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Abstract

Background: Systemic lupus erythematosus (SLE) is an autoimmune disease with few treatment options. Current
therapies are not fully effective and show highly variable responses. In this regard, large efforts have focused on
developing more effective therapeutic strategies. Drug repurposing based on the comparison of gene expression
signatures is an effective technique for the identification of new therapeutic approaches. Here we present a drug-
repurposing exploratory analysis using gene expression signatures from SLE patients to discover potential new drug

candidates and target genes.

Methods: We collected a compendium of gene expression signatures comprising peripheral blood cells and
different separate blood cell types from SLE patients. The Lincscloud database was mined to link SLE signatures
with drugs, gene knock-down, and knock-in expression signatures. The derived dataset was analyzed in order
to identify compounds, genes, and pathways that were significantly correlated with SLE gene expression

signatures.

Results: We obtained a list of drugs that showed an inverse correlation with SLE gene expression signatures as
well as a set of potential target genes and their associated biological pathways. The list includes drugs never or
little studied in the context of SLE treatment, as well as recently studied compounds.

Conclusion: Our exploratory analysis provides evidence that phosphoinositol 3 kinase and mammalian target
of rapamycin (mTOR) inhibitors could be potential therapeutic options in SLE worth further future testing.

Keywords: Systemic lupus erythematosus, Drug repurposing, Lincscloud, Gene expression, Autoimmunity, Drug

discovery

Background

Systemic lupus erythematosus (SLE) is an autoimmune
disorder in which the immune system produces autoanti-
bodies against its own cells and tissues leading to chronic
inflammation and organ damage. Although some bio-
logical pathways are well known to be altered in lupus,
such as the type I interferon (IFN) pathway [1], the bio-
logical mechanisms behind disease development are
poorly understood in general and it has been proposed
that genetic and environmental factors are involved [2].
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There are many classes of drugs commonly used for SLE
treatment, such as corticosteroids, immunosuppressants,
nonsteroidal anti-inflammatory drugs, or specific mono-
clonal antibodies directed against cell surface receptors or
cytokines [3]. Nevertheless, the multifactorial nature and
the undefined etiology of this disease contribute to the ab-
sence of efficient treatments [4].

In the last decade, the widespread use of high-
throughput technologies such as gene expression mi-
croarrays has enabled access to large collections of gene
expression databases that can be exploited for a wide
range of applications. In this context, in-silico drug-
repurposing analysis based on gene expression data al-
lows us to identify new therapeutic applications for
drugs used in other contexts. This technique compares
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the disease gene expression signature against a large col-
lection of profiles derived from different compounds,
measuring the degree of similarity among them. A positive
similarity score means that the compound produces a
similar gene expression pattern to that of the disease. In
the same way, a negative similarity score represents the
opposite; that is, the overexpressed genes in the disease
appear underexpressed in the drug signature and vice
versa. This evidences that the effect of the drug on tran-
scription is opposite to the effect of the disease, and it is
reasonable to hypothesize that the drug might be able to
reverse the disease gene expression program and the
phenotype itself [5].

The Connectivity Map [6] was a pioneer tool that im-
plemented this approach. Since its publication, many
studies have proven the potential of this type of analysis
to discover new treatments for different diseases such as
several types of cancer, muscle atrophy, or inflammatory
bowel disease, among others [7].

In this context, Lincscloud [8] has been deployed re-
cently as the successor to the Connectivity Map. This
database contains genetic profiles derived from a larger
number of drugs and also includes knock-down and
knock-in gene experiments, where whole gene expres-
sion profiles are measured after inhibiting or overex-
pressing a single gene. During the last few years there
has been an increasing interest in the application of this
approach for drug repurposing or target predictions. For
example, Johannessen et al. [9] explored the transcrip-
tional connections between cAMP signaling and GPCR
pathway-associated drug resistance candidates. Santagata
et al. [10] revealed a strong connection between the
HSFI gene and compounds that inhibit protein transla-
tion, while Siavelis et al. [11] proposed new treatments
for Alzheimer’s disease.

In this work we performed a drug-repurposing analysis
using a collection of gene expression signatures derived
from previously published studies of SLE patients and
gene expression signatures derived from Lincscloud.
This analysis allowed us to establish a set of drug candi-
dates that reverse the SLE signatures and a set of genetic
targets, as well as new pharmacological paths in SLE.

Methods

Processing gene expression data

We mined the National Center for Biotechnology Infor-
mation (NCBI) Gene Expression Omnibus (GEO) data-
base [12] to retrieve gene expression datasets from SLE
patients. We selected experiments performed in any
blood tissue, with case and healthy samples, without any
treatment applied in the case of in-vitro samples, and
each experiment with more than four replicates. To pur-
posely obtain a heterogeneous dataset we searched for
gene expression data from adult and juvenile SLE
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performed in different microarray platforms. By doing
this we considered the patterns conserved across all SLE
cases removing differences between SLE clinical types or
microarray platform-dependent biases.

Each gene expression dataset was downloaded and
processed independently using the R statistical envir-
onment. Genes with a high percentage of missing
values (more than 15% across samples) were filtered
out and remaining missing values were imputed using
the average expression values within each group (case
or control) of each dataset. We annotated probes to
gene symbol identifiers, data were transformed to a
logarithm scale, and the median expression value was
computed for probes corresponding to the same gene.
Differential expression analysis was performed be-
tween controls and cases for each dataset using the
limma R package. Next we discarded genes presenting
p>0.05 and the top 500 most overexpressed and
underexpressed genes were selected as the SLE gen-
etic signature from each dataset to be used for fur-
ther analysis.

Drug-repurposing analysis

For each independent SLE signature we performed a
query on the Lincscloud database and retrieved the
list of drugs and knock-in and knock-down genes
with high similarity scores. We used as a similarity
score the “best score 4” value, which is the proposed
threshold in Lincscloud and is calculated as the mean
connectivity score across the four cell lines in which
the drug or perturbagen connected most strongly to
the query.

To integrate the results from each independent SLE
signature, a unique dataset was created where rows
represent drugs and columns represent SLE signatures,
and each entry of the matrix is the similarity score
(best score 4 values) between drugs and SLE signa-
tures. For each drug (row) we calculated the median
similarity score across all SLE signatures. To evaluate
whether equal or better scores could be obtained by
chance, an empirical p value was calculated generating
10,000 random datasets permuting rows and columns
in the original set of data. We then computed the p
value as the fraction of permutations having a similar-
ity score equal to or higher than (in absolute value)
the observed score. Significant drugs were then
selected if they presented p<0.05 and showed a me-
dian similarity score > 80. The same procedure was ap-
plied to knock-in and knock-down gene expression
signatures (see Fig. 1). The results obtained are therefore
independent of the cell lines’ inherent gene expression
patterns but are consistent with the patterns that are com-
mon to all of the SLE signatures.
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Fig. 1 Integrative drug-repurposing analysis. Fourteen signatures of SLE were obtained from 14 different datasets. Each signature was
queried on the Lincscloud database and a set of drugs and knock-down and knock-in genes was obtained with similarity scores. The
median similarity score and empirical p values were calculated to select significant results across all datasets. Bottom: summary interpretation of the
positively and negatively correlated results. NCBI GEO National Center for Biotechnology Information Gene Expression Omnibus, SLE systemic
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Drug-target enrichment analysis

To evaluate whether some drug targets were significantly
enriched in the list of obtained drugs we downloaded
drug-target information from DrugBank [13], ChEBI
[14], and Therapeutic Target Database [15]. Data files
from these three databases were parsed and an annotation
file was created with information for 131,162 drugs (in-
cluding synonymous names) and their biological targets.
With this information, we associated target genes to the
list of drugs in Lincscloud and our list of significant drugs.
For drugs without target information in these resources
we carefully revised the information available from com-
pound manufacturer catalogs and the associated literature.
Drugs without any information in the literature or in data-
bases were discarded from the drug-target analysis.

Fisher’s exact test was applied to evaluate what target
genes were statistically overrepresented in the list of signifi-
cant drugs with respect to the total set of annotated drugs.

Results

Analysis of gene expression signatures

After careful exploration we found 10 datasets of
SLE in the NCBI GEO, two of which contained sam-
ples from juvenile SLE patients. Some of the datasets
contained samples from different tissues, which we
treated as independent datasets in our analysis.
Thus, we identified 14 different tissue-specific data-
sets that passed the initial filters (see Additional file
1: Sheets 1 and 3). These datasets comprised a total
of 327 SLE samples and 173 healthy controls. Each
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dataset was subjected to quality control and proc-
essed as described in Methods, generating 14 indi-
vidual signatures including different blood tissues
(see Additional file 1: Sheet 2).

Connections between SLE and drug gene expression
signatures

Our analysis yielded 61 drugs that were significantly asso-
ciated with the SLE signatures, 40 with similar gene ex-
pression patterns and 21 with opposite patterns (see Fig. 2
and Additional file 1: Sheet 4). Some of these compounds
have been associated previously with SLE but some others
have not been described in this context and hence could
be new potential drug candidates (see Discussion). We
used the information from DrugBank, ChEBI, and Thera-
peutic Target Database to annotate target genes for each
drug and classify these compounds into groups with the
same target.

The analysis of targets common across the list of drugs
yielded three sets with similar gene expression signatures
that showed significant p values, including topoisomer-
ase II inhibitors, histone deacetylase (HDAC) inhibitors,
and PKC activators, as well as three groups with nega-
tive scores, where we found phosphoinositol 3 kinase
(PI3K) inhibitors, cyclin-dependent kinase (CDK) inhibi-
tors, and mammalian target of rapamycin (mTOR) in-
hibitors (see Table 1). Five different compounds were
PI3K inhibitors, providing the most significant p value in
the enrichment analysis.

To further explore this result, we used information
from the KEGG database [16] to construct a network of
the PI3K signaling pathway (see Additional file 2). Inter-
estingly, we found that most of the other drug targets,
such as IGE, Rho, mTOR, or CDK, were also playing im-
portant roles in the PI3K signaling pathway. PI3K regu-
lates important processes such as cell survival, immune
proliferation, anti-apoptotic pathways of immune cells,
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and immune response linked to interferon signaling and
cytokine signaling pathways [17], all important and im-
paired in SLE. We also obtained dual inhibitors of PI3K
and mTOR such as NVP-BEZ235 [18]. Other drug
targets of the PI3K signaling pathway have been related
with SLE or other SLE-like disorders, such as CDK
inhibitors, recently proposed to be used for treatment of
some autoimmune disorders [19], or inhibitors of the
mitogen-activated protein kinase (MAPK) signaling
pathway [20].

Study of gene effect-caused profiles

We obtained seven knock-in and 90 knock-down genes
with a positive similarity score that produce an SLE-like
profile, and 50 knock-down genes with a negative simi-
larity score (see Table 2 and Additional file 1: Sheet 4)
that reverse the SLE profile (genes up-regulated in the
disease signature are down-regulated in the drug signa-
ture, and vice versa). Many genes have been already de-
scribed in SLE, such as CD40 [21], interferon-related
genes, and translation initiation factors, such as EIEF4
[22, 23]. Additional functional analyses with these genes
are described in Additional file 3. Interestingly and in
agreement with our previous analysis, we found that the
gene expression signature associated with knock-down
genes such as PI3K or IGFIR show a negative similarity
score. That is, the inhibition of these genes could reverse
the gene expression profile induced by SLE. This is con-
sistent with the fact that gene expression profiles of
drugs which inhibit these genes showed a negative score
with respect to the SLE signatures.

Discussion

In this study we performed a systematic screening for
drugs or genes that induced similar or opposite gene ex-
pression programs to signatures from SLE patients. We
integrated signatures from different blood cell populations
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Table 1 Drugs obtained and their biological targets
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Score® Biological target Action Drugs p value

+ Topoisomerase |l Inhibitor Amsacrine, amonafide, teniposide, etoposide, idarubicin 2.829% 107
+ HDAC Inhibitor Panobinostat, scriptaid, dacinostat, vorinostat, trichostatin A 1451%x 107"
+ Protein kinase C delta Activator Phorbol-12-myristate-13-acetate, ingenol 3.172x 1073
+ Histone lysine methyltransferase Inhibitor Chaetocin

+ ARFGAP1 Inhibitor Qsn

+ PDK1 Inhibitor BX795

+ Retinoic acid receptor beta Inhibitor Le135

+ Arginase Inhibitor Inhibitor Bec

+ JAK2/STAT3 Inhibitor Cucurbitacin |

+ Fatty acid synthetase Inhibitor Cerulenin

+ Src, Ber-Abl tyrosine kinase Inhibitor AG957

+ PLD2 Inhibitor CAY10594

+ IKKB Inhibitor Parthenolide

+ IMPDH1 Inhibitor Mycophenolic acid

+ FTL3 Inhibitor Midostaurin

+ DNA Crosslinker Mitomycin C

+ Tubulin Inhibitor Vinblastine

+ Hsp90 Inhibitor Radicol

+ Multiple targets Inhibitor Resveratrol

- PI3K Inhibitor P1828, GDC0941, NVP-BEZ235,PP110, TGX115 4915%107°
- mTOR Inhibitor NVP-BEZ235, AZD8055, TGX115, Ku0063794 1.792x 107
- CDK Inhibitor BML259, indirubin 1463 % 1072
- [KBalfa Inhibitor Evodiamine

- Farnesyltransferase Inhibitor Tipifarnib

- IGF1R Inhibitor Linsitinib

- MAP2K1 Inhibitor Selumetinib

- CHK1 Inhibitor SB218078

- Piruvate kinase Inhibitor M2PK activator

- Rho kinase Inhibitor Rho kinase inhibitor Il

- Voltage-dependent calcium channel Inhibitor Nifedipine

- Braf Inhibitor Vemurafenib

Table presents significant drugs with their biological target and their mechanism of action. p value calculated for groups of drugs with the same target using

Fisher's exact test

CDK cyclin-dependent kinase, HDAC histone deacetylase, mTOR mammalian target of rapamycin, PI3K phosphoinositol 3 kinase
@+ drugs with positive similarity score, - drugs with negative similarity score in regard to SLE signatures

and SLE subtypes in order to identify consistent and con-
served profiles, reducing considerably the false positive ra-
tio. In this analysis, we found 40 drugs (see Additional file
1: Sheet 4) with a positive similarity score, which induces
changes similar to the SLE phenotype. In this set of
compounds, HDAC, topoisomerase II, and PKC were
the more significant targets. Many of these drug tar-
gets are key factors in biological processes that are
altered in SLE. For example, HDAC inhibitors have
been related to impairment of immune processes
described in lupus, such as autophagy [24], although
there is contradictory information about the role of

some isoforms of HDAC in the immune system [25, 26].
A recent study shows that HDAC inhibitors may be
suitable for treatment of autoimmunity, while primary re-
sponses to the same inhibitors were greatly impaired,
probably explaining the contradiction between the
positive similarity score we obtained and the potential
use of HDAC inhibitors in SLE [27]. In addition, Loh-
man et al. [28] showed that HDAC inhibitors have
anti-inflammatory activity which is inversely corre-
lated with dose, amplifying the production of inflam-
matory mediators at concentration >3 uM. In another
context, treatment of human cells with topoisomerase
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Table 2 Significant knock-down and knock-in genes obtained
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Score Type of Genes
experiment

+ Knock-in IFNB1, IFNG, CD40, BCL10, KLF6, LYN, TIRAP

+ Knock-down CLCN3, PPPTR14B, LMNB2, TBX2, PMM2, MYC, ATP6V1F, MAX, PEPD, PUF60, PHB2, AKRTAT, BTG1, ABHD2, TFDP1, PAX8, FOSL2,
NT5E, RRM1, NR2F6, RAMPI, RYK, CISH, PPP2R1A, CD14, UFDIL, HTRAT, SLC35A1, TWF2, NNT, HOMER2, HS2ST1, ZNF768, GGTI,
DFFB, HSPA2, PRKDC, ARPCS5, NFKBIA, SLC39A8, THAPT1, GSTPI, ETV1, GCAT, KIAA0907, DLX3, ELK1, PIAS4, MEOX2, GPER, NRAS,
TCEB3C, KIF2C, POLR2F, CTBP2, CHAFI1B, CEP55, HOOK2, ZNF8, NDUFB7, NISCH, HOXC10, AQP12A, YES1, PSMD5, JAGT, MDH2,
POLR2I, DDF1, HRAS, HDAC10, SLC25A14, MED7, HMGCR, PDXP, FDX1, NIPBL, PRKAG3, PPIA, EIF2AK3, B4GALT1, UCK2, JUN, MED4,
YBX1, BUB1B, CRCP, MED1, HDACT1, SBNO1

- Knock-down MITF, ETFA, PIP4K2B, VRK2, SPEN, NSDHL, ZNF586, GNPDAT, SIX4, PARN, DUSP14, IQGAP1, LRRK2, GPR123, SF1, FEZ2, IPMK, SATT,

ELF4, RPTOR, EIF4E, ARL3, KARS, CSNKTAT, SPTLC2, MEN1, SNX17, VEGFC, PPP3CA, BNIP3, ERBB3, ERO1L, COPB2, SERPINCI1, AK4,
HLA_A, PIK3CA, PIK3C2A, IGF2R, LYPLAT, STX4, ATM, ESPL1, IGF1R, ST3GAL5, MTOR, GRN, HSP9OAAT, PRPF4B, TMISF3

Table presents knock-in genes with positive similarity score (score +), and knock-down genes with positive and negative similarity score (score -). The genes are
sorted into each list by median of similarity scores across all dataset. No knock-in signatures were found with significant negative similarity score

II inhibitors such as etoposide has been shown to in-
duce interferon-stimulated genes [29].

Other positively correlated compounds are phorbol-
12-myristate-13-acetate and ingenol, the former of
which has been used to stimulate the immune response
and the interferon signaling pathway [30]. These drugs
are protein kinase C (PKC) activators, a protein with
some isoforms associated with SLE. In this context, the
use of PKC inhibitors has been proposed as treatment
for autoimmune disorders [31, 32] due to their induced
increase in proliferation of regulatory T cells (Tregs). In
addition, deficient MEK/ERK signaling pathway is re-
lated to SLE and cytokine generation [33] through im-
paired PKC activation. This pathway has also been
proposed as a potential therapeutic target for rheuma-
toid arthritis [34]. Another compound with a high posi-
tive similarity score was LE-135, which is a retinoic acid
receptor inhibitor. The use of retinoic acid has been also
related to an improvement in SLE recovering the Treg
balance [35, 36].

Attending to drugs with negative similarity scores, we
identified 21 compounds that induce opposite gene ex-
pression programs with respect to SLE signatures (see
Additional file 1: Sheet 4). Almost all of them act in the
same processes, down-regulating the immune response
and the proliferation of immune cells. PI3K was the
most significant in the target enrichment analysis, due
to a set of PI3K inhibitors. PI3K inhibitors have been re-
ported to ameliorate the effects of SLE and other auto-
immune disorders in animal models [37-39]. In
addition, mTOR was also found as a significantly
enriched target associated with mTOR inhibitors such as
NVP-BEZ235, AZD8055, TGX115, or Ku0063794.

Recent experimental evidence suggests that mTOR in-
hibitors may provide a new therapeutic strategy for the
treatment of SLE patients [40]. Indeed, PI3K and mTOR
act in the same signaling cascade [38] promoting the
interferon and cytokine signaling pathways [41].

Complementarily, the analysis of gene-caused profiles
defined a set of genes — both described and not

previously described in SLE — that could play an import-
ant role in the development of the disease. Some of
these were interferon-related genes, transcriptional and
translational factors, and a set of biological pathways re-
lated to these genes including the PI3K and the insulin
signaling pathways, immune response, or transcriptional
and translational processes (Additional file 2). These re-
sults are highly consistent with the analyzed list of drugs
and also support that the inhibition of PI3K signaling
could improve the SLE phenotype. The evidence pre-
sented here should lead not only to testing of PI3K in-
hibitors as potential SLE treatment, but also to actively
testing any other compound obtained, such as the insu-
lin growth factor receptor inhibitors that crosstalk with
the PI3K and mTOR pathways or the Rho kinase
inhibitors.

Although the Lincscloud database contains mostly ex-
periments carried out in cancer cell lines, the integration
of different SLE signatures and the inclusion of summa-
rized drug signatures from different cell populations en-
able one to establish global associations based on
ubiquitous expression across different cell lines. In-silico
analyses are often exploratory studies and should be con-
firmed by in-vitro or in-vivo experiments. In this sense,
previous experiments already provide evidence that PI3K
inhibitors ameliorate the SLE phenotype in animal models
[37-39], and that of other autoimmune disorders, al-
though these drugs are not used clinically. Our results
would therefore provide further support for the inhibition
of the PI3K signaling pathway to treat SLE.

Conclusions

We performed an integrative in-silico drug-repurposing
exploratory analysis based on comparing gene expres-
sion data of SLE against gene expression profiles pro-
duced by perturbagens from the Lincscloud database.
Our analysis is designed to reduce the biases of using
different microarray platforms and the heterogeneity of
SLE, leading to discovery of conserved genetic patterns
across different disease states or cell types. We identified
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a set of pathways related to biological processes im-
paired in SLE, compounds, and drug targets with poten-
tial therapeutic interest for SLE treatment. Based on the
results, we highlighted PI3K and mTOR as good candi-
dates and PI3K signaling pathway inhibitors as potential
treatment options that are interesting enough to be fur-
ther explored, although we described other targets that
could also be further evaluated to test their effect in im-
proving the phenotype of SLE, such as PKC, MAPK, or
other specific kinases. This type of analysis has seldom
been performed for autoimmune diseases and can pro-
vide novel therapeutic approaches for heterogeneous
and multifactorial disorders, such as SLE.

Additional files

Additional file 1: presents information about quality control of the data,
SLE signatures, and significant results obtained: Sheet 1 shows
information about datasets including their GEO identifiers, the SLE state,
the cell type, and the microarray platform for each, number of control
and case samples, PubMed identifier, and date of publication; Sheet 2
shows results of the quality control based on the percentage of missing
values and the number of significant genes in each dataset of SLE; Sheet
3 shows the signatures of each dataset used to query on Lincscloud,
significant genes sorted by fold change in each signature; and Sheet 4
shows the lists of drugs and knock-in and knockdown genes with similar-
ity scores, median of similarity scores across datasets, and significance
values (XLSX 182 kb)

Additional file 2: is a figure showing the PI3K molecular signaling
pathway. Plot constructed based on the information of different PI3K
interaction graphs from the KEGG database. Red, drug targets with
positive similarity scores; blue, drug targets with negative similarity scores
(PDF 373 kb)

Additional file 3: shows a description of the functional analysis of gene
targets obtained and their significance, and is divided into three sections:
methods, results, and references. (PDF 116 kb)
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