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Abstract: Microenvironment plays a crucial role in tumor development and progression. Cancer cells
modulate the tumor microenvironment, which also contribute to resistance to therapy. Identifying
biomarkers involved in tumorigenesis and cancer progression represents a great challenge for cancer
diagnosis and therapeutic strategy development. CD147 is a glycoprotein involved in the regulation
of the tumor microenvironment and cancer progression by several mechanisms—in particular,
by the control of glycolysis and also by its well-known ability to induce proteinases leading to
matrix degradation, tumor cell invasion, metastasis and angiogenesis. Accumulating evidence has
demonstrated the role of CD147 expression in tumor progression and prognosis, suggesting it as a
relevant tumor biomarker for cancer diagnosis and prognosis, as well as validating its potential as a
promising therapeutic target in cancers.

Keywords: CD147; biomarker; tumor microenvironment; prognosis; targeted therapy

1. Introduction

Tumor complexity represents a challenge with regard to the development of new therapeutic
strategies [1,2]. Tumor development is a dynamic process involving cooperation between different
cellular and noncellular elements of the tumor microenvironment (TM) such as fibroblasts, endothelial
cells, pericytes and immune cells including lymphocytes B and T, tumor-associated macrophages,
natural killers, as well as extracellular components (growth factors, hormones, cytokines) surrounded
by a blood/lymphatic vascular network present in a complex extracellular matrix (ECM). Recently,
cancer progression and drug resistance have been proposed to result from the interaction of the
tumor cells with their microenvironment [3,4]. Targeting molecules capable of modulating the TM in
favor of the tumor cell can lead to efficient therapeutic strategies. In addition, the microenvironment,
through the proteolytic degradation of its ECM, can further promote tumor progression and ease the
metastasis process [5]. Matrix metalloproteinase (MMPs), which are the main ECM degrading enzymes,
are often overexpressed in cancer and are associated with a poor prognosis [6]. Understanding the
regulation of their production and activation appears to be important for the development of new
therapeutic strategies.

CD147 (cluster of differentiation 147) is a glycoprotein initially known as a regulator of MMPs,
through cell–matrix and cell–cell interaction and represents a potential target for cancer therapy [7].
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CD147 was found to be overexpressed in cancer cells and is believed to promote their malignant
proprieties, such as proliferation and inhibition of cancer cell apoptosis [8]. During the past decades,
CD147 was implicated, in addition to its role as a regulator of MMPs, in several other functions due to
its ability to regulate or to bind with different molecular partners and hence has the ability to modulate
several cellular pathways [9]. In particular, through its association with certain monocarboxylate
transporter (MCTs), CD147 was shown to act as a key metabolic regulator in cancer. In addition, CD147
was also shown to be implicated in the angiogenesis process via the regulation of vascular endothelial
growth factor (VEGF) production in tumor and stromal cells [10].

Earlier detection of cancer can greatly increase the opportunity for successful treatment. Identify
new prognostic biomarkers can be useful for cancer clinical and therapeutic management [11]. An
increasing number of studies have shown CD147 as a promising biomarker for predicting prognosis in
many cancers [12].

2. CD147 Biological Functions in Cancer: Structure and Partners

A glycoprotein belonging to the immunoglobulin family and enriched on the surface of various
types of tumor and stromal cells, including epithelial cells and fibroblasts [13], CD147 was initially
named TCSF (tumor cell-derived collagenase stimulatory factor) and renamed Extracellular Matrix
MetalloPRoteinase INducer (EMMPRIN) based on its matrix metalloproteinase (MMP) inducer
function [14]. Although increasing MMPs expression in tumor cells was initially established as the
major protumoral function of CD147 [14], several subsequent studies had demonstrated that its
tumor-promoting role implicates other mechanisms, of which the interaction of CD147 with MCTs,
leading to increased aerobic glycolysis appears to represent a major role.

CD147 is coded by Basigin (BSG) gene located on chromosome 19p13.3 [15]. Four variants of
CD147 has been encoded (Basigin 1, 2, 3 and 4) through an alternative promoter and splicing [16]. The
retinal-specific CD147 (Basigin 1) containing three immunoglobulin domains [17] and isoforms Basigin
3 and 4 contain a single immunoglobulin domain [18]. The most abundant isoform and complete
information is only available for Basigin 2, named CD147 in the present review. It is composed of a
signal sequence of 21 amino acids, an extracellular domain of 184 amino acids with two immunoglobulin
domains, a transmembrane domain of 24 amino acids, and a cytoplasmic domain of 39 amino acids [19].
Structurally, one monomer of CD147 is composed of two domains, D1 corresponding to N-terminal
domain (residues 22–101) and a C-terminal domain called D2 (residues 107–205) (Figure 1). Crystal
structure showed CD147 monomers can associate with each other, leading to dimer formation [20]. It
was first shown that CD147 dimerization can occur in the same cell [21]. This homodimerization on the
plasma membrane is in a cis-dependent manner [22]. CD147 can also interact with other cells through
CD147/CD147 interaction in trans-dependent manner, which can induce intracellular signaling [23].
Moreover, a soluble form of CD147 was shown to be internalized through surface CD147 binding and
enhance proliferation and migration [24]. This interaction can then induce cell surface expression of
CD147 [24]. Dimerization of CD147 is crucial for MMPs induction and cell invasion in hepatocellular
carcinoma though MAPK pathway [25].

Cancer-associated fibroblasts (CAFs) are the most abundant components of tumoral stroma
and contribute to the malignant phenotype of cancers. In 2019, Aoki et al. demonstrated that
CD147 can stimulate adjacent fibroblasts thought CD73 interaction, increasing the secretion of
MMP-2 and promoting invasion and metastasis [26]. CD147 has been shown to be implicated in the
transformation of normal fibroblasts to cancer-associated-fibroblast through cancer–stroma interaction
and the induction of alpha smooth muscle actin (α-SMA) expression, a marker of CAFs, promoting
epithelial-to-mesenchymal transition of breast cancer cells [27]. CD147 contains three asparagine
(Asn) glycosylation sites in the extracellular region. The glycosylation level of CD147 is related to its
different molecular weights, which have been described and classified as low and high glycosylated
CD147 forms [22]. The glycosylation of CD147 was shown to be necessary for its function, since the
unglycosylated forms of CD147 were not able to induce fibroblast’s MMPs production [28].
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Figure 1. Schematic presentation of CD147 structure. CD147 consists of 269 amino acids (aa) and 
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domain. CD147 contains three Asparagine (Asn) sites of glycosylation. 
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the microenvironment. Two different ways by which the cell can generate these soluble forms of 
CD147 have been described; one involving an MT1–MMP-mediated cleavage of surface-bound 
CD147 [29] and a second is based on the release of microvesicules, containing full-length of CD147 
molecules [30]. Recently, the interaction between ADAM12 and CD147 was shown to promote the 
cleavage of CD147 releasing its soluble form in the microenvironment, showing a new way to 
generate soluble CD147 [31]. A soluble form of CD147 was reported to be associated with tumor 
growth, metastasis formation and chemoresistance, and has been proposed as a clinical biomarker in 
breast cancer [32] and hepatocellular carcinoma [33]. 

CD147 is known to interact with numerous partners such as MCTs [34], caveolin-1 [35], CD98 
and β1 integrin [36] to promote cell metabolism, proliferation, migration and invasion [37]. 

A major protumoral action of CD147 was shown to involve a metabolic modification of the 
tumor microenvironment through its interaction with certain MCTs (MCT-1, MCT-4) that regulate 
tumor glycolysis via lactic acid export. By acting as a chaperone of MCTs, CD147 facilitates their cell 
membrane localization and functionality and increases tumor cell aerobic glycolysis, a hallmark of 
metastatic cancer [38,39]. Studies by Pouyssegur‘s group, who explored the role of CD147 in MMPs 
induction, furthermore suggested that the previously well-established MMPs induction function of 
CD147 only plays a minor role in cancer progression compared to that of CD147-MCT [40]. Grandja 
et al. showed by a direct interaction that CD147 can regulate MCTs expression and activity in non-
small lung cancer. Indeed, CD147 knockout induced a decrease of the expression and the activity of 
MCT-1 and MCT-4 [41]. Glycolysis and cellular activities were found significantly inhibited after 
CD147 silencing with RNAi technology. A study in thyroid carcinoma cells showing a close 
association between CD147 and MCTs confirmed the dominant role of CD147 in glycolysis [42]. In 
multiple myeloma cells, CD147 was showed to act as a chaperone of MCT-1, thus promoting tumor 
growth within an acidic microenvironment [43]. These results reinforce the importance of the 
interaction between CD147 and MCTs as a major mechanism in tumor progression. 

Other cell surface partners of CD147 have been described. Caveolin-1 was shown to interact with 
CD147 and this had a negative effect on the MMP-inducing function of CD147 [44]. CD98 and CD147 

Figure 1. Schematic presentation of CD147 structure. CD147 consists of 269 amino acids (aa) and
composed of a signal domain, an extracellular domain, a transmembrane domain and a cytoplasmic
domain. CD147 contains three Asparagine (Asn) sites of glycosylation.

An important mechanism of action of CD147 is that it can be secreted by cells and released into the
microenvironment. Two different ways by which the cell can generate these soluble forms of CD147
have been described; one involving an MT1–MMP-mediated cleavage of surface-bound CD147 [29]
and a second is based on the release of microvesicules, containing full-length of CD147 molecules [30].
Recently, the interaction between ADAM12 and CD147 was shown to promote the cleavage of CD147
releasing its soluble form in the microenvironment, showing a new way to generate soluble CD147 [31].
A soluble form of CD147 was reported to be associated with tumor growth, metastasis formation and
chemoresistance, and has been proposed as a clinical biomarker in breast cancer [32] and hepatocellular
carcinoma [33].

CD147 is known to interact with numerous partners such as MCTs [34], caveolin-1 [35], CD98 and
β1 integrin [36] to promote cell metabolism, proliferation, migration and invasion [37].

A major protumoral action of CD147 was shown to involve a metabolic modification of the
tumor microenvironment through its interaction with certain MCTs (MCT-1, MCT-4) that regulate
tumor glycolysis via lactic acid export. By acting as a chaperone of MCTs, CD147 facilitates their cell
membrane localization and functionality and increases tumor cell aerobic glycolysis, a hallmark of
metastatic cancer [38,39]. Studies by Pouyssegur‘s group, who explored the role of CD147 in MMPs
induction, furthermore suggested that the previously well-established MMPs induction function of
CD147 only plays a minor role in cancer progression compared to that of CD147-MCT [40]. Grandja et
al. showed by a direct interaction that CD147 can regulate MCTs expression and activity in non-small
lung cancer. Indeed, CD147 knockout induced a decrease of the expression and the activity of MCT-1
and MCT-4 [41]. Glycolysis and cellular activities were found significantly inhibited after CD147
silencing with RNAi technology. A study in thyroid carcinoma cells showing a close association
between CD147 and MCTs confirmed the dominant role of CD147 in glycolysis [42]. In multiple
myeloma cells, CD147 was showed to act as a chaperone of MCT-1, thus promoting tumor growth
within an acidic microenvironment [43]. These results reinforce the importance of the interaction
between CD147 and MCTs as a major mechanism in tumor progression.
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Other cell surface partners of CD147 have been described. Caveolin-1 was shown to interact
with CD147 and this had a negative effect on the MMP-inducing function of CD147 [44]. CD98 and
CD147 form a complex with MCTs and play a critical role in the energy metabolism of the cell [45]. Cell
motility was shown to be regulated by CD147/integrin interaction through FAK-STAT3 pathway [46].
CD147 overexpression also directly contributes to tumor angiogenesis by simulating VEGF production
via the PI3K/AKT pathway [47].

The ABC transporter G2 (ABCG2) is known to be involved in drug resistance [48,49], thanks to its
role in drug transport and efflux [50]. CD147 can regulate ABCG2 cellular location and dimerization [51],
leading to cancer cell chemoresistance [52]. CD147 was also shown to be a signaling receptor for
cyclophilin A (CypA), a cytosolic protein secreted in response to inflammatory stimulations. CypA is
overexpressed in cancer and leads to malignant transformation and metastasis via ERK1/2 signaling [53].
CD147 interaction with CypA was shown to induce cancer cell proliferation [54] and regulates cell
immunity and inflammation (Figure 2) [55].
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Figure 2. Schematic overview of CD147 associated partner, molecular pathway and microenvironment
interaction involved in cancer progression.

3. CD147 Regulates Cancer Cell Invasion and Metastasis

Tumor invasion depends on a complex mechanism involving cell adhesion, migration and matrix
degradation. In addition, the alteration in the surrounding microenvironment is known to further
promote invasion by cooperating with the tumor cell and supporting its survival, proliferation and
production of proteinases essential for degrading the extracellular matrix, mainly the MMPs and
the serine proteases (uPA, plasmin). CD147 enriched on the surface of tumor cells, was shown to
be an important factor in tumor stroma interactions, as it stimulates neighboring stromal to increase
their synthesis of several MMPs [14,56]. The extracellular N-terminal region of CD147 was shown to
be crucial for the MMPs induction [14,57]. Although MMPs induction may not represent the major
tumor-promoting function as was previously thought, by degrading the surrounding stroma, MMPs
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are important in regulating cell growth, migration and invasion. CD147 was shown to stimulate the
production of MMP-1, MMP-2, MMP-3 in melanoma [58] and MMP-9 in breast cancer [59] but had no
effect on the specific tissue inhibitors of MMPs, TIMP-1 and TIMP-2 [60]. Following activation, MMP-9
lead to degradation of type IV collagen and promoted tumor cell invasion and metastasis in breast
cancer [61]. CD147 and MMP-11 were overexpressed in colorectal cancer and showed a colocalization
between both proteins. In addition to its role in invasion and metastasis, MMP-11 was shown to confer
resistance to anoikis, a process of apoptosis induction in absence of attachment to the extracellular
matrix [62], a process frequently observed in cancer cells [63]. In this context, CD147 has also been
described as a suppressor of anoikis by contributing to the malignant phenotype in breast cancer [64]
and hepatocellular carcinoma [65].

Our group has previously shown that CD147 also induces expression of the urokinase plasminogen
activator system, uPA/uPAR/PAI-1, in melanoma, breast and ovary tumor cells, further increasing
its proteolytic and invasion potential in vitro and in vivo [66]. Indeed, increasing CD147 expression
experimentally in human breast cancer cells greatly enhanced tumor growth and metastases in nude
mice and was associated with an increase in MMPs and urokinase production in the tumors [66,67].
By transcriptome analysis of individual tumor cells isolated from bone marrow of cancer patients
and comparative genomic hybridization technique, CD147 was shown to be the most frequently
expressed protein in primary tumors and in micrometastatic cells [68], suggesting a central role in
tumor progression and early metastasis.

Furthermore, the invasive proprieties of breast cancer cells are modulated by the interaction
of CD147 and hyaluronan-CD44 though the activation of EGFR–RAS–ERK pathway. Our previous
demonstration that CD147 expression in epithelial mammary tumor cells is increased by the EGF/EGFR
system [69] suggests that the activation of EGFR signaling may account, at least partially, to the
increased expression of CD147 observed in most carcinomas and to the therapeutic potential of EGFR
inhibitors. More recently, the role of CD147 in promoting tumor progression and metastasis was also
reported in head and neck squamous carcinoma through the NF-κB pathway [70].

4. CD147 Regulates Tumors Cells Adhesion

Integrins are major cell surface adhesive receptors composed of α- and β-chain heterocomplexes
that mediate cell matrix adhesion and migration, playing an important role in the invasive process
of tumor cells. Integrins control ECM remodeling by the regulation of the localization and activity
of proteases [71]. Several studies have described CD147–integrin interactions, which can regulate
adhesion and migration in cancer cells. CD147 forms complexes with α3β1 and α6β1 integrins at
cell–cell contact [72], an interaction that promotes cancer invasiveness by inducing MMP synthesis via
a focal adhesion kinase (FAK)-PI3K signaling pathway [73,74].

In human hepatoma cells, overexpression of CD147 was shown to promote invasion and metastasis
via α3β1 FAK-paxillin and FAK-PI3K-Ca2+ pathways [75]. Furthermore, α3β1 and CD147 co-localize
on human 7721 hepatoma cells [76]. In oral cancer cells, the interaction of CD147 with β6 integrin
was shown to cooperate with Fyn, a Src family kinase, in modulating MT1-MMP activity [77]. CD147
and MT1-MMP were shown to be in close proximity within invadopodia-like structures [78]. CD147
knockdown decreased the ability of prostate cancer cells to form filopodia and promote cell adhesion,
which demonstrate the capacity of CD147 to regulated cytoskeleton rearrangement [79].

Our study, using a transcriptomic approach aimed at identifying CD147 regulated partners
involved in cell adhesion and invasion, revealed Kindlin-3 (an integrin partner), to be inversely
regulated by CD147 [80]. Kindlin-3 (also called FERMT3 or Mig2B), is an integrin-interacting
focal adhesion protein that mediates integrin activation [81]. Kindlin-3 has been implicated in
β2 integrin activation in leukocytes and was shown to promote their adhesion and endothelial
transmigration [82,83]. Recently we have shown that Kindlin-3 acts as a tumor suppressor in solid
tumors in vitro and in vivo [84]. Functional studies allowed us to demonstrate in melanoma models,
that Kindlin-3 is involved in CD147 regulation of β1 integrin-mediated adhesion [80].
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5. CD147 Promotes Tumor Angiogenesis

CD147 was also shown to be involved in tumor angiogenesis, a key component of the tumor
microenvironment. MMP expression induced by CD147 in both tumor and stromal compartments
in turn releases biologically active angiogenic growth factors from matrix-bound complexes. In
2005, Tang et al. showed that CD147 stimulates tumor angiogenesis by increasing VEGF and MMP
expression levels in both tumor and stromal compartments [85]. Our studies have shown that tumoral
CD147 increased the production by endothelial cells of VEGF soluble isoforms (particularly the most
angiogenic isoforms) and of its main receptor VEGFR-2 through the transcription factor HIF-2α,
both in vitro and in experimental tumor models in vivo. Moreover, CD147 promotes capillary-like
formation, migration and cell survival through VEGFR-2 and its ligand VEGF [10]. We have also
shown that this regulation of VEGF/VEGFR-2 by CD147 is not limited to endothelial cells and can
be also observed in melanoma tumor cells leading to an increase of their malignant properties [86].
Further studies allowed us to identify a unique mechanism of action of CD147, showing that its direct
interaction with VEGFR-2 on the plasma membrane is required for VEGF induced VEGFR-2 activation.
This VEGFR-2 co-receptor role of CD147 has been studied using computational docking analyses and
mutagenesis and led to the identification of a molecular binding site in the extracellular domain of
CD147 located close to the cell membrane and containing the amino acids 195/199. The overexpression
of CD147 in cancer is able to further potentiate VEGFR-2 activation, suggesting that a combinatory
therapy of an antiangiogenic drug together with an inhibitor of CD147/VEGFR-2 interaction may have
a greater impact on inhibiting angiogenesis and malignancy [87].

CD147 is also implicated in lactate efflux, via its cotransporter monocarboxylate transporter 4.
Indeed, MCT4 regulates CD147 maturation and trafficking to the plasma membrane in breast cancer
cells [88]. Accumulation of lactic acid in the ECM is also known to promote angiogenesis via the
increase of VEGF/VEGFR-2 synthesis by tumor and endothelial cells, which reinforce the role of CD147
in the regulation of tumor angiogenesis.

6. CD147 Therapeutic Targeting Strategies

Drug resistance is a major issue in cancer therapy that promotes treatment failure and patients’
relapse. A big challenge is the identification of those patients who will develop a therapy resistance
and the setup of more effective alternative therapeutic strategies. A number of studies brought several
levels of evidence that converge to a role of CD147 in drug resistance. CD147/CD98hc complex (a
high glycosylated chain linked with a low glycosylated chain highly expressed on human tumor
cells) is found overexpressed in cisplatin-resistant cancer cell lines [89]. CD147 expression increased
chemotherapeutic drug resistance (Doxorubicin, BCNU, Taxol and Vincristine) via hyaluronan [90] and
CD44 interaction, including receptor tyrosine kinase, ABS transporter and MCTs activities facilitating
drug efflux with resistance to cisplatin and methotrexate in head and neck cancer [91], to cisplatin
in lung cancer [92], and to vincristine in lymphoma [93]. Cooperation between CD147 and the
lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) was also described in the regulation of
chemoresistance in lymphoma through upregulation of the drug transporter/ABCG2 (BCRP, the breast
cancer resistance protein) [94]. Another interaction between CD147 and ABCG2 has been involved in
breast cancer chemoresistance. Indeed, CD147 can bind to ABCG2 to form a complex that maintains it
stability [51]. In the light of these works, CD147-targeted therapy could be a potential approach to
bypass such drug resistance.

An antibody (MEM-M6/1) directed against CD147 and MCT-1 interaction was shown to induce
necrosis-like cell death in colon cancer cells and melanoma cells. Moreover, MEM-M6/1 inhibited
the lactate release [95]. More recently, a drug-screening assay identified Acriflavine (ACF), a small
molecule responsible for the inhibition of CD147 and MCT-4 interaction and as a result of glioblastoma
tumor growth and angiogenesis [96].

CD147 blockade with a specific antibody strategy inhibited secretion of MMP-9 and VEGF in a
dose-dependent manner. Indeed, the antibody (161-Ab) reduced in vivo tumor growth even when used
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in well-established tumors and decreased development of metastasis. Interestingly, the 161-Ab antibody
showed a better effect at the lower doses than higher ones [97]. In pancreatic cancer, antibody 059-053
directed against CD147, combined with gemcitabine, suppressed tumor growth and decreased tumor
cell survival in xenograft mouse models [98]. Another anti-CD147 monoclonal antibody (CNTO3899)
induced tumor cell apoptosis with an increase of caspase 3 and caspase 8 in human head and neck
tumor tissues [99]. CD147 and MMP-9 expression led to EGFR expression and contributed to tumor
progression [69]. Anti-CD147 therapy led to synergy in combination with inhibition of EGFR and
reduced head and neck squamous cell carcinoma (HNSCC) cell proliferation and migration [100].
In 2006, Wang et al. produced four antibodies against CD147 and observed two different effects in
hepatocellular carcinoma. The antibodies 1B3 and 3B3 were able to inhibit MMP-2 secretion and cell
invasion while the two others (HAb18Gedomab1 and HAb18Gedomab2) showed opposite effects. This
discrepancy was explained by the fact that there are two different epitopes in the extracellular domain
that appear to differently control MMPs production, one an agonist, and the other an antagonist [101].
Further studies identified the residues 22AAGTVFTTVEDLGSKILLTCSLNDSATEV50 critical for MMPs
induction [102].

To target CD147, a therapeutically agent Licartin (generic name (I131) metuximab injection) was
developed as an anti-CD147 monoclonal antibody HAb18 [103] conjugated to the radioisotope I131.
In phase I/II trials, the Licartin was shown to be safe and was officially approved by the China State
Food and Drug Administration (SFDA, Registration No. S20050039) [104]. A randomized trial showed
that Licartin can prevent relapse after liver transplantation in hepatocellular carcinoma [105]. More
recently, HAb18 was shown to sensitized pancreatic cancer cells to chemoradiotherapy (gemcitabine
and genfitinib) through suppressing STAT3 pathway [106]. Although Licartin has been efficient against
liver cancer, its radioactive I131 component would limit its application.

Different forms of the anti-CD147 HAb18 were developed, a chimeric antibody, cHAb18, containing
variable heavy and light chains of the HAb18 antibody and constant regions of human IgG1γ1,
modulated cytoskeleton rearrangement via FAK-PI3K-AKT signaling pathway and inhibited invasion
and metastasis in hepatocellular carcinoma [74]. HcHAb18 antibody conjugates with a cytotoxic drug
that is a maytansinoid derivative (DM1) to promote antitumor activity in lung cancer [107].

Beside the anti-CD147 antibody strategy, a small molecule (AC-73) inhibitor of CD147 dimerization
has been shown to decrease MMP-2 production via CD147-ERK-STAT3-MMP-2 pathway in
hepatocellular carcinoma. AC-73 permitted the loss of invasiveness and decrease motility, resulting in
the inhibition of metastasis formation [108]. The overexpression of CD147 in acute myeloid leukemia
cells was shown to promote cell proliferation. AC-73 treatment led to the inhibition of leukemic cells
(NB4 and NB4-R4) proliferation via the inactivation of the ERK-STAT3 pathway, as well as autophagy
induction. Moreover, AC-73 was able to enhance the sensitivity to chemotherapeutic treatment and
allowed a decrease in chemotherapy dosing (arabinosylcytosine and arsenic trioxide) [109].

Sato et al. reported that high expression of CD147 in renal cell carcinoma (RCC) is associated with
resistance to the anti-tyrosine kinase receptor inhibitor, sunitinib, suggesting therefore that CD147
blockage in association to tyrosine kinase receptors inhibitors could restore sensitivity to such targeted
therapy in RCC [110].

7. CD147 as a Prognostic Biomarker

Numerous studies underscored the implication of CD147 in tumor progression, suggesting its
role in tumor prognosis. CD147 expression was found to be increased in more than 20 types of cancers
from different organs and its overexpression has been shown to be constantly associated with poor
tumor outcome (Table 1), and hence to represent a strong prognostic impact [111] including overall
survival and progression free survival.
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Table 1. Studies reporting CD147 as a prognostic biomarker.

Reference First Author Year Type of Cancer Sample Size Comments

[113] Si et al. 2003 Bone cancer 19 CD147 expression associated with progression and
aggressiveness

[121] Davidson et al. 2003 Ovarian cancer 130
CD147 is expressed in all sites (effusions, primary

tumor and solid metastases) and predict
poor prognosis

[119] Reimers et al. 2004 Breast cancer 2222 CD147 expression in primary tumor predicts a
poor prognosis

[116] Vigneswaran et
al. 2006 Oral cancer 140 CD147 overexpress in advanced primary and

metastatic tumors

[129] Zheng et al. 2006 Gastric
carcinoma 319 CD147 expression linked to tumor size

[127] Als et al. 2007 Bladder cancer 124 CD147 expression predict response to
Cisplatin-containing chemotherapy

[117] Sienel et al. 2008 Lung cancer 150
Membrane localization of CD147 was associated

with poor survival independently of MMP-2
and MMP-9

[125] Madigan et al. 2008 Prostate cancer 120 Higher expression of CD147 in high grades

[123] Liang et al. 2009 Renal cancer 53 CD147 expression correlated with VEGF expression
and played a role in progression

[132] Fu et al. 2010 Acute myeloid
leukemia 62 Co-expression of CD147 and VEGF promote

unfavorable prognosis

[131] Stenzinger et al. 2011 Colorectal
cancer 285 CD147 expression decreased survival

[115] Lescaille et al. 2012 Oral cancer 20 CD147 expression increased with invasive stage

[126] Zhong et al. 2012 Prostate cancer 240 CD147 expression can serve as a significant marker
for progression

[122] Yang et al. 2013 Glioblastoma 206 High CD147 expression mediated poor
overall survival

[124] Rabien et al. 2013 Renal cancer 395 CD147 expression increased only with progression

[128] Hemdan et al. 2015 Bladder cancer 250 Strong expression of CD147 promoted worse
response to neoadjuvant chemotherapy

[112] Caudron et al. 2016 Melanoma 196 High CD147 expression associated with metastatic
potential and short survival

[118] Liu et al. 2017 Lung cancer 72 High CD147 in serum-mediated metastasis and
advanced stage

[130] Li et al. 2017 Esophagus
cancer

17 studies
(1140 samples)

Worse survival and poor prognosis with CD147
strong expression

[114] Arora et al. 2018 Oral squamous
cell carcinoma 100 CD147 intensity associated with different grades

[120] Liu et al. 2018 Breast cancer 1174 CD147 expression mediated survival in
chemotherapy-treated patients

In our studies, using a large series of 196 cutaneous melanomas including primary and metastatic
melanomas, we showed that high CD147 expression, assessed by immunohistochemistry, was
significantly associated with the metastatic potential and with a reduced overall survival in primary
melanoma patients. CD147 expression level was correlated with Clark level, ulceration status and
more importantly with the Breslow index, which was associated with prognosis. In multivariate
analysis, CD147 remains an independent prognostic biomarker and emerged as an important factor
in the aggressive behavior of melanoma [112]. The prognostic value of CD147 expression was also
shown in bone cancer. Higher expression was found in clinical stage III compared to stage I/II and
was associated with aggressiveness of tumor bone cells [113]. A significant association between the
expression of CD147 protein and oral squamous carcinoma (OSCC) stage was reported in a cohort of
100 tissue blocks [114]. Our previous studies in OSCC tumors demonstrated increased expression of
CD147 compared to dysplastic lesions. A similar expression pattern was observed in the precancerous
and invasive corresponding oral tumoral cell lines [115]. Similarly, Vigneswaren et al. reported
CD147 expression in dysplastic leukoplakias, which was correlated with the degree of dysplasia. This
expression was greatly increased with progression to primary and metastatic OSCC. These studies
imply that overexpression of CD147 can occur at a very early stage of oral carcinogenesis and may
contribute to OSCC tumorigenesis [116].

Other studies have also reported a correlation between CD147 levels and prognosis. In a cohort of
150 primary lung adenocarcinomas, Sienel et al. showed that membranous staining of CD147 was
associated with shortened survival independently of MMP-2 and MMP-9 expression. This study
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suggests, therefore, that the prognostic predictor role of CD147 could be unrelated to its function as
inducer of MMPs [117]. More recently in 2017, Liu et al. reported that CD147 overexpression within the
tumor lesions of non-small lung cancer was associated with lymph node metastasis and progression
to more advanced stages. In addition, high CD147 levels in the serums of those patients was also
associated with cancer progression [118].

In a series of 2222 human breast cancer tissues, CD147 expression level assessed by
immunohistochemistry was associated with tumor grade and also with tumor size. CD147 expression
was detected in most micrometastatic tumor cells. More importantly, high CD147 expression level
was a strong and independent predictor of shorter survival [119]. Recently in a large series of 1174
breast cancer subtypes, CD147 expression was correlated with high tumor grade, presence of necrosis
and high Ki67 expression [120]. Furthermore, CD147 expression was associated with poor survival
in patients with triple-negative breast cancer subtype treated with chemotherapy [120]. In ovarian
cancer, CD147 was detected in primary tumors and in metastases sites and its expression in the primary
tumors was correlated with poor survival [121]. Increased expression of CD147 was also reported in
glioblastoma, where it was much increased compared to normal brain tissues and its overexpression
was associated with poor rates of survival of patients overall [122].

In a cohort of 53 renal cancers, combination of CD147 and VEGF expression was found to
predict tumor prognosis. VEGF expression correlated with CD147 expression and promoted tumor
progression [123]. Additionally, CD147 overexpression seemed to appear at the later, more aggressive
stages of renal cancer [124]. In a cohort of 120 primary prostate cancers, the histological grade, clinical
stage, nodal involvement and progression was associate with high CD147 expression [125]. Furthermore,
Zhong et al. showed the CD147 overexpression as a significant predictor for metastasis and survival
in prostate cancer [126]. In advanced or metastatic bladder cancer, CD147 expression predicted the
response to cisplatin-containing chemotherapy. Negative CD147 expression was associated with a
better response and survival to cisplatin-containing chemotherapy treatment in a cohort of 124 bladder
cancer patients [127]. Moreover, this finding was also validated in the neoadjuvant setting of bladder
cancer. Patients with positive CD147 expression showed an efficacy disadvantage with neoadjuvant
therapy compared to patients with a negative expression of CD147 [128].

The prognosis of gastrointestinal cancers is also linked to CD147 expression. Indeed, a high level
of CD147 has been shown to correlate with the progression of gastric carcinoma and elevated CD147
expression was suggested to enhance growth, with angiogenesis allowing more ability to invade into
vessels [129]. A meta-analysis of 17 studies highlighted the implication of CD147 expression in the risk
of esophagus cancer. Elevated expression induced invasion, metastasis and poor survival and was
suggested to be important for estimating prognosis [130]. The independent worse prognostic value of
CD147 expression also reported in colorectal cancers. A study evaluating a series of 285 patients with
colorectal cancers have shown that CD147 increased expression was correlated with poor survival
although the increase was not correlated with the clinicopathologic parameters such as stage and
metastasis in this study [131].

In acute myeloid leukemia, the analysis of bone marrow biopsies from a cohort of 62 patients
revealed a significant association between expression of CD147 and VEGF. Indeed, high levels of
co-expression has been suggested to induce an unfavorable prognosis by supporting leukemic cell
growth [132].

Together, these studies showing the association between CD147 overexpression and disease
outcome in most types of cancers strengthen the importance of the role of CD147 in tumor progression
and validate its potential value as a strong prognostic biomarker.

8. Conclusions

Tumor management strategies include earlier cancer detection and understanding of the
mechanisms that drive malignancy through mediating crucial processes such as invasion, metastasis,
metabolism, angiogenesis and chemoresistance. The tumor microenvironment represents a wealthy
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source for potential prognostic markers and therapeutics targets. CD147 overexpression is a worse
prognostic factor of numerous types of cancers, including solid cancers as well as hematological
malignancies, which is strongly based on its functions enhancing tumor cell malignant properties.
Altogether, these data underscore CD147 as a promising biomarker in cancer and also, through
its successful targeting, as a potential antitumor target paving the way to new anti-CD147
therapeutic strategies.
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