are coming to market in 2021 and 2022
(Table 1). Up to now, more than 200 drugs are being investigated
in clinic, with 10 entering Phase III (Fig. 1) (https://www.cortellis.
com/drugdiscovery/home)12. It can be expected that a large
number of bispecific antibodies will come to market in the next
3e5 years, bringing the development of bispecific antibodies into
a high-speed development period.

It is clear that the development of bispecific antibodies is in a
rapid and early stage, and the market competition pattern is un-
clear. The similarity in target selection may lead to increased
competition, but also limit therapeutic diversity and waste medical
resources. To ensure a rational design and development strategy, it
is important to summarize clinical data, analyze target selection,
and clarify regulatory requirements. The FDA and NMPA have
issued guidance on bsAbs in 2021 and 2022 respectively13,14,
which may help to provide policy regulation.

2. Structure

2.1. Formats

The selection of format and target determines the therapeutic ef-
fect, pharmacokinetic characteristics and stability of bispecific
Table 1 Approved bispecific antibodies for cancer therapy.

Name Targets Developer

Catumaxomab CD3 � EpCAM Trion pharma

Blinatumomab CD3 � CD19 Amgen

Mosunetuzumab CD3 � CD20 Roche

Tebentafusp CD3 � gp100 Immunocore

Teclistamab CD3 � BCMA Janssen

Amivantamab EGFR � cMET Janssen

Cadonilimab PD-1 � CTLA-4 Akeso

ALL, acute lymphoblastic leukemia; NSCLC, non-small-cell lung carcinom

refractory follicular lymphoma; R/R MM, relapsed or refractory multiple m
antibodies15. The abundance of structural forms provides more
solutions to technical problems in bispecific antibody research.
We will briefly introduce the format design to provide a better
understanding.

According to the existence of the Fc (fragment crystallizable)
region, bispecific antibodies can be divided into two categories:
IgG-Based bsAbs and Fragment-Based bsAbs (Fig. 2).

2.1.1. IgG-based bsAbs
IgG-Based bispecific antibodies are similar in structure to native
antibodies, and all have Fc regions. The Fc region is associated
with multiple activities of bispecific antibodies, such as antibody-
dependent cell-mediated cytotoxicity (ADCC), complement-
dependent cytotoxicity (CDC), and antibody-dependent cell
phagocytosis (ADCP)16. Furthermore, the Fc region of bsAbs may
contribute to an increase in half-life17. Additionally, the Fc region
facilitates the purification of bsAbs and also promotes their sta-
bility and solubility18,19.

However, the IgG-Based bsAbs are also associated with
various disadvantages, such as the side effects due to the off-target
binding of active Fc domain to FcRs (Fc receptors)20, and the
chain-associated issue21.

New formats are being developed to address these problems. For
instance, the recently launched mosunetuzumab (anti-CD3/CD20
bispecific antibody) adopted the classic knobs-into-holes format to
ensure to correct heavy chain assembly22. This technology has a
large amino acid on one chain to create a “knob” and a smaller
amino acid on the other chain to create a corresponding “hole”23,
which is helpful for the correct assembly of two heterologous
antibody heavy chains, thus solving the “chain-associated issue”.
The mismatch between non-homologous heavy and light chains is
another common problem. A new approach is the CrossMab format,
which was created based on the Knobs-into-holes format and
further solves the problem of light chain mispairing24. Faricimab
(anti-ang-2/VEGF) is designed in this format and is currently
approved for the treatment of diabetic macular edema and neo-
vascular (wet) age-related macular degeneration (nAMD)25.

2.1.2. Fragment-based bsAbs
Fragment-based bsAbs are composed of the variable light and
heavy domains from two antibodies, or the Fab units, and lack the
Fc region which distinguishes them from IgG-Based bsAbs26,27.
These fragments are bound together by linkers (e.g., disulfide
bonds or non-covalent interactions) and different pharmacokinetic
properties than the IgG-Based bsAbs28. Fragment-based bsAbs
showed several advantages, including high yield, low cost, good
tumor penetration, and the ability to overcome chain-related is-
sues15,29,30. Due to their low molecular weight, BiTE (bispecific
Time to market Indication

2009 (EMA) Malignant ascites

2014(FDA), 2015(EMA) ALL

2022(EMA), 2022(FDA) R/R FL

2022(FDA), 2022(EU) Uveal melanoma

2022(EU), 2022(FDA) R/R MM

2021(FDA) NSCLC

2022(NMPA) R/M CC

a; R/M CC, relapsed or metastatic cervical cancer; R/R FL, relapsed or

yeloma.
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Figure 1 Preferred targets and combinations. (A) The top 10 most widely investigated targets. (B) The top 10 most widely investigated

targetseclinical stage. (C) Top 10 selected target combinations of cell-bridging bsAbs and (D) their clinical phases. (E) Top 10 selected target

combinations of non-cell-bridging bsAbs and (F) their clinical phases. Information was obtained from Cortellis Drug Discovery Intelligence

(https://www.cortellis.com/drugdiscovery/home)12.
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T-cell engager) antibodies are more readily metabolized in vivo,
with a typical half-life of only 2e4 h31,32. To increase the half-life
of fragment-based bsAbs, antibodies have been designed to be
fused to an Fc region or albumin-binding molecules33. Half-Life
Extended (HLE) BiTE is a novel format that builds upon the
classical BiTE format by fusing it to an Fc domain, significantly
increasing its serum half-life34. Studies have shown that CD19
HLE BiTE� is an effective treatment for CD19-positive malig-
nancies, with a half-life of 210 h after a single intravenous in-
jection, which could be suitable for once-weekly dosing35.
2.2. Affinity and valency

2.2.1. Affinity
The affinity of bispecific antibodies is a major factor influencing
overall tolerability and cytokine release36. For CD3-targeting
T-cell engagers, the affinity of the CD3 arm is a key factor in
the success of T-cell bispecific antibodies (T-bsAbs). The CD3
arm with too high affinity would lead to excessive release of cy-
tokines and affect the tissue distribution of bsAbs, limiting their
reach to the target site37,38. In one study, PSMA/CD3 bispecific

https://www.cortellis.com/drugdiscovery/home


Figure 2 Representative bispecific antibodies and their format. According to the existence of the Fc region, bispecific antibodies can be divided

into two categories: (A) IgG-based bsAbs and (B) Fragment-based bsAbs. BiTE, bispecific T-cell engager; TandAb, tandem diabody; DART, dual

affinity retargeting.
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antibodies with lower CD3 affinity were reported to be more
effective in killing tumor cells and reducing the incidence and
severity of cytokine release syndrome (CRS) in prostate cancer
patients compared to bsAbs with high CD3 affinity39. Thus, a
proper affinity is essential for drug distribution and efficacy.

Additionally, bispecific antibodies can achieve high selectivity
against tumor cells by decreasing the affinity of arms to tumor-
specific antigens (TSA). HER2 T-cell-dependent bispecific anti-
body (TDB) is a bsAb with two low-affinity HER2 arms which has
been reported to have high tumor specificity. It has a strong
binding ability to cells with high HER2 expression, while the
binding rate to low HER2-expressing cells is low. Clinical data has
shown that this bsAb has better tolerability compared to CAR-T
(chimeric antigen receptor T) cell therapies targeting HER240.

2.2.2. Valency
Valency refers to the number of binding sites in the antibody that
can be used to bind antigens. It is another important factor in the
design of bispecific antibodies, as it can affect the efficacy of the
antibody31. Monovalent and multivalent designs can be used to
achieve different levels of efficacy. Glofitamab is an example of a
bsAb with a 2:1 valency against CD20 of B cells and CD3 of T
cells. It has been shown to have 40-fold higher in vitro anti-tumor
activity than 1:1 valency bsAbs41. This demonstrates the impor-
tance of considering all structural features when designing bis-
pecific antibodies, as well as the need for a comprehensive
screening process to obtain an optimal product42e44.

3. Classification of antibodies based on target selection

According to the NMPA guidelines, bispecific antibodies can be
classified into three categories based on their mechanism of ac-
tion: bridging cells, bridging receptors, and bridging cytokines.
Additionally, the classification of bridging receptors and cytokines
has been added to accommodate special bispecific antibodies,
such as SHR-1701 (targeting TGF-b and PD-L1). All four types
are shown in Fig. 3 to make it easier to understand.

3.1. Bridging cells

Bispecific antibodies (BsAb) can redirect cytotoxic effector cells
to tumor cells. From a mechanistic perspective, this type of bis-
pecific antibody can recruit immune cells (such as T cells and NK
cells) to the tumor area to exert cytotoxic effects. One antigen-
binding site of the BsAb binds to specific antigens expressed on
tumor cells, while the other one bridges and activates effector cells
such as macrophages and cytotoxic T lymphocytes (CTL)45,46.
CD3 is the most common targeted protein expressed on effector
cells, which can activate the anti-tumor activity of T cells. Some
emerging target proteins are also classified into this category, such
as TCR and CD16A (Table 2).

3.1.1. Targeting cytotoxic effector cells
3.1.1.1. CD3 targeting T cell engagers. Binding of T-bsAbs to
CD3 has been shown to be a promising cancer therapy due to its
ability to activate T cells without the restriction of the major
histocompatibility complex (MHC) and directly induce tumor-
associated antigens (TAA) and immune cells to form immune
synapses (IS)47. Furthermore, they can induce tumor cell necrosis
or apoptosis through the production of perforin and granzyme
A/B47,48, as well as the stimulation of death ligands such as the
FaseFasL pathway49. However, they may also cause serious side
effects. Catumaxomab, the first commercially available bispecific
antibody for the treatment of malignant ascites, was withdrawn
from the market in 2017 due to its potential to cause adverse
events such as cytokine release syndrome (CRS) and T-cell-
mediated hepatotoxicity11,50e52. Therefore, it is important to
consider various factors when designing a bispecific antibody to
ensure its safety and efficacy.

3.1.1.2. TCR targeting gd T cell engagers. CD3 is widely
distributed on the surface of T lymphocytes, and anti-CD3 bsAbs
can activate the majority of T cells, including some immunosup-
pressive cells such as regulatory T cells (Tregs)53,54. Targeting
specific T-cell subsets with bispecific antibodies is a promising
approach to improve the efficacy and selectivity of T-bsAbs55. By
selectively activating immune cells, it is possible to avoid the
activation of immunosuppressive Tregs and reduce the risk of
adverse events. For example, targeting Vg9Vd2 T cells, a small
cell subpopulation (1%e10%) of the peripheral blood T cells, has
shown promising therapeutic activity due to their conserved T-cell
receptor (TCR) that recognizes malignant cells without relying on
MHC56,57. 7D12-5 GS-6H4 is a novel bispecific antibody against
Vg9Vd2 T cells and EGFR (epidermal growth factor receptor)
that has been shown to induce activation of Vg9Vd2 T cells and
promote apoptosis of colorectal cancer cells in a mouse xenograft



Figure 3 Bispecific antibodies in cancer therapy would be classified into four categories based on mechanism and target selection. (A) BsAbs

that bridge immune effector cells to tumor cells, including pan T cells, gd T cells and NK (natural killer) cells, etc. (B) BsAbs that bridge re-

ceptors from the same or different cells. (C) BsAbs that bridge cytokines and receptors. (D) BsAbs that bridge two cytokines.
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Table 2 BsAbs bridge two cells in clinical stages.

Bridge immune cell Bridge tumor cell Name Indication Phase Clinical trial

CD3 BCMA BI836909 R/R MM I NCT03287908

CD123 APVO436 AML I NCT03647800

CD19 AMG562 DLBCL I NCT03571828

CD20 GEN3013 DLBCL I/II NCT03625037

CD33 GEM333 AML I NCT03516760

CD38 GBR1342 R/R MM I NCT03309111

CEA RG7802 Solid tumors I NCT02650713

CLEC12A MCLA-117 AML I NCT03038230

DLL3 AMG757 AML I NCT03541369

EGFR AFM24 Advanced solid tumor I/II NCT04259450

EpCAM MT110 Solid tumors I NCT00635596

FcRH5 RO7187797 MM I NCT03275103

FLT3 AMG427 AML I NCT03541369

GD2 NCT03541369 SCLC I/II NCT04750239

Glypican-3 ERY974 Solid tumors I NCT02748837

gpA33 MGD007 Colorectal carcinoma I NCT02248805

GPRC5D ERY974 Solid tumors I NCT02748837

HER2 BTRC4017A Solid tumors I NCT03448042

MAGE-A4

(HLA-A*02:01)

IMC-C103C Select advanced solid tumors I/II NCT03973333

MUC17 AMG199 MUC17-positive solid tumors I NCT04117958

MUC16 REGN4018 Recurrent ovarian cancer I/II NCT03564340

NY-ESO-1

(HLA-A*02:01)

GSK01 Select advanced solid tumors I/II NCT03515551

P-cadherin PF-06671008 Neoplasms I NCT02659631

PRAME

(HLA-A*02:01)

IMC-F106C Select advanced solid tumors I/II NCT04262466

PSCA GEM3PSCA NSCLC I NCT03927573

PSMA JNJ-63898081 Neoplasms I NCT03926013

SSTR2 Xmab18087 Neuroendocrine tumor I NCT03411915

STEAP1 AMG509 Prostate cancer I NCT04221542

5T4 GEN1044 Malignant solid tumors I/II NCT04424641

gdTCR CD1d LAVA-051 CLL I/II NCT04887259

PSMA LAVA-1207 Metastatic castration resistant

prostate cancer

I/II NCT05369000

CD16A BCMA RO7297089 R/R MM I NCT04434469

CD30 AFM13 NHL I/II NCT04074746

EGFR AFM24 Advanced solid tumor I/II NCT04259450

AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; MM, multiple myeloma; NHL, non-

Hodgkin lymphoma; NSCLC, non-small-cell lung carcinoma; R/R MM, relapsed or refractory multiple myeloma; SCLC, small-cell carcinoma.
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model58. This novel therapy avoids the activation of immuno-
suppressive Tregs and is effective in killing tumors.

3.1.1.3. CD16A targeting NK cell engagers. AFM13 is a novel
tetravalent bispecific antibody developed by Affimed that targets
CD16A and CD3059. CD16A activates NK cells, increases the
release of pro-inflammatory cytokines and chemokines, and en-
hances the anti-tumor capacity of NK cells60. The cytotoxicity of
NK cells induced by AFM13 is strictly dependent on the presence
of CD30. In a phase I clinical trial for the treatment of Hodgkin’s
lymphoma, AFM13 significantly induced activation of NK cells in
peripheral blood, showing strong anti-tumor activity and good
tolerability61. This demonstrates the potential of bispecific anti-
bodies to selectively activate NK cells and provide more potent
and durable anti-tumor activity.

3.1.2. Targeting tumor cells
3.1.2.1. Targeting tumor-associated antigens. Monoclonal anti-
bodies targeting tumor-associated antigens (TAAs) such as CD19,
CD20 or HER2 (human epidermal growth factor receptor 2) have
shown good clinical efficacy in treating cancer62e64. However, due
to the low expression of these targets on normal cells, the drugs
can also cause the killing of normal cells during treatment. To
reduce the risk of adverse effects, bispecific antibodies offer an
advantage over monoclonal antibodies in terms of selectivity and
specificity. By adjusting the affinity and valency of the antibody
arms, bispecific antibodies can be designed to target TAAs on the
surface of tumor cells while reducing damage to normal cells. This
allows for more targeted and effective treatment of cancer with
fewer side effects.

3.1.2.2. Targeting tumor-specific antigens. Distinct from tumor-
associated antigens (TAAs), tumor-specific antigens (TSAs) are
only expressed in tumor cells. Targeting TSAs theoretically avoids
the toxicity to normal cells and has a higher safety profile. Mutant
proteins expressed by mutated proto-oncogenes and tumor sup-
pressor genes (e.g., RAS and p53) can become potential TSAs65,66.
These mutated proteins are often intracellular proteins that are
difficult to target directly by antibodies. However, it has been
found that the hydrolyzed mutant proteins can bind to human
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leukocyte antigens (HLA) in the form of short peptides to form
peptide-HLA (pHLA) complexes that present on the cell sur-
face67. These peptides are also known as mutation-associated
neoantigens (MANAs), which can be used as targets for bispe-
cific antibody design.

Targeting these MANAs allows the design of bispecific anti-
bodies with higher selectivity to redirect T cells to TSA-expressing
tumor cells. TCR-mimic antibodies, also known asMANA-directed
antibodies (MANAbodies), have been developed and have shown
promising results in clinical trials. A MANA antibody targeting
mutated RAS has been developed and has been shown to activate T
cells and kill tumor cells in cancers with KRAS mutations, such as
pancreatic, colorectal, and lung cancers68,69.

However, most MANAs are expressed at low levels on the cell
surfaces, making the identification more difficult. When devel-
oping MANA antibodies, there are higher requirements for
structures and valence optimization70.

3.2. Bridging receptors

BsAbs targeting two tumor receptors have been extensively
studied due to their high efficacy and low toxicity. As previously
mentioned, tumor-associated antigens (TAAs) are also expressed
in normal tissues, leading to undesired toxicity. Targeting two
TAAs or different epitopes of the same antigen would increase
selectivity and reduce toxicity. In addition, dysregulation of
multiple proteins is often observed in malignant tumors.
Designing bispecific antibodies to inhibit compensatory pathways
is beneficial for improving efficacy and overcoming resistance.

3.2.1. Receptors on tumor cells
3.2.1.1. Bridging two separate receptors. Simultaneously
inhibiting two tumor-associated proteins can produce a stronger
therapeutic effect because it can target multiple pathways involved
in tumor growth and progression, thus providing a more
comprehensive approach to treating cancer. Additionally, it can
reduce the risk of drug resistance, as it is more difficult for the
tumor to develop resistance to two drugs at once.

It is clear that EGFR inhibitors have shown promising results
in the treatment of various cancers, including NSCLC (non-small-
cell lung carcinoma) and colon cancer71e74. However, mutations
of EGFR and activation of compensatory pathways can lead to
drug resistance75. To overcome this, the combination of two drugs
to simultaneously block compensatory pathways has been devel-
oped, such as the combination of EGFR and cMET inhibitors,
leading to the development of EGFR/cMET bsAbs76. Amivanta-
mab (JNJ-61186372) is an example that has been approved by the
FDA on May 21, 2021 for the treatment of adult patients with
locally advanced or metastatic NSCLC (non-small-cell lung
carcinoma)77e79.

3.2.1.2. Bridging different epitopes of the same receptor. Tras-
tuzumab and pertuzumab are monoclonal antibody drugs targeting
the HER2 protein, but they have different binding sites80,81. The
combination of trastuzumab and pertuzumab has been shown to be
effective in treating HER2-positive breast cancer, as it can target
two different antigen-binding sites on the same receptor. This
combination has been approved by the FDA for the treatment of
HER2-positive advanced breast cancer, in combination with
chemotherapy82. The use of this combination has been shown to
be more effective than Trastuzumab alone, as it can block
compensatory pathways that can lead to drug resistance.

Zanidatamab (ZW25) is a bispecific antibody that targets two
epitopes of HER2, combining the binding sites of trastuzumab
(HER2 ECD4) and pertuzumab (HER2 ECD2)83. It has shown
promising results in the treatment of HER2-positive breast cancer
and gastroesophageal adenocarcinoma (GEA). In a phase I clinical
trial, ZW25 in combination with docetaxel had an overall response
rate (ORR) of 90.5%, which was higher than the ORR of 80.2% in
the standard first-line treatment group (pertuzumab, ttrastuzumab,
and chemotherapy)84,85. The FDA has granted ZW25 fast-track
designation in combination with standard chemotherapy for pa-
tients with high-HER2-expressed GEA86.

3.2.2. Receptors on immune cells
Immune cells have a variety of regulatory proteins on their sur-
face, including a series of immune checkpoint proteins, which
regulate the activation, proliferation and anti-tumor activity of
immune cells87. Stimulating or inhibiting the relevant pathways in
a rational manner can induce stronger immune clearance ef-
fects88,89. CTLA-4 and PD-1/PD-L1 are important immune
checkpoint proteins, and the activation of these two pathways can
significantly inhibit the activation of immune cells such as T cells,
resulting in tumor cells “immune escape”90,91. CTLA-4 and PD-1/
PD-L1 inhibitors promote the activation of immune cells in the
tumor microenvironment (TME), which in turn leads to the
apoptosis of tumor cells92,93. These immune checkpoint inhibitors
(ICIs) have become important treatment options for tumors,
however, drug resistance and side effects such as immune-related
adverse events (IrAEs) are also present94. To address these issues,
novel strategies such as combination therapies and novel drug
delivery systems are being developed to improve the efficacy and
reduce the toxicity of immune checkpoint inhibitors95.

Cadonilimab is abispecificantibodydesigned to target bothPD-1
and CTLA-4, which is based on the Tetrabody format, providing
enhanced efficacy and lower toxicity (Fig. 4A).The co-expressionof
CTLA-4 and PD-1 on tumor-infiltrating lymphocytes iswidespread,
while peripheral T cells are lacking. This reduces the tetravalent
binding of cadonilimab to peripheral T cells and increases its
enrichment in the TME. Additionally, the modified Fc region of
cadonilimab helps to avoid Fc-mediated toxic effects, resulting in a
higher specificity and lower toxicity96,97. On June 29, 2022, the
NMPA approved its marketing for the treatment of patients with
recurrent or metastatic cervical cancer (R/M CC) who have failed
prior platinum-containing chemotherapy98.

Another excellent bsAb design is FS120, which is a dual
agonistic targeting 4-1BB and OX40 with the tetravalent format
(Fig. 4B)99. Activating the 4-1BB pathway stimulates the activa-
tion and proliferation of T cells100. However, monotherapy with
agonist antibodies to 4-1BB may induce serious toxicities,
limiting the development of 4-1BB mAbs101,102. In the design of
FS120, the binding arm targeting 4-1BB can be activated only
after the simultaneous binding of OX40, which will lead to
increased selectivity and reduced toxicities. While ensuring safety,
the antitumor effect of FS120 is improved compared to the
combination of mAbs99.

3.2.3. Receptors on tumor and immune cells
Bispecific antibodies (bsAbs) can be used to target both immune
cells and tumor cells (Table 3), activating the anti-tumor activity



Figure 4 Representative bispecific antibodies with increased efficacy and reduced toxicity based on their unique structures.

Table 3 BsAbs bridge two receptors in clinical stages.

Classification Target Name Indication Phase Clinical trial

Bridging two receptors

on tumor cells

CD19 � CD47 TG-1801 B-cell lymphoma I NCT03804996

CD20 � CD47 IMM0306 B-NHL I CTR20192612

EGFR � cMET EMB-01 Neoplasms I/II NCT05176665

EGFR � HER3 Duligotuzumab Head and neck cancer I NCT01911598

EGFR � MET LY3164530 Neoplasms I NCT02221882

HER2 � HER2 Zanidatamab HER2þ/HRþ breast cancer II NCT04224272

HER2 � HER3 Zenocutuzumab Solid tumours harboring

NRG1 fusion

II NCT02912949

HER3 � IGF-1R MM-141 Pancreatic cancer II NCT02538627

LRP5 � LRP6 BI905677 Neoplasms I NCT03604445

PD-L1 � CD47 IBI322 Advanced malignant

tumors lymphomas

I NCT04338659

Bridging two receptors

on immune cells

CD40 � 4-1BB GEN1042 Malignant solid tumor I/II NCT04083599

CTLA-4 � LAG-3 Xmab22841 Melanoma I NCT03849469

CTLA-4 � OX40 ATOR-1015 Solid tumor I NCT03782467

OX40 � 4-1BB FS120 Advanced cancer I NCT04648202

PD-1 � CTLA-4 AK104 Cervical cancer II NCT05227651

PD-1 � ICOS Xmab23104 Selected advanced solid tumors I NCT03752398

PD-1 � LAG-3 Tebotelimab Gastric cancer II/III NCT04082364

PD-1 � TIM-3 RG7769 Solid tumors I NCT03708328

Bridging receptors

on tumor and

immune cells

CD40 � MSLN ABBV-428 Advanced solid tumors cancer I NCT02955251

HER2 � 4-1BB PRS-343 HER2-positive solid tumors I NCT03330561

PD-1 � PD-L1 IBI318 Advanced cutaneous squamous

cell carcinoma

I/II NCT04611321

PD-L1 � 4-1BB MCLA-145 Advanced cancer I NCT03922204

PD-L1 � CTLA-4 KN046 Thymic carcinoma II NCT04925947

PD-L1 � LAG-3 FS118 Advanced cancer I/II NCT03440437

PD-L1 � TIM-3 LY3415244 Solid tumor I NCT03752177

PSMA � CD28 REGN5678 Metastatic castration-resistant

prostate cancer

I/II NCT03972657
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of the immune cells and directly acting on the tumor cells to
induce apoptosis. The activated immune cells are usually tumor-
infiltrating T cells that are already present in the TME9, and this
bsAbs-induced slow and sustained immune response increases the
specificity and safety of the drug.

PRS-344 is a tetravalent antibody that targets PD-L1 and
4-1BB, which are located on the surface of tumor cells and im-
mune cells, respectively (Fig. 4C). PRS-344 is designed to bind to
PD-L1 first, which then enables the 4-1BB binding domain to
drive the aggregation of 4-1BB molecules on the surface of T
cells103. Compared to a 4-1BB monoclonal antibody, it has shown
a significant reduction in hepatotoxicity in the clinic104, and ac-
cording to preclinical data, it has a better anti-tumor effect than
the combination of two monoclonal antibodies103.

3.3. Bridging cytokines and receptors

Abnormal regulation of cytokines is highly correlated with the
development and progression of tumors105. Therapeutic ap-
proaches targeting cytokines have been reported, however, their
development is limited by factors such as short half-life and high
immunogenicity106. To overcome these limitations, many
cytokine-based therapies have been adopted in combination ther-
apies to improve efficacy and reduce toxicity107, which is also the
theoretical basis for designing bispecific antibodies (Table 4).

DLL4 is a receptor expressed in the vasculature and belongs to
the Notch ligand family, which affects the formation of new
vessels. Its expression is upregulated in various malignant tumors
such as breast and bladder cancer108,109. However, DLL4 mono-
clonal antibodies have shown severe side effects in clinical tri-
als110. To avoid its toxicity, navicixizumab was designed as a
bispecific antibody targeting DLL4 and vascular endothelial
growth factor (VEGF)111. This enables the antibody to better
target the TME and has shown promising clinical activity and
manageable toxicity in clinical trials for a range of solid tu-
mors112. It has been granted a fast-track designation by the FDA
for the treatment of heavily pretreated ovarian cancer113.

TGF-b is an important cytokine that can promote immune
escape of tumor cells in advanced stages and inhibit immune
cell function in a non-redundant manner in combination with
PD-L1114,115. When TGF-b inhibitors are used in combination
with ICI, anti-tumor activity is increased116. YM101 is the first
bispecific antibody targeting PD-L1/TGF-b developed on the
Checkbody platform. It can enhance T cell infiltration, alter the
immune microenvironment, induce effective clearance of tumors
by immune cells, and is superior to single anti-TGF-b or PD-L1
antibodies117.
Table 4 BsAbs bridge cytokines or cytokines/receptors in clinical s

Classification Target Name

Cytokines �
receptors

TGF-b � CD73 GS-1423

TGF-b � PD-L1 SHR-1701

TGF-b � EGFR BCA101

VEGF � DLL4 OMP-

305B83

VEGF � PD-1 AK112

Cytokines �
cytokines

VEGF � Ang-2 Vanucizumab
3.4. Bridging two cytokines

Bispecific antibodies targeting two cytokines have been less
studied in tumor therapy and remain to be further explored (Table
4). Vanucizumab is a promising new treatment for advanced solid
tumors, as it has been shown to be effective in targeting both
VEGF and Ang-2, two proteins that are involved in tumor growth
and angiogenesis118. The safety and tolerability of the drug is
comparable to other anti-VEGF or anti-Ang-2 inhibitors, making
it a viable option for treating tumors such as breast cancer and
gastric carcinoma119e121.

4. Innovative bispecific antibody drugs

Bispecific antibodies offer unique advantages over monoclonal an-
tibodies, including increased selectivity and efficacy. This increased
selectivitymakes them ideal for therapies that require high specificity,
suchas antibodyedrug conjugates (ADC)drugs and chimeric antigen
receptor (CAR)T-cell therapy. Furthermore,multispecificantibodies,
such as trispecific and tetraspecific antibodies, are being developed to
further increase selectivity and efficacy.

4.1. Bispecific ADCs

ADC drugs are a promising new drug design strategy that com-
bines the specificity of antibodies with the high toxicity of small
molecules124. Bispecific antibodies are particularly well-suited for
this type of drug, as they offer increased specificity and endocy-
tosis ability compared to monoclonal antibodies. This increased
specificity helps to reduce the toxic side effects of the small
molecule payload, while the endocytosis ability allows for more
efficient transmembrane delivery of the ADC drug125.

Bispecific ADCs targeting HER2 have been developed to
improve the efficacy of HER2-targeted therapies126. ZW49, a bis-
pecific antibody based on ZW25 (Fig. 5A), has demonstrated good
antitumor activity and safety in clinical trials (ClinicalTrials.gov
identifier: NCT03821233). Additionally, bsHER2xCD63his-ADC,
a bispecific antibody targeting HER2 and CD63, has been designed
to improve the internalization and antitumor ability of HER2-based
ADCs127. CD63 has the ability to regulate the transportation of
proteins via endocytosis128, which increases the endocytosis of
ADC drugs and thus enhances their therapeutic efficacy129.

4.2. Trispecific/tetraspecific antibodies

Combination therapy targeting synergistic pathways is an essential
strategy for enhancing the efficacy of cancer therapy. T cells also
tages.

Indication Phase Clinical trial

Advanced solid tumors I NCT03954704

Squamous cell carcinoma

of head and neck

II NCT04650633

Head and neck squamous

cell carcinoma

I NCT04429542

Metastatic colorectal cancer I NCT03035253

NSCLC I/II NCT04900363

Advanced solid tumors I NCT02665416

http://ClinicalTrials.gov


Figure 5 Representative innovative bispecific antibody drugs. (A) ZW49 is a bispecific ADC122. (B) SAR-442257 is a trispecific antibody123.

(C) GNC-038 is a tetraspecific antibody (ClinicalTrials.gov identifier: NCT05192486).
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require multiple signals for activation. Trispecific/tetraspecific
antibodies, derived from bispecific antibodies, are thought to have
a greater therapeutic potential (Fig. 5B and C).

Trispecific antibodies possess three distinct antigen-binding sites
that can effectively bridge cells and stimulate immune cells more
efficiently. SAR-442257 is a trispecific antibody targeting CD3/
CD28/CD38. CD3 can recruit and activate T cells, while CD28 can
further activate T cells and extend the duration of the immune
response. CD38 domains have the ability to guide T cells tomyeloma
cells130. SAR-442257 is currently undergoingPhase I clinical trials to
evaluate its therapeutic effects in relapsed/refractory multiple
myeloma (R/R MM) and non-classical Hodgkin’s lymphoma (R/R
NHL) (ClinicalTrials.gov identifier: NCT04401020).

Tetraspecific antibodies possess four distinct antigen-binding
sites, offering more options for target selection. GNC-038 is the
first tetraspecific antibody to enter clinical trials. GNC-038 con-
tains four antigen-binding sites: CD19, CD3, PD-L1, and 4-1BB.
The CD3 and 4-1BB arms respectively activate the first and sec-
ond signals of T cells, and the anti-CD19 and anti-PD-L1 domains
target tumor cells131. GNC-038 stimulates peripheral T cells and
facilitates T cell infiltration into tumor sites. It can overcome the
immunosuppression in the TME and display antitumor activity
in vivo. GNC-038 is currently in Phase I/II clinical trials to assess
its effectiveness in non-Hodgkin’s lymphoma, diffuse large B-cell
lymphoma, and other lymphomas (ClinicalTrials.gov identifier:
NCT05192486).

5. Guidance from FDA and NMPA

5.1. Development of guidance

Research on bispecific antibodies is unique and an increasing
number of research institutions are engaging in it, necessitating
industry guidance principles to regulate research and develop-
ment, pointing out potential challenges to ensure successful
research outcomes.

The FDA first issued draft guidance for Bispecific Antibody
Development Programs on April 19, 2019, followed by a final
version on May 24, 202113. On April 11, 2022, the National
Medicinal Products Administration (NMPA) published the Tech-
nical Guidelines for Clinical Development of Bispecific Antibody
Class Antitumor Drugs (Draft for Comments), with the final
version released on November 9, 202214. This marks the transition
of bispecific antibodies from a “wild growth phase” to a more
“scientific development phase” (Table 5). The European Union
has yet to issue drug guidelines for bispecific antibody drugs, and
the development of bispecific antibodies follows the guidelines for
therapeutic protein drugs.

5.2. Comments on the guidance

The guidance issued by the US and China suggest various aspects
that should be taken into consideration during the development of
bispecific antibodies, such as design strategy, preclinical studies,
quality control, drug metabolism and toxicity. It is essential to
compare the guidelines between the US and China.

The documents issued by the FDA and China are program-
matic, providing strategic guidance for the majority of re-
quirements, while specific research protocols should be developed
on a case-by-case basis. Considering the complexity and technical
challenges of bsAbs, the guidance principles of the FDA and
NMPA are open to communication regarding trial design and trial
process. It is encouraged for research and development organi-
zations to communicate with regulatory authorities in order to
ensure the successful development of bsAbs.

Both guidance documents from the two countries include
stringent requirements for efficacy and safety testing, such as
immunogenicity testing and safety assessment. The FDA has
established fundamental standards for pharmacology, toxicology,
and safety evaluation, while the NMPA lacks such evaluation
standards. Additionally, the NMPA provides the foundation for the
design, selection and use of biomarkers, which are not mentioned
in the guidance provided by the FDA.

Furthermore, the guidance of the two countries differs in terms
of the selection of control groups. The FDA recommends
comparing with the standard of care or placebo, while if mono-
specific products with the same antigens are approved for the
same indication, then a comparison should be made with the
monospecific products. On the other hand, the NMPA recom-
mends selecting the optimal treatment regimen as a control.
BsAbs are required to achieve a function that cannot be achieved
by related monoclonal antibodies or monoclonal antibody com-
bination therapy, which can bring valuable clinical benefits to
patients.

At present, the development of bsAbs is still in its early stages,
and there are few published guidelines that can be consulted. The
guidance issued by the FDA and NMPA are both very instructive
for the development of the bispecific antibody market. For bsAbs

http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov


Table 5 Guidance comparisons between FDA and NMPA13,14.

Content FDA NMPA

Application scope Bispecific antibodies, other types of bispecific protein

products and multispecific products

Not include antibody cocktails, polyclonal antibody

products, or combination of monoclonal antibodies

Bispecific and multispecific antibodies in cancer

therapy

Classification BsAbs that bridge two target cells

BsAbs that do not bridge cells

Classification by structure:

Non-IgG based bsAbs;

IgG based bsAbs

Classification by target selection:

Bridging cells;

Bridging receptors;

Bridging cytokines

Design of bsAbs Not mentioned Designing antibodies based on clinical needs, target

selection and structure optimization

Scientific considerations

CMC quality

considerations

The development of the manufacturing procedures

should be carried out according to standard monoclonal

antibody development practices. Studies should be

conducted on quality characteristics such as antigen

specificity; affinity and on- and off-rates; avidity;

potency; product-related impurities, fragments,

homodimers, other mispaired species; stability; and

half-life

Not mentioned

In vitro tests Required to carry out, in combination with pharmacological experiments to support the scientific principle of

bispecific antibodies

Non-clinical trials Pharmacology and toxicology experiments: the range of

studies is similar to that of monoclonal antibodies;

target expression profile and specificity should be

considered when selecting models

Referring to the relevant guidelines that have been

published in China, non-clinical studies were conducted

to further support the rationality of the topic of bsAbs

Risk control for first-

in-human (FIH)

trials of innovative

drugs

Not mentioned Develop and strictly implement a risk management plan

during clinical trials; scientifically and appropriately set

the starting dose of FIH, the magnitude and speed of

dose escalation study; and rationally define the dose

limit toxicity (DLT)

Clinical

pharmacology

Similar to research on monoclonal antibodies and other therapeutic protein products

Pharmacodynamics Necessary to consider the binding and impact of each target

Optimal drug delivery

strategy

Extended dose exploration studies can be conducted

with no less than two candidate dosing regimens within

the determined safe dose range

Factors such as pharmacology, toxicology, and

pharmacokinetics should be evaluated comprehensively;

Early dose escalation studies should be performed

Control selection Comparison with the standard of care or placebo in

many situations. If monospecific products with the same

antigens approved for the same indication exist, then a

comparison is conducted with the monospecific

products

Comparison with the best standard treatment

Clinical trial

establishment

Clinical studies should inform the benefit-risk

assessment and support approval based on the specific

targets and other clinical considerations. Sponsors are

encouraged to discuss product development plans with

the FDA’s appropriate clinical review division

BsAbs should perform functions that are not achieved

by the mAbs or combinations of mAbs, and have the

potential to provide clinical value

PK assessment Choose the bispecific antibody conformation associated

with the bispecific antibody PK assessment

(biologically active or inactive forms)

Not mentioned

Immunogenicity Detection of immunogenic reactions of different

structural domains of bsAbs using multiple methods

Immunogenicity risk assessment should be conducted

and a risk management plan should be developed before

clinical studies; Integrates clinical PK, PD and safety

data during development to fully assess

immunogenicity; Develop an immunogenicity study

strategy based on immunogenicity risk; Detection of

immunogenic reactions of different structural domains

of bsAbs using multiple methods

Development of

biomarker

Not mentioned Design and use of biomarkers based on factors such as

the mechanism of action, biological relationships

between targets, clinical applications and data
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that require approval from multiple countries, comprehensive
considerations must be taken into account during the development
stage to meet different regulatory requirements, such as pharma-
codynamics, toxicology, and other in vitro tests.

6. Conclusions

Many successful bsAbs have been developed, providing a variety
of successful templates and development experiences. Proper
structural design and target selection are critical for ensuring the
success of drug research, while maintaining the efficacy of com-
bination therapy and reducing the corresponding toxicity, which is
one of the core advantages of bispecific antibodies. Systematically
understanding excellent examples of bispecific antibody design
can help to develop novel therapeutic antibodies.

The development of bispecific antibodies has opened up new
possibilities for the development of innovative drugs that can
target multiple pathways simultaneously. The high selectivity of
these antibodies makes them ideal for use as ADC drugs, which
can improve selectivity against cancer cells and increase inter-
nalization for better clearance of tumor cells. Additionally, the
development of trispecific and tetraspecific antibodies is expected
to further enhance the anti-tumor effects of these drugs. Clinical
trials are currently underway to evaluate the efficacy of these
drugs, and the results of these trials will be eagerly awaited.

The collection of cases has revealed a high degree of similarity
in target selection across multiple research institutions. CD3 is the
most commonly chosen target for cell-bridging bsAbs, with 56
bispecific antibodies targeting both CD3 and CD19, including one
marketed drug. For non-cell-bridging bsAbs, the most widely
studied combination is PD-L1/4-1BB, with 32 bispecific anti-
bodies. Bispecific antibodies offer the advantage of increased ef-
ficacy and reduced toxicity due to the rational combination of
targets. However, the high similarity in target selection is unfa-
vorable for study enrichment and may lead to wasted medical
resources. Therefore, it is important to conduct a thorough review
of the literature and market research before selecting a target for
bispecific antibody development.

The rapid development of bispecific antibodies has led to an
increased need for regulatory guidance. In 2021 and 2022, theUS and
China issued guidance to standardize the design strategy and drug
evaluation of bsAbs, in order to maximize the unique benefits of
bispecific antibodies. This guidance is intended to ensure the safety
and efficacy of bsAbs, and to ensure that they are used in the most
effective way. The global market for bispecific antibodies is growing
rapidly, and sales of cancer-related bispecific antibodies are expected
to reach $3.7 billion by 2027132. Despite the challenges that remain,
bispecific antibodies offer unique advantages that make them a
powerful therapeutic weapon. These advantages include increased
efficacy, lower toxicity, and improved specificity, which can help to
improve the effectiveness of cancer treatments.
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