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Abstract: To examine the chemical composition, potential sources of solutes, and water quality of
Lancangjiang River, the concentrations of major ions (Ca2+, Mg2+, Na+, K+, HCO3

−, SO4
2−, Cl− and

NO3
−) in 45 river water samples collected in July and August 2019 were determined. Ca2+ and

HCO3
− are the predominant ions in river water. The extremely low K+ and NO3

− concentrations and
the sparse population suggest that the anthropogenic inputs are limited. The Pearson correlation
coefficients and the elemental ratios Ca2+/Na+ versus Mg2+/Na+, Ca2+/Na versus HCO3

−/Na+,
[Ca2+ + Mg2+]/[HCO3

−] versus [SO4
2−]/[HCO3

−] reveal the mixing processes of different sources;
the chemical composition of the river water is controlled by the mixture of carbonate weathering,
evaporite weathering and silicate weathering inputs. To quantify the contributions of atmospheric
input and rock dissolution, the forward method is employed in this study, which is based on
the mass balance equation. The calculation results suggest the carbonate weathering inputs and
gypsum dissolution make up the majority of the riverine cations, while silicate weathering and halite
dissolution constitutes a relatively small proportion, the contributions of the atmospheric input are
limited. The fast dissolution rate of evaporite and carbonate minerals and their lithologic distributions
should be the key factor. To evaluate the water quality for drinking and irrigation purposes, the
drinking water quality guidelines and the calculated parameters were employed, including sodium
adsorption ratio (SAR), soluble sodium percentage (Na%,) and residual sodium carbonate (RSC).
The assessments indicate that the river waters in the middle-lower reaches are generally suitable
for irrigation and drinking purpose, and will not lead to health and soil problems, such as soil
compaction and salinization. While in the upper reaches, the dissolution of carbonate and gypsum
minerals transport abundant ions into river water and the river waters are not appropriate to use
directly. This result highlights that the water quality status can also be affected by natural weathering
processes in the area without anthropogenic inputs, where the long-time monitoring of water quality
is also necessary.

Keywords: hydro-geochemistry; major ions; water quality; Himalayan rivers; southwest China

1. Introduction

River water is the important component of hydrosphere and draws great attention in geological
and environmental research, for it constitutes the lateral channels transporting the territorial matters
towards the ocean [1,2]. The riverine dissolved loads transported along river waters are derived from
both natural processes and anthropogenic perturbations [3–6], among which the chemical weathering is
considered as the dominant source [1,7,8]. Thus, estimating the contributions of the different minerals
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during chemical weathering to the riverine solutes can help researchers to better understand the
chemical composition of river water and regular patterns of matter cycling [9,10]. The forward method
based on the mass balance equations is a common and effective way to estimate the contributions
of different sources [8,11–13]. Atmospheric inputs, silicate weathering, carbonate weathering, and
evaporite dissolution can be determined by assuming the elemental ratios between the major ions.

As the water supplies for drinking, agricultural activities and industry, the river water, especially
water quality gains wide public concern over the world [14,15], the concentrated solutes may not only
result in serious environmental problems (e.g. eutrophication) [16], but also threaten the daily life of
local residents [17,18]. The inappropriate water with high salinity and alkalinity used for irrigation
may destroy soil aggregate structure, thus reduce the grain yields [19–21], additionally, drinking water
with deleterious or toxic matters may cause health hazards for the residents [22,23].

Several studies have found that the natural weathering processes which transport abundant ions
into the river water can significantly affect river water quality in the area with little anthropogenic
perturbations [24–26]. The Lancangjiang River basin is a part of eastern Himalayan region and
the Qinghai–Tibet Plateau (HQTP). As the Water Tower of Asia, the HQTP is characterized by the
high elevation and little human activity [27,28]. Plenty of research has been done about the eastern
Himalayan river system [13,27–31]; these previous studies focused on the weathering rates and CO2

consumption flux, because the CO2 sequestration during the chemical weathering is considered
as the sink of atmospheric CO2 levels, and the Himalayan lift significantly increase the chemical
weathering rates, which is a major driver of global climate change [32]. However, few studies have
examined the water quality in Himalayan river system. As the abundant solutes derived from the
weathering may cause environmental problems, a comprehensive water quality assessment to examine
the environmental impact of the dissolved load is necessary. The main aims of this study are: (1) to
examine the chemical composition of the Lancangjiang River water; (2) to distinguish the sources of
the solutes and estimate their relative contributions; (3) to assess the Lancangjiang River water quality
status. Knowledge of the hydrogeochemistry and water quality status can help us to better understand
the geochemical processes to improve environmental management in the Lancangjiang River basin.

2. Materials and Methods

2.1. Study Area Description and Sample Collection

The study area is located in the eastern margin of the Tibetan Plateau, the collision of the Eurasian
plates and Indian plates forged the steep valleys topography and elongated pattern of lithology in
HQTP [33,34]. As showed in Figure 1, the lithology can be divided into several groups [35]: (1) carbonate
consolidated rocks, including limestone, dolomite, and chalk, which make up more than 80% of the
rock in study area; (2) complex lithology, encompassing sedimentary, volcanic rocks, metamorphic
rocks and evaporites; (3) Plutonic acid rocks, including granite and diorite; (4) Precambrian rocks
consisting of medium-highly granodioritic-granitic metamorphic rocks; (5) mixed consolidated rocks,
typically sediments with 30%–70% carbonate minerals. The predominant minerals evaporites are
halite and gypsum, which are scattered across the whole study area. Overall, the carbonate minerals
make up approximately 65% of the lithologic composition in the study area, with silicate at 30% and
evaporate at 5% [28].

Lancangjiang River (33◦81′N–21◦75′N and 94◦40′E–101◦15′E), which is the upper-middle reaches
of Mekong River, originates from Tanggula Mountain with a drainage area of 167,400 km2, a length of
2160 km in China, and a mean annual discharge of 60 km3 per year [33]. The source area is located in
the HQTP with a mean elevation of about 4500 m. In the upper reaches (Qinghai and Tibet province),
the topography is characterized by high elevation (>3000 m) and deep valleys, the vegetation covering
type is alpine steppe; while in lower reaches (Yunnan province), the vegetation covering type is
subtropical forest, coniferous forest, and scrub meadow [13]. The Lancangjiang River Basin has a
monsoon climate [29], leading to high rainfall in summer (>60% of the annual precipitation) with a
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mean annual precipitation of about 560 mm [13]. The mean air temperature is from −7 to 16 ◦C, with
an average of 1 ◦C [28]. The human perturbations are considered limited because of the relatively
scarce population compared to other provinces in China [29].
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Figure 1. Sketch map showing the sampling sites, locations, lithology and river network of
Lancangjiang River.

2.2. Sample Collection and Analysis

Forty-five river water samples were collected in Lancangjiang River in July and August in 2019:
30 samples were collected in mainstream, 12 samples in tributaries, 2 in the source area and 1 from
industrial sewage, respectively. The location information of the sampling sites is presented in Figure 1
and Table S1. All the river samples were collected under a depth ~0.2 m from the center of the river
on bridges or ferries. The collected river waters were filtered through 0.22-µm Millipore membrane
(Whatman GF/F, pre-cleaned, General Electric Company(GE), Boston, MA, USA) within 24 h, then
stored in precleaned polyethylene bottles. The river samples for cations measurement were acidified
with 0.02 M HCl to pH < 2. All the containers were sealed and kept refrigerated at about 4 °C until
further analysis.

The physical-chemical parameters of Lancangjiang River, including water temperature (T), pH,
and electrical conductivity (EC) were immediately measured in the field by YSI-6920 (Xylem Inc.,
Yellow Springs, OH, USA). TA (total alkalinity) was titrated by HCl (0.03 M) in the field. The major
anions (Cl−, NO3

−, SO4
2−) were measured by ion chromatograph ICS-900 (DIONEX., Sunnyvale, CA,

USA) in China University of Geoscience, Beijing (CUGB). Cations (Ca2+, Mg2+, Na+ and K+) were
measured by ICP-OES (Optima 5300DV, PerkinElmer Inc., Waltham, MA, USA) in the Institute of
Geographic Sciences and Nature Resources Research, Chinese Academy of Sciences (CAS). Replicate
samples were measured to guarantee the accuracy of all the analysis, the relative standard deviations
of all the analyses were within ± 5%. The results of analyses are presented in Table S1.

The correlation analyses are conducted by SPSS 19.0 software (SPSS Inc., Chicago, IL, USA) and
the figures were completed with Origin 2018 (Origin Lab., Hampton, Massachusetts, MA, USA) and
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Adobe Illustrator (Adobe Inc., San Jose, CA, USA). The inorganic carbon species including HCO3
−,

CO3
2−, H2CO3, and aqueous CO2 are calculated by using the program CO2SYS [36].

2.3. Mass Balance Model Calculation

In order to quantify the relative contributions of different sources, the forward method based
on mass balance was employed [13]. The assumed mass balance equations can be written as
Equations (1–6):

[Cl−]riv = [Cl−]atm + [Cl−]evap (1)

[SO4
2−]riv = [SO4

2−]rain+ [SO4
2−]evap (2)

[Na+]riv =[Na+]rain + [Na+] evap + [Na+]sil (3)

[K+]riv =[K+]rain + [K+]sil (4)

[Ca2+]riv =[Ca2+]rain + [Ca2+] evap + [Ca2+]sil + [Ca2+]carb (5)

[Mg2+]riv =[Mg2+]rain + [Mg2+]sil + [Mg2+]carb (6)

where riv = river; sil = silicate; carb = carbonate; evap = evaporite, respectively. The procedure of
calculating the contributions of these sources are shown in Figure 2.

First of all, the contributions of atmospheric inputs can be determined by the Cl− concentrations.
Because Cl− is conservative in river, the Cl− contents in river water derived from rain should keep the
same level. The widely accepted method is assuming that the sample with the lowest Cl− concentration
acquired all its dissolved Cl− completely from the atmospheric inputs, thus other ions derived from
the rain can be calculated by the elemental ratio in rain [5–9,12–14]:

[X]rain = [Cl]lowest × (X/Cl)rain (7)

where [X]rain is the element X concentrations in rain waters, [Cl]lowest is the concentrations of Cl− which
is assumed completely from the precipitation, (X/Cl)atm is the X/Cl− molar ratio in rain waters. The
sample LCJ-25 (Langcangjiang River-25) with the lowest Cl− concentration (3.5 µmol/L) is collected
in the tributaries in pristine areas, the bedrock in the sampling site LCJ-25 is Precambrian rocks
consisting of medium-highly granodioritic-granitic metamorphic rocks, in which the chloride contents
are limited.). These values is similar to the concentrations in rain in this study area (3.3 µmol/L [28],
2.9 µmol/L [37], respectively). In this study, the rain samples were not collected; the (X/Cl)atm used
here are the long-time average values as reported in the previous study [37]. Then, the contributions of
evaporite can be determined by assuming the Cl− remaining after the atmospheric input correction
are from halite, and all SO4

2− comes from gypsum dissolution. It is noteworthy that the estimated
gypsum contributions here involve the sulfide, consequently, these contributions are the maximum
limit of evaporite dissolution. Next, for the silicate fraction, all Na+ remaining after atmospheric input
and evaporite dissolution while all K+ remaining after atmospheric input are assumed from silicate
weathering. The predominant evaporites are halite and gypsum, the contributions of evaporites to
riverine K+ are negligible. To estimate the contributions of silicate weathering to the riverine Mg2+,
Ca2+, the molar ratios of Mg2+/Na+ and Ca2+/Na+ in the tributaries draining silicate terrains are
employed. It is noteworthy that the molar ratios used here should not be that in silicate rocks, because
erosion processes may fractionate these ratios. The Mg2+/Na+ and Ca2+/Na+ ratios are assumed to
be 0.43 and 0.17, respectively (as reported in the previous study [29]). The Mg2+ and Ca2+ derived
from the silicate weathering can be calculated by using these ratios and silicate-derived Na+ contents.
Finally, the contribution of carbonate weathering can be simply calculated based on the mass balance:
100% - rain inputs% - evaporite weathering% - silicate weathering%, based on the mass balance. The
contributions of anthropogenic inputs are limited (discussed in the next section). The results are shown
in Table S2.
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2.4. Water Quality Evaluation

Lancangjiang River is the major water supply (agricultural irrigation and drinking) for the local
residents. In order to assess the suitability for irrigation and drinking purposes, the physicochemical
parameters EC (electrical conductibility) and ion concentrations of the river waters are evaluated
following drinking water quality guidelines (Chinese drinking water standards: GB 5749-2006 and
WHO guidelines (WHO 2017)). The quality of irrigation water can affect soil quality attributes and
further the crop yields [19–21]. The sodium hazard assessment for irrigation purpose is conducted by
the calculated parameters including SAR, Na% and RSC. The detailed calculation processes are listed
as Equations (8–10) [21]:

SAR = Na+
×[2/(Ca2++Mg2+)]1/2 (8)

Na% = 100%×Na+/(Na++K++Ca2++Mg2+) (9)

RSC = (HCO3
− + CO3

2−) - (Ca2++Mg2+) (10)

where the used ion concentrations are equivalent concentrations (meq/L). The results are shown in
Table S2.

3. Results and Discussion

3.1. Hydrochemical Characteristics of the River Water

The data of physicochemical parameters and major ionic concentrations are shown in Table S1.
The EC values varied from 81 to 2016 µS/cm with an average of 440 µS/cm. The river water temperature
ranged from 8.4 to 28.6 ◦C with an average of 18.3 ◦C; the elevation of the sampling sites changes from
4604 m in the sources area to 527 m in the lower reaches, the variation of river water temperature reflects
the elevations change. The pH ranged from 7.7 to 8.7 with an average of 8.3, indicating river waters are
slightly alkaline. The pH value and water temperature predominate the form of dissolved inorganic
carbon species, namely, the relative proportion of HCO3

−, CO3
2−, H2CO3, and aqueous CO2 [38], the

concentrations of each proportion can be calculated by using TA, pH, and water temperature, the
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calculated results suggest that the bicarbonates (HCO3
−) make up more than 95% of the DIC (dissolved

inorganic carbon); thus, in this study, the DIC is replaced by the HCO3
− in the discussion section.

The ionic compositions of Lancangjiang River are exhibited as the piper diagrams (Figure 3).
Ca2+ is the predominant cation in Lancangjiang River, which constitutes more than 50% of the total
cations, Mg2+ and Na+ + K+ make up ~25%, respectively. The order of the anion concentrations is
HCO3

− > SO4
2− > Cl−, the NO3

− concentrations are much lower and make up less than 5% of the total
anions. It is remarkable to note that the K+ concentrations are also low (<100 µmol/L)—generally, K+

and NO3
− are considered vulnerable to pollution, especially the agricultural activities [25,39]. The

low concentrations of K+ and NO3
− suggest that the contributions of the agricultural activities are

limited. The ionic absolute concentration of samples collected in industrial sewage (LCJ-9) is similar
to it in other river samples, indicating that the anthropogenic inputs are negligible. The Ca2+, Mg2+,
and HCO3

−, which are always unaffected by the pollution, are mainly derived from the CO2-related
weathering processes [40,41]. The dominance of Ca2+, Mg2+ and HCO3

− concentrations suggest that
the carbonate/silicate weathering inputs contribute to the bulk of major ionic budgets. The Cl− and
SO4

2− concentrations vary at a relatively large range and the anthropogenic inputs are considered
limited in the study area, revealing that there are likely other sources for the riverine Cl− and SO4

2−

except atmospheric inputs, the evaporite dissolution may also make up a fair proportion of the solutes,
because of the exposure of evaporite minerals in the Lancangjiang River basin.
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3.2. Relationship between the Major Ions

The results of the correlation analysis are shown in Table 1. The results show that Ca2+ are clearly
correlated with Mg2+ and HCO3

− (r = 0.959, p < 0.01; r = 0.839, p < 0.01, respectively), Mg2+ also
exhibited significant correlations with HCO3

− (r = 0.805, p < 0.01), indicating they may have the same
sources. Na+ is significantly correlated with Cl− while Ca2+ are significantly correlated with SO4

2−,
which demonstrates the contributions of evaporite dissolution. These results reveal that a complex
weathering process may occur in the watershed. However, the correlation analysis is disturbed by the
dilution effect, namely the correlations observed may reflect the dilution by run-off rather than the
source’s signals [7]. Compared to the absolute concentrations, the elemental ratios are the better tools
to describe the mixture between different end-members, because the elemental ratios can eliminate
dilution effect. The elemental ratios, such as Ca2+/Na+, Mg2+/Na+, in river water are partly inherited
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into rocks, thus the large differences of these ratios between the silicate minerals and carbonate minerals
should be reflected in river water if the solutes are the mixture of silicate weathering and carbonate
weathering. Similarly, the elemental ratios can reveal the specific mineral’s dissolution according to
the stoichiometry. All of these employments are shown in the next section.

Table 1. Pearson correlation coefficients between major ions in the Lancangjiang River.

Parameters DIC F− Cl− NO3− SO4
2− Ca2+ K+ Mg2+ Na+ EC

DIC 1
F− 0.643 ** 1
Cl− 0.349 * 0.306 * 1

NO3
− 0.147 0.175 0.142 1

SO4
2− 0.664 ** 0.621 *** 0.817 ** −0.006 1

Ca2+ 0.839 ** 0.731 ** 0.731 ** 0.055 0.958 ** 1
K+ 0.337 * 0.391 ** 0.693 ** 0.683 ** 0.531 ** 0.507 ** 1

Mg2+ 0.805 ** 0.657 ** 0.651 ** 0.087 0.939 ** 0.959 ** 0.414 ** 1
Na+ 0.428 ** 0.365 * 0.995 ** 0.172 0.846 ** 0.780 ** 0.711 ** 0.694 ** 1
EC 0.669 ** 0.552 ** 0.909 ** 0.105 0.967 ** 0.946 ** 0.643 ** 0.894 ** 0.936 ** 1

* Significance at 0.05 probability level; ** Significance at 0.01 probability level.

3.3. Stoichiometry of Weathering Processes

The elemental ratios Ca2+/Na+ versus Mg2+/Na+ and Ca2+/Na versus HCO3
−/Na+ can reflect the

mixing of different lithologies [7]; the elemental ratios in river waters inherit that of the minerals. The
assumed silicate end-members are Ca2+/Na+ = 0.35 ± 0.15, Mg2+/Na+ = 0.24 ± 0.15, HCO3

−/Na+ =

2 ± 0.5 while carbonate end-members are Ca2+/Na ≈ 50, Mg2+/Na+ ratios close to 10, HCO3
−/Na+

≈ 50.
The end-members used here were reported in previous studies [7]. For the evaporite, the end-members
have a wide range and is characterized by the lowest Ca2+/Na+, Mg2+/Na+ and HCO3

−/Na+ values.
As shown in Figure 4, all of the river water samples are distributed between the carbonate end-member
and silicate/evaporite end-members, indicating the mixing of the weathering products. The samples
collected in the industrial sewage inputs exhibit relatively low Ca2+/Na+, Mg2+/Na+ and HCO3

−/Na+

values—the most possible cause is that Na+ compared Ca2+ and Mg2+ constitute a relatively large
proportion of cations in the sewage inputs [12,25]. The samples collected in the sources area show
completely different chemical compositions, the sample LCJ-43 has conspicuously high Na+ and Cl−

contents, the sampling site is located in the pristine area without human disturbance, and the plot of
Ca2+/Na versus HCO3

−/Na+ is close to the evaporite end-members, proving the large contributions
of evaporite dissolutions. However, the ions in sample LCJ-45 are predominated by Ca2+, Mg2+ and
HCO3

−, indicating the mixing of carbonate and silicate weathering. The variations of the chemical
compositions in source area are closely related to the complex lithology.

The equivalent ratio between [Ca2+ + Mg2+]/[HCO3
−] and [SO4

2−]/[HCO3
−] can trace the potential

weathering processes, which can be summarized as Equations (11–16) [25,42]:

2CaxMg(1−x)CO3 + H2SO4→ 2XCa2+ + 2(1 − X)Mg2+ + 2HCO3
− + SO4

2− (11)

CaxMg(1−x)CO3 + H2O + CO2→ XCa2+ + (1 − X)Mg2+ + 2HCO3
− (12)

2NaxK(1−x)AlSi3O8 + H2SO4→ 2Na+ + 2(1 − X)K+ + SO4
2− + 6SiO2 + 2AlOOH (13)

2NaxK(1−x)AlSi3O8 + H2CO3→ 2Na+ + 2(1 − X)K+ + 2HCO3
− + 6SiO2 + 2AlOOH (14)

CaAl2Si2O8 + H2SO4→ Ca+ + SO4
2− + 2SiO2 + 2AlOOH (15)

CaAl2Si2O8 + H2CO3→ Ca+ + 2HCO3
− + 2SiO2 + 2AlOOH (16)

According to the reaction equations, several ideal conditions can be obtained: (1) Carbonate
are dissolved by the carbonic acid, as the generated HCO3

− are derived from both the minerals
and weathering agents. Thus, the [Ca2+ + Mg2+]/[HCO3

−] should be equivalent to 1, meanwhile
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the contributions of H2SO4 to dissolution should be limited, and [SO4
2−]/[HCO3

−] ratios should be
close 0 (Equation 12). In fact, the anorthite weathering by carbonic acid causes the same [Ca2+ +

Mg2+]/[HCO3
−] and [SO4

2−]/[HCO3
−] ratios; the difference is the generated HCO3

− are completely
from the weathering agents (Equation 16); (2) Carbonate minerals are dissolved only by the H2SO4, the
[Ca2+ + Mg2+]/[HCO3

−] are equal to 2, [SO4
2−]/[HCO3

−] ratios should be close to 0, respectively; (3)
The dissolution of alkaline feldspar by the carbonic acid will generate HCO3

−, Na+ + K+ the [Ca2+ +

Mg2+]/[HCO3
−] and [SO4

2−]/[HCO3
−] ratios are close to 0; (4) The dissolution of anorthite minerals by

sulfuric acid and gypsum dissolution will not fall in the specific point; this dissolution leads to [Ca2+

+ Mg2+]/[SO4
2−] = 1—it will just look like a line that goes upward with slope 1. All of this mixing

activity should create a linear mixture because of the same denominator. As shown in Figure 5, though
the explanation is not unique, the contributions of alkaline feldspar dissolution should be limited,
because most samples are far from this end-member.
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There are two potential mixtures between: (1) Carbonate/anorthite dissolved by the carbonic
acid and carbonate dissolved by sulfuric acid; (2) Carbonate/anorthite dissolved by the carbonic acid
and anorthite minerals dissolved by sulfuric acid/gypsum dissolution. Certainly, the coincidence of
these two conditions is also possible; however, in either condition, the contributions of carbonate
mineral dissolution to solutes should make up a fair proportion. To further examine the contributions
of different lithologies, the forward method is employed in the next discussion.

3.4. The Mixing Proportions

The results of the forward method are shown in Table S2, the relative proportions of different
sources, including atmospheric input, halite dissolution input, gypsum dissolution input, silicate input
and carbonate input are along the mainstream showed in Figure 6. The contributions of the atmospheric
inputs are limited, varying from 1.5% to 5% in the mainstream. In some tributaries, the contributions
are larger, reaching between 0.6% and 19.3%. The contributions of the halite in the mainstream varies
from 4.1% to 26.3%, with an average value of 17.6%, while for that of silicate ranges between 11.7%
and 33.5%, averaged 16.4%. The gypsum dissolution inputs make up a mean value of 31.9% of the
total cations while the mean contribution of carbonate mineral dissolution is 30.9%. The samples in
the last site can better represent the solute sources of the whole basin. In the sample site LCJ-1, 3.8%
of the total cations are derived from the rain inputs, while the contributions of the halite dissolution,
gypsum dissolution, silicate weathering and carbonate weathering make up 19.2%, 24.7%, 17.4% and
34.9% of the total cations, respectively. Similar to many studies [5–8,12,13], the carbonate weathering
is the predominant sources of the riverine solutes. As mentioned before, the estimate regarding the
contribution of gypsum should be the maximum value because this estimated contribution value
involves the contribution of sulfate oxidation to the SO4

2−. In order to get a better estimate, the data
about the S, O isotopic composition in the QHTP rivers were collected [43]. The results suggest that the
proportion of sulphate from the sulphate oxidation ranges between 16% and 72%. Thus, the relative
proportion of sulphate from gypsum dissolution is at least 28% and the conservative estimate of the
gypsum dissolution contribution is about 4% for the whole watershed.Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 10 of 15 
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Generally, these relative contributions are dominated by the dissolution rate and lithologic
distribution of the watershed [44,45]; the order of dissolution rates (kinetics) is evaporite > carbonate >

silicate [44–47]. Though the evaporite constitutes a small proportion of the bedrock, the fast dissolution
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rate enables a large proportion of evaporate dissolution. The sample LCJ-43 located in the source area
has the largest contributions of halite input, the Na+/Cl− ratio is 1.05, indicating that this calculation is
reasonable. The predominance of Ca2+ in cations is attributed to the mixture of carbonate weathering
and gypsum dissolution. The relative fast dissolution rate of these minerals transports abundant Ca2+

into the river water. The mixing relationship in Figure 5 can be interpreted by the mixture of carbonate
dissolved by the carbonic acid and gypsum dissolution. As discussed previously, the contributions of
the gypsum dissolution may be overestimated: the sulfide oxidization will produce sulfuric acid and
take part in the rock dissolution processes [48,49], thus the actual contribution of carbonate weathering
should be higher. The fluctuation of the contributions along the river direction reflect the lithology
discharged by the mainstream and inflows of the tributaries

3.5. Drinking and Irrigation Water Quality Assessments

Lancangjiang River are agricultural, industrial and residential water sources for local residents in
both China and Thailand. The drinking water quality guidelines (Chinese drinking water standards:
GB 5749-2006 [50] and WHO guidelines [51] are shown in Table 2. The recommended pH varies
between 6.5 and 8.5. Most river samples exhibit desirable pH values, however, some samples in the
urban area have high pH values, which may result from the anthropogenic inputs. The TDS (total
dissolved solids), F, Cl− concentrations are within the respective limits, while the SO4

2− contents in
the head water are close to the limit value, the SO4

2− concentration of sample LCJ-43 exceeds the
recommended values, the sources area of Lancangjiang are in pristine areas, so the majority of SO4

2−

are derived from gypsum dissolution. This result suggests the river water may also need treatment,
even with a small amount of anthropogenic input.

Table 2. The chemical compositions of the river water and water quality guidelines.

Parameters Min Max Mean SD Chinese Guidelines WHO Guideline

pH 7.76 8.77 8.32 0.20 6.5–8.5 6.5–8.5
TDS (mg/L) 52.7 1313 286 189 1000 1000
F− (mg/L) 0.01 0.33 0.16 0.06 1 1.5
Cl− (mg/L) 0.13 331 22.8 48.1 250 250

NO3
−-N (mg/L) 0.05 2.84 0.64 0.44 20 mg/L as N 50

SO4
2− (mg/L) 3.37 455 88.3 77.4 250 250
SAR 0.08 4.31 0.58 0.61 / /

Na (%) 7.10 57.9 22.1 8.4 / /
RSC −7.04 0.39 −1.18 1.22 / /

The calculation results of the irrigation water quality including SAR, Na% and RSC values are
shown in the Table 2. SAR and Na% values represent the sodium hazard to soil aggregates by irrigation;
the majority of samples can be defined as the excellent or good quality (SAR < 1; Na% < 30%). The
samples in the source area exceed the desirable limits, as the halite dissolution leads to the high SAR
and Na% values. RSC as residual sodium carbonate should be lower than 1.25 for irrigation water [52]
and the RSC values of all the samples are within the recommended values. Additionally, the USSL and
Wilcox diagrams using the EC, Na% and SAR are shown in Figure 7, most of river waters are plotted in
the area of C1S1, C2S1 in USSL diagram and in the ‘Excellent to Good’ zone in Wilcox diagram. The
samples in the sources area exhibit higher EC values compared to the lower reaches; the sample LCJ-43
is unsuitable to irrigating.

For most sites, the river waters are suitable for drinking purpose and agricultural activities at
present and will not lead to health and soil problems in terms of major ions. In the upper reaches
of the Lanjiang river, the dissolutions of the evaporite and carbonate transport abundant ions into
the river water and as a consequence, the river waters need cleaning before consumption. Thus, the
monitoring of water quality should be a long and serious mission. However, all the above water
quality assessments are based on major ions to judge whether the river water is suitable to use. The
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heavy metal elements and organic matters also need to be taken into account, thus more attention
should be paid toward these factors in future studies.
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4. Conclusions

The spatial distribution of the physicochemical parameters and major ions (Ca2+, Mg2+, Na+, K+,
Cl−, SO4

2−, HCO3
−) were measured. By employing the Pearson correlation coefficients and elemental

ratios, the contributions of different sources were determined. The water quality for irrigation and
drinking were evaluated. The conclusions can be summarized as follows:

(1) The river water chemistry is controlled by mineral weathering rather than anthropogenic inputs.
The concentration order of the anions is HCO3

− > SO4
2− > Cl−, while the order of cations is Ca2+

> Mg2+ > Na+ + K+. Most samples are of the HCO3
−-Ca·Mg type, the river waters are slightly

alkaline, and water temperatures decrease as the elevation increases.
(2) The employment of the elemental ratios indicates the mixing relationships between different

rocks. The chemical composition of the river water is the mixture of carbonate weathering inputs,
evaporite dissolution input and silicate weathering input. In the source area of Lancangjiang
River, the complex lithology lead to a relatively large difference in the chemical composition of
each tributary.

(3) The forward method indicates that on the watershed scale, the contributions of the atmospheric
inputs are limited (<5%), the gypsum dissolution and carbonate minerals dissolution make up
~60% of the total cation budgets (34.9% for carbonate weathering, 24.7% for gypsum dissolution,
respectively), the silicate weathering constitutes 17.4% while the halite dissolution makes up
19.2% of the total cations. This result reflects the dissolution rates of different minerals and
lithologic distributions, the predominance of the Ca2+ and HCO3

− in river water results from
both the wide distribution, and the fast dissolution rate of carbonate minerals

(4) The water quality is generally suitable for irrigation and drinking purposes in terms of major
ions. In the upper reaches of Lancangjiang River, the dissolution of gypsum and halite transport
abundant Na+ and SO4

2− into river waters, and these contents exceed the recommended values,
which may cause health and soil problems, such as soil compaction and salinization. This result
suggests even in the pristine areas with little human disturbance, the water quality requires
monitoring and assessment due to chemical weathering processes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/23/4670/s1.
Table S1: The sampling locations and chemical compositions of the Lancangjiang River, Table S2: Calculation
results of forward method and water quality.
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