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Abstract

Purpose

Molecular characterization of disseminated tumor cells (DTCs) in the bone marrow (BM) of

breast cancer (BC) patients has been hindered by their rarity. To enrich for these cells using

an antigen-independent methodology, we have evaluated a size-based microfiltration

device in combination with several downstream biomarker assays.

Methods

BM aspirates were collected from healthy volunteers or BC patients. Healthy BM was mixed

with a specified number of BC cells to calculate recovery and fold enrichment by microfiltra-

tion. Specimens were pre-filtered using a 70 μm mesh sieve and the effluent filtered through

CellSieve microfilters. Captured cells were analyzed by immunocytochemistry (ICC), FISH

for HER-2/neu gene amplification status, and RNA in situ hybridization (RISH). Cells eluted

from the filter were used for RNA isolation and subsequent qRT-PCR analysis for DTC bio-

marker gene expression.

Results

Filtering an average of 14×106 nucleated BM cells yielded approximately 17–21×103 resid-

ual BM cells. In the BC cell spiking experiments, an average of 87% (range 84–92%) of

tumor cells were recovered with approximately 170- to 400-fold enrichment. Captured BC

cells from patients co-stained for cytokeratin and EpCAM, but not CD45 by ICC. RNA yields

from 4 ml of patient BM after filtration averaged 135ng per 10 million BM cells filtered with an

average RNA Integrity Number (RIN) of 5.3. DTC-associated gene expression was detected
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by both qRT-PCR and RISH in filtered spiked or BC patient specimens but, not in control fil-

tered normal BM.

Conclusions

We have tested a microfiltration technique for enrichment of BM DTCs. DTC capture effi-

ciency was shown to range from 84.3% to 92.1% with up to 400-fold enrichment using

model BC cell lines. In patients, recovered DTCs can be identified and distinguished from

normal BM cells using multiple antibody-, DNA-, and RNA-based biomarker assays.

Introduction

Disseminated tumor cells (DTCs) are detected in the bone marrow (BM) of up to 40% of early

stage breast cancer patients at the time of diagnosis and are an independent prognostic factor

for recurrent disease development[1]. DTCs found in the BM are shed from primary breast

cancers and are thought to be intermediaries in the metastatic process[2]. DTCs are rare cells,

found with a frequency of about 1 cancer cell per million nucleated BM cells[1], are molecu-

larly heterogeneous, and are often molecularly distinct from their primary tumor of origin[3–

5]. Not all patients with BM DTCs, detectable by conventional epithelial markers such as cyto-

keratin, will develop metastatic disease [6], indicating that DTCs themselves likely differ with

regard to further metastatic potential. Molecular analysis of DTCs offers the possibility of iden-

tifying specific DTCs with metastatic potential, designing targeted therapies to eliminate these

cells, monitoring alterations in tumor cell phenotype and genotype, and predicting therapeutic

response[2]. Analysis of DTCs offers information that may not be obtainable in early stage

breast cancer patients by studying circulating tumor cells (CTCs), which are found with

greater rarity in the peripheral circulation[7,8].

Multiple methods have been developed to enrich for rare cells, such as DTCs and CTCs, to

allow for their molecular analysis [9]. These methods have been based on the physical and/or

molecular properties of the cells. Enrichment techniques include affinity binding approaches

by either positive selection (i.e. targeting cell surface antigens such as EpCAM), or negative

selection (i.e. by eliminating cells that express the leukocyte specific antigens, such as CD45

(reviewed in [10]). However, conventional antibody-based enrichment methods may not

capture a large percentage of DTCs due to their heterogeneity and loss of epithelial antigens,

possibly excluding those cells that are important in the metastatic process [11,12]. Other

enrichment platforms have been developed for CTCs based on physical properties such as cell

size, density, or decreased deformity of the cells (reviewed in [13]). Filtration methods exploit

size disparities between cancer cells and normal hematopoietic cells, which allows antigen-

independent collection. Microfiltration is rapid and simple and does not require complex

instrumentation. It captures both cells and cell clusters as well as allows for the retrieval of via-

ble cells. Several filtration devices are currently available (reviewed in [14]). Most have pore

sizes between 7–8 microns which allow flow-through of leukocytes and erythrocytes, that typi-

cally measure 6–8 microns in diameter, while cancer cells with diameters of 10 microns or

greater are retained[15,16].

Immunocapture for DTCs enrichment has been described [17,18]. However, few of the

newer enrichment methods, that are antigen-independent, have been used with BM, which

has a more complex cell composition and higher nucleated cell concentration than blood [19].

Robust, reproducible assays for enrichment and characterization of DTCs are required for

DTC Enrichment by Microfiltration

PLOS ONE | DOI:10.1371/journal.pone.0170761 January 27, 2017 2 / 16

Government. Creatv Microtech Inc. provided

support in the form of salaries for authors PZ, DLA,

SL, OVM, PA, and CMT, but did not have any

additional role in the study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. The specific roles of these authors

are articulated in the ‘author contributions’ section.

Competing Interests: SGP, CMS, RN, MAW and

RLA have no competing interests to declare. PZ,

DLA, SL, OVM, PA and CMT are employees of

Creatv Microtech Inc. This does not alter the

authors’ adherence to PLOS ONE policies on

sharing data and materials.



incorporation of DTC analysis into clinical practice and decision-making. We explored the

use of microfiltration, an unbiased method, to improve enrichment and detection of DTCs

from the BM of BC patients and to assess its compatibility with several downstream biomarker

assay platforms.

Methods

Ethics Statement

This study was approved by the Institutional Review Board at Washington University in

St. Louis. Informed written consent was obtained from each patient and each healthy volunteer

who participated in this study. All patients were enrolled with BM and blood collected between

March and June 2014.

Bone Marrow and Blood Collection

Blood and BM were collected from patients in the operating room during surgical procedures.

Blood, 7–10 ml, was initially collected into K2-EDTA or CellSave Cell Preservation tubes

(Janssen Diagnostics). BM aspirates were collected into heparinized syringes from normal vol-

unteer posterior iliac crest during orthopedic procedures or from the anterior iliac crest from

breast cancer patients with clinical stage II/III disease, prior to treatment initiation, as previ-

ously described[4,20]. Collected BM was placed directly into K-EDTA tubes from the syringe

without a needle to avoid cell shearing.

Bone Marrow Processing and Filtering

Nucleated cell counts in BM specimens were determined prior to processing using a Vision

CBA cellometer (Nexcelom Biosciences) after dilution with PBS prior to any processing. For

spiking experiments, a defined number of SKBR3 breast cancer cells (ATCC) was added at var-

ious concentrations to a known number of nucleated BM cells at concentration ratios ranging

from 1 to 100 tumor cells per 1x106 nucleated BM cells.

For immunocytochemistry (ICC) and FISH studies, whole BM was diluted 1:10 with PBS,

and 7 m of the diluted sample was placed in CellSave Cell Preservation tubes and shipped at

ambient temperature to Creatv MicroTech for processing. Specimens were processed within

24 hours of collection. All specimens were pre-filtered using a 70-μm cell strainer (Fisher Sci-

entific) to remove large particles. The effluent was then diluted 1:1 in an equal volume of pre-

fixation buffer (Creatv MicroTech), incubated at room temperature for 15 minutes, and then

filtered through CellSieve microfilters (Creatv MicroTech) at a controlled flow rate of 5 ml/

minute, generated by negative pressure across the filter[21,22]. As shown in S1 Fig, the CellSe-

ive microfilters consist of a uniform array of 160,000, 7-um pores in a 9 mm diameter area.

Captured, fixed cells were then directly used for ICC or eluted and spun onto glass slides for

FISH analysis.

For capturing viable cells for RNA-based studies, RBC lysis was performed prior to filtra-

tion. Briefly, 7 ml of whole BM was pelleted by centrifugation at 1,200 RPM for 10 minutes,

and the supernatant discarded. RBCs were lysed by resuspending the pellet in 40 ml of RBC

lysis solution (5 Prime) and incubating for 10 minutes with gentle rocking. The cells were re-

pelleted using the same settings and the supernatant was carefully removed. The pellet was

then resuspended in a total volume of 14 ml of PBS. As described above, the BM suspension

was pre-filtered through a 70-μm mesh sieve to remove bone spicules and the filter was

washed once with 1 ml PBS. The total effluent was divided into two equal parts, each filtered

through a CellSieve 7-μm pore-size microfilters as previously described [22]. For RNA
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preparation, filters were place directly into 350 ul of RLT buffer (RNeasy Micro Kit, Qiagen),

vortexed vigorously and stored at -80˚C until RNA purification. For RISH, cells were eluted

from filters as described below.

Immunocytochemistry and Cell Enumeration

In order to increase accuracy of cell identification, we evaluated the sensitivity and specificity

of monoclonal antibodies from various suppliers. A panel of antibodies was previously selected

and optimized for identification of circulating cancer cells in peripheral blood while excluding

white blood cells ([23,24]. This panel contains a mixture of fluorescent antibodies specific to

cytokeratins (CK) 8, 18, and 19 (FITC), EpCAM (PE), and CD45 (Cyanine 5). In this study,

the same antibody cocktail was used for both peripheral blood and BM samples. All staining

was performed on the filter. Filter membranes with filter-captured cells were post-fixed and

permeabilized, according to the manufacturer’s recommendations (Creatv MicroTech), and

stained with the fluorescent antibody mixture with the membrane in the filter holder [25]. The

filter membrane was subsequently removed from the filter holder and placed directly onto a

microscope slide. Ten μL of CellSieve Mounting Solution with DAPI diacetate (Creatv Micro-

Tech) was added to the filter membrane. The filter membrane was covered with a glass cover-

slip, sealed with nail polish and then examined under fluorescence microscope. A cell was

defined as a DTC based on morphology, CK- and/or EpCAM-positive, and CD45-negative

[22]. For quantification, all DTCs were counted across the entire filter. To determine the num-

ber of residual BM cells, five area images representing 1% of the filter were examined. The

average and standard deviation were subsequently calculated, as previously described [25].

Fluorescence In-Situ Hybridization (FISH)

Fixed cells were recovered from the filters by backwashing. Backwashing was performed by

connecting the filter holder to a 10 ml syringe containing 5 ml PBS and flipping the assem-

bly180-degrees, such that the filter side containing cells faced towards a 15 ml collection tube.

Five ml of PBS was used to flush the filter. The filter was taken out of the holder assembly and

placed in a petri dish and washed two times with 250 ul PBS to collect any additional cells

attached to the filter [26]. All released cells were pooled in a 15 ml conical bottom tube and pel-

leted by centrifugation at 250 RCF for 10 minutes. The cells were resuspended in neutral buff-

ered formalin and incubated at 37˚C for 1 hour for fixation. The fixed cells were cytospun on

to a positive-charged Superfrost-Plus microscope slide (Fisher Scientific) at 1,000 RPM for 10

minutes. HER-2/neu gene amplification in the transferred cells was examined by FISH with

PathVysion HER-2 DNA Probe Kit (Abbott) which contains fluorescence probes specific for

the HER-2/neu gene locus (17q11.2-q12) and for the alpha satellite DNA sequence at the cen-

tromeric region of chromosome 17 (17p11.1-q11.1). The FISH analysis was performed accord-

ing to manufacturer’s instructions.

RNA In-Situ Hybridization (RISH)

Viable cells were recovered from the filters by backwashing as described above, pelleted, then

washed in PBMC wash (Advanced Cell Diagnostics), and subsequently suspended in 70% eth-

anol. Cells collected from one filter were cytospun onto Octospot slides (Thermal Fisher)

using a Shannon Cystospin Centrifuge, such that cells from each filter was divided into 8

spots. The slides were then treated sequentially with a peroxidase and protease according to

the manufacturer’s recommendations. RNAscope 2.0 HD assays were performed using target

probe Hs-HER2 (Advanced Cell Diagnostics). The assays were performed manually according

to the manufacturer’s instructions. The target probes were hybridized for 2 hours in a
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hybridization oven at 40˚C before performing amplification steps according to the manufac-

turer. Signals were generated by chromogenic reaction using horseradish peroxidase with 3,

3-diaminobenzidine. The slides were counterstained with hematoxylin and mounted with

Cytoseal mounting medium (Richard-Allan Scientific). Positively stained cells were counted

manually.

RNA Preparation

RNA was prepared using RNeasy Micro Kit (Qiagen) according to manufacturer’s protocol.

The purified RNA was quantified by NanoDrop ND-2000 spectrophotometer and qualitatively

assessed using an Agilent Bioanalyzer.

RNA Expression Analysis

Quantitative PCR was performed using a microfluidic-based PCR system with 96.96 Dynamic

Arrays (Fluidigm Corp.). The cDNAs, prepared from 50-ng of total RNA using Life Technolo-

gies High Capacity cDNA Reverse Transcription Kit (Applied Biosystems), were subjected to

specific target amplification (STA) using TaqMan PreAmp Mastermix (Applied Biosystems).

The samples underwent 14 rounds of pre-amplification in the STA process. The cycling pro-

gram consisted of 10 minutes at 95˚C followed by 14 cycles of 95˚C for 15 seconds and then

60˚C for 1 minute. Each pre-amplified sample was subsequently diluted 1:4 in low EDTA

DNA suspension buffer. The sample mixtures were prepared by combining the samples with

TaqMan Universal PCR Master Mix (Applied Biosystems) and 20X Gene Expression Sample

Loading Reagent (Fluidigm Corp.). The assay mixtures contained 9-μM of each primer and 2-

μM of the probe in Dynamic Array Assay Loading Reagent (Fluidigm Corp). The sample and

assay mixtures were loaded into appropriate inlets on the primed 96.96 Dynamic Array chip

before it was placed on the NanoFlex-4 Integrated Fluidic Circuit Controller for distribution

of the sample and assay mixture. The loaded Dynamic Array was then inserted into the Bio-

Mark Reverse-Transcription-PCR System. The qPCR program was as follows: 50˚C for 2 min-

utes, 95˚C for 2 minutes, 40 cycles of 95˚C for 15 seconds and 60˚C for 1 minute.

Relative gene expression was calculated using the ddCT method. Each PCR reaction for

each sample / gene was repeated in duplicate. Duplicates that varied by more than 1 Ct were

discarded. Briefly, Ct values for each gene were normalized to Ct value for TBP gene expres-

sion in each sample (dCT). A pool of 11 normal bone marrow samples was used to calculate

dCT for each gene and the average dCT value for each gene across the normal samples was

used as a ‘baseline’. For each sample, relative gene expression was calculated with reference to

the average of the normal bone marrow baseline (ddCT), using the expression 2-ddCT.

Results

Recovery Efficiency of Cancer Cells from BM by Using Microfiltration

Microfiltration has been optimized for enrichment of CTCs from blood, which has approxi-

mately 100-fold fewer mononucleated cells per ml than a typical BM aspirate [27,28]. To evalu-

ate conditions for microfiltration of BM, human breast cancer cell line SKBR3 was diluted into

normal BM samples at varying concentrations. For initial experiments, 14 million nucleated

BM cells per sample were used for processing by microfiltration. Cancer cell recovery effi-

ciency was estimated by on-filter staining with DAPI and epithelial- or leukocyte- specific anti-

bodies for cytokeratin, EpCAM, and CD45, respectively (Fig 1). Control BM specimens from 5

normal donors demonstrated an absence of CK positive cells or rare CK positive staining cells
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(0 cells/4 specimens, 4 cells/1 specimen)likely due to non-specific binding of CK to granulo-

cytes or epithelial cell contamination during sample collection or processing.

Recovery of the SKBR3 breast cancer cells averaged 87% (range 85–92%), while residual

mononucleated cells ranged from 26,000 to 41,000 (average 31,900), for an enrichment of

approximately 430 fold (range 350–578) with a starting cell number of 14 million cells

(Table 1).

Immunocytological Analysis of Filtered Cells from Breast Cancer

Patients

Review of hundreds of cells from patient BM after filtration allowed us to identify six general

categories of cells based on nuclear features, nuclear-cytoplasmic ratio, positivity of staining

for epithelial markers (EpCAM, CKs) and absence of staining leukocyte marker CD45

(Table 2 and S2 Fig). Categories I and II were CD45-negative cell populations of non-hemato-

poietic origin, whereas Categories III, IV, V and VI were CD45-positive cell populations of

Fig 1. Images of the filter-captured breast cancer tissue culture cells. Fig 1A. (A) Normal bone marrow

control cells stained on the microfilter (B) Normal bone marrow cells spiked with SKBR3 breast cancer cells

stained on the microfilter. Arrows indicate SKBR3 cells. Fig 1B. Antibody staining of SKBR3 breast cancer

cells after filtration. Nuclei are shown as blue in the merged images.

doi:10.1371/journal.pone.0170761.g001
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hematopoietic origin. Category I, DTC candidate, were cells scored as true DTCs and were

large round cells with increased nuclear-cytoplasmic ratio, negative staining for CD45, and

detectable staining for CK8 18, 19 epithelial markers (Fig 2A and 2B). Category II, Question-

able DTC, were cells that had morphological characteristics of malignant cells, stained as

CD45-negative, but had weak or negative staining for cytokeratins and EpCAM. These cells

require additional molecular characterization for confirmation of the cell identity. Category III

were cells which were very large and with morphology consistent with typical hematopoietic

precursor cells (Fig 2C). The remaining three categories were apoptotic cells with degraded-

DNA in nuclei (Category IV), normal blood cells (Category V), and cell fragments or debris

(Category VI). Normal BM cells could be readily distinguished from DTCs by their nuclear-

cytoplasmic ratios and CD45 staining. Other cancer-associated cells or non-cancer cells could

be detected using the antibody cocktail, but could be distinguished from CTCs/DTCs by their

morphology[27]. The presence or absence of EpCAM staining alone was not useful as a dis-

criminator. For all analysis, only true DTCs were reported.

BM and blood were analyzed from 8 patients with newly diagnosed clinical stage II/III

breast cancer for the presence of DTCs and CTCs prior to any treatment as well as BM from 2

normal healthy volunteers (Table 3). In this set of specimens, the investigators processing the

specimens and interpreting the results were blinded to the source of the specimens. Mean fol-

low-up for these patients was 24 months. None of the patients have developed recurrent dis-

ease. 2–4 mls of BM was processed for filtering for an average of 51 million cells per filter

(range 21–100 million cells) which is the approximate amount of nucleated cells in 7 ml of

Table 1. Recovery and fold enrichment of indicated number of SKBR3 tumor cells spiked into an initial sample of 14 million BM cells.

Sample (Bone

marrow)*
Input Cancer Cells Recovered Cancer Cells Recovery (%) Residual MNC (No./filter) Fold Enrichment Recovery (%)

1 0 0 NA NA NA NA

2 14 12 85.7 40,000 350 85.7

3 140 129 92.1 36,200 386 92.1

4 1400 1180 84.3 24,200 578 84.3

Average** 31,900 438 87.4

SD 7900 4.19

Abbreviations: MNC-mononucleated cells; NA-not applicable; SD-standard deviation

*Bone marrow from a single normal donor was used from all samples.

** Average was calculated from the 3 spikes samples.

doi:10.1371/journal.pone.0170761.t001

Table 2. Categories of BM cells after filtration based on morphology and staining.

Categories Designation Descriptions Morphological and Antigenic Characteristics

I DTC candidates Disseminated Tumor Cells

Candidates

Large round-shaped cells with malignant nuclei, increased nuclear-cytoplasmic ratio;

positive staining of CK8, 18, 19 and/or EpCAM, negative staining of CD45

II Questionable

DTC

Questionable Disseminated Tumor

Cells Candidates

Different morphologies from white blood cells, CD45-negative, patterns of cytokeratin

and EpCAM need to be confirmed

III HPCs Hematopoietic precursor cells,

consist of many cell types

Very large, round-shaped cells with single- or multi-nuclear, cytoplasm shows weak

and smooth staining of all markers including CKs, EpCAM and CD45

IV dgDNA Cell degradation, nucleus with

degraded-RNA

With or without cytoplasm, smooth staining of DAPI, single or multiple nuclei

V Normal blood

cells

Red blood cells, white blood cells

and platelets etc.

White blood cells appear round (lymphocytes) or polymorphonuclear (granulocytes).

CD45 positive

VI Cell Debris Cell fragments, DNA debris Fragments of debris from dead cells

doi:10.1371/journal.pone.0170761.t002
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blood. Neither DTCs nor CTCs were detected in control normal BM or peripheral blood sam-

ples. DTCs were detected in all of the eight patient BM samples with numbers ranging from

1–13. CTCs were detected in 2 of 6 patient samples with 1 cell detected per sample. Increased

detection of cancer cells in BM compared to blood is consistent with other reports [7].

Fluorescence In Situ Hybridization (FISH) and RNA-ISH

We also performed FISH for HER2 gene amplification, a predictive marker, on BM cells from

breast cancer patients after filtration. Fig 3 shows an example of a BM DTC from a BC patient

with amplification of the HER2 gene. Significantly, the primary tumor from this same patient

Fig 2. Appearance of filter-captured DTCs from BC patient bone marrow by fluorescent antibody

staining. (A, B), Filter-captured DTCs; (C), Hematopoietic precursor cells (HPC). Nuclei are shown as blue in

the merged images.

doi:10.1371/journal.pone.0170761.g002

Table 3. Patient characteristics and enumeration of DTCs and CTCs.

Pt ID Age Hist.* ER PR Her2 Grade Tumor size (cm) LN Mets BM cells filtered (No. X106) DTC (No.) CTC (No.)

6837 32 IDC Neg Pos Neg 3 3.9 Neg no 62 4 0

9037 35 IDC Pos Pos Neg 2 4.7 Pos no 22 5 0

5324 67 IDC Pos Neg Neg 3 4.5 Pos no 55 1 na

2219 62 IDC Neg Neg Neg 2 2.9 Neg no 21 13 1

3641 44 IDC Neg Neg Neg 3 8.5 Pos no 35 10 0

6079 46 IDC Neg Neg Neg 3 4.5 Pos no 27 9 0

4717 54 ILC Pos Neg Neg 1 4.0 Pos no 67 4 1

7914 67 IDC Neg Neg Neg 3 1.5 Pos no 100 5 Na

Control 72 Nl na na 84 0 0

Control 74 Nl na na 100 0 Na

*Abbreviations are: Hist.-histology; ER-estrogen receptor; PR-progesterone receptor; LN-clinical lymph node status; Mets-metastatic disease

development; No.-number; Nl-normal; na-not applicable

doi:10.1371/journal.pone.0170761.t003
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(5324) was scored as negative for HER2 gene amplification. Discordance in HER2 gene ampli-

fication between primary tumors and DTCs has been previously documented and has possible

treatment implications for targeted therapeutics [29–31]

Although cells that have been fixed prior to filtration can be easily visualized on the filters

by immunohistochemistry or DNA-based FISH, fixative treatment results in degradation of

RNA. Thus we also optimized elution of viable cells from the filters to evaluate gene-expression

based biomarkers. Using a backwashing methodology, we were able to elute an average of

1.7x105 cells (range 1.4-75x104 cells) per filter with an average starting number of 70 million

cells (range 4-16x107 cells, N = 10 specimens, S1 Table). Staining of the filters after backwash-

ing revealed no residual cells. RNA-ISH for Her2 was performed on BM from breast cancer

patients and normal BM. An example of DTC detected by RNA-ISH for Her2/ERBB2 is

shown in Fig 4. There was no detectable staining for probes in normal BM (data not shown)

Fig 3. Her2-FISH analysis of DTCs from breast cancer patient BM. Top Row: DTC with normal copy

number of CEP17 and Her2. Bottom Row: DTC with normal copy number of CEP17 and increased copy

number of Her2.

doi:10.1371/journal.pone.0170761.g003

Fig 4. RNA-In situ hybridization for ERBB2 gene expression. BM from 2 breast cancer patients after

filtration analyzed by RNA-ISH for Her-2 expression. Her2/ERBB2 RNA-ISH positive cells are brown (arrows).

doi:10.1371/journal.pone.0170761.g004
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RNA Purification and mRNA Expression Analysis

We found that RNA quantity and quality could be improved and was more consistent between

preparations by performing RBC lysis before BM filtration. Using a high-throughput, qRT-

PCR platform, we analyzed the expression of 11 genes (CAV1, CCDN1, CLDN4, EGFR,

IGFBP4, KRT19, LOXL2, MLPH, PLAT, SLIT2 and STEAP) in filtered and unfiltered BM,

that we and others have found to be expressed by DTCs and breast cancer cells lines, but

absent in normal BM [29,32]. Normal BM was spiked with SKBR3 breast cancer cells at vary-

ing concentrations and a total of 37 million normal BM cells filtered. All 11 genes were

detected in filtered BM samples spiked at the lowest dilution of 1:1,000 with SKBR3 cells, but

only 7 of the genes (CLDN4, EGFR, LOXL2, MLPH, PLAT, SLIT2 and STEAP) could be

detected in the corresponding, unfiltered samples (S3 Fig). At the highest dilution of cancer

cells of 1:50,000 spiked SKBR3 cells, which is more biologically relevant, expression of all 11

DTC biomarker genes were still detected in filtered BM samples, but only 1 gene (CAV1) was

detectable in the unfiltered samples (Fig 5). To evaluate the quality and yield of RNA isolated

from filtered cells using patient specimens, we performed RNA isolation and quality assess-

ment from a consecutive set of 66 early stage breast cancer patient BM samples. 2–4 ml of BM

was used and the average number of BM cells filtered was 63 million (range 1.6-20x107). RNA

yield was an average of 135 ng per 10 million BM cells filtered (range 224–3270 ng) with an

average RIN of 5.33 (range 1–9.1).

Discussion

In this study, we have demonstrated the effective use of a sized based filtration-method for

DTC enrichment from BC patient BM aspirate specimens. While eliminating biases associated

with antigen-capture based approaches, we demonstrate that this method allows for efficient

recovery and enrichment of DTCs, which may then be readily utilized for sensitive down-

stream detection methodologies such as immunocytochemical, in situ hybridization, or qPCR-

Fig 5. Expression of DTC associated transcripts in filtered and unfiltered BM specimens. Expression of

11 genes in normal BM samples spiked with 20 MDA-MB-231 cells per million nucleated BM cells compared

to unspiked normal BM (NBM) as shown in x-axis. RNA expression was measured in either filtered (F) or

unfiltered (UF) BM samples. Gene expression was determined by qRT-PCR on a Fluidigm platform. The

actual fold values over normal BM are depicted.

doi:10.1371/journal.pone.0170761.g005
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based gene expression assays. Though many technologies have been used to enrich for CTCs,

few of these have been tested using BM for DTCs (summarized in[33]) and we believe that this

is the first report of using size filtration for DTC enrichment.

In early stage breast cancer patients, the presence and persistence of DTCs in the BM have

been associated with a poor prognosis [34,35]. DTCs have been used as a surrogate for clinical

outcome after chemotherapy[36]. Enumerated DTCs and CTCs are both prognostic for breast

cancer recurrence, but whether both are equivalent in predicting disease recurrence in early

stage breast cancer patients is not clear and may be dependent upon the enumeration and

enrichment techniques used for each [7,37–39].

In our study employing filtration enrichment, we detected DTCs in all patient BM speci-

mens analyzed. None of these early stage breast cancer patients developed a relapse within the

follow-up of 24 months. We are confident that the identified cells were DTCs based on both

morphological and immunofluorescence antibody staining characteristics. The method used

for enrichment of DTCs may result in varying recovery rates and sensitivity. For example,

ficoll density gradient centrifugation is commonly used for enrichment of DTCs followed by

ICC staining and has been recommended by the German Consensus group of Senology for

enrichment of mononucleated cells from BM aspirates [40]. However, ficoll enrichment can

be associated with loss of mononucleated cells [41–43] with the cell recovery rates between 15–

30% [41,42]. Immunomagnetic separation for enrichment of DTCs has not been recom-

mended because of its high cost and lack of superiority over Ficoll enrichment. In our study,

we were able to recover >85% of cancer cells spiked into normal BM using microfiltration

technology for enrichment. While we are able to demonstate the feasibility of using microfili-

tration to capture DTCs, due to the small patient sample size and short follow-up, we were

unable to demonstrate a clear correlation between DTC detection and patient outcome. Fur-

ther studies with larger patient samples would or detection of specific genes associated with

DTCs would be needed.

Potentially, expression of epithelial cells associated genes, non-specific binding of antibod-

ies or certain pathological conditions can lead to increased enumeration rate/higher back-

ground. In this study, the antibody cocktail used for detection had been optimized for

detection of epithelial cells while minimizing background. Using this antibody cocktail, we

observed 4 cells which met criteria for DTC in only one normal BM, which also was the first

normal BM processed using microfiltration. However, to fully study illegitimate expression,

specimens would need to be analyzed from a broader patient population with differing clinical

backgrounds.

DTCs have been found to differ from the primary tumor both phenotypically and geneti-

cally [3]. For example about 10–20% of patients with Her2-negative primary tumors will have

Her2-positive DTCs [29–31]. This can be due to both the evolution of cells during their

sojourn into the BM or the presence of a pre-existing, occult sub clonal population of cells in

the primary tumor that is simply not detected by conventional diagnostics.

Ideally, molecular characterization of DTCs would allow for the identification of those cells

associated with disease recurrence as well as provide a rational basis for selection of targeted

therapies. Whether therapeutically targeting DTCs based on their molecular profile will

improve disease outcome remains to be determined, though there are ongoing clinical trials

based on targeting Her2 expressing DTCs in patients with Her2-negative tumors which are

addressing this question (For example NCT01779050). Incorporation of targeted DTCs thera-

pies based on their molecular profiles into clinical practice would require a robust, reproduc-

ible assay for analyzing these cells in an unbiased manner.

In this study, we have optimized enrichment of DTCs from the BM of breast cancer patients

using size-based microfiltration. Most of the enrichment technologies for rare cells have been
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developed for CTCs from blood which is a less complex medium than BM. Using size-filtra-

tion, we found that there was approximately 90% recovery of input tumor cells with approxi-

mately 400 fold enrichment, and that cells could be recovered for sensitive downstream

analyses (Summarized in Table 4). The retention of 30–40,000 WBC in our experiments is

consistent with the level of retained mononucleated cells from microfiltered blood [44], as is

the recovery of 85% of the input cancer cells filtered from blood [44]. Ficoll-hypaque enrich-

ment of DTCs and CTCs has been commonly used, and results in an approximately 3.8 fold

depletion of mono-nucleated cells [45] and detection of approximately 1 DTC per million

mononucleotide BM cells based on immunocytochemical detection of cytokeratin expression.

Using filtration, we achieved an approximately 400 fold depletion of mononucleated cells and

were able to detect DTCs with a>50-fold increased sensitivity using ICC compared to stan-

dard ICC detection of DTCs.

We found that high quality RNA could be isolated from cells after filtration, which allowed

us to test RNA based gene expression assays. Using PCR, expression of DTC associated genes

could be detected at a concentration of 20 cells per million BM cells, which was the lowest con-

centration that we tested. Moreover, we have been able to visualize expression of specific genes

from individual filtered cells, using RNA-based in situ hybridization.

Examination of hundreds of cells from BC patient BM allowed us to classify cells into five

major categories based on their staining and morphological features. Codifying the classifica-

tion of cells found in the BM will allow investigators to compare results as well as to identify

those cells which are important in the development of metastatic disease.

In a small sample set of eight clinical stage II/III breast cancer patients, using identical

enrichment and enumeration for both DTCs and CTC analysis, we detected DTCs in all BM

by ICC after filtration, while CTCs were detected in the blood of only 2 of these patients. Other

investigators have compared the prognostic significance of CTCs and DTCs and have reported

that not all patients with CTCs had DTCs and vice versa [46–48]. However, none of these stud-

ies have enumerated CTCs and DTCs using identical technologies for detection. Standardiza-

tion for enumeration and molecular characterization of DTCs as well as CTCs will be required

for determining the prognostic significance. This will allow the identification of those subpop-

ulations of DTCs that will generate overt metastases and lead to the design of specific targeted

therapy to the cells.

Though microfiltration is an antigen-independent enrichment of DTCs that allows the

recovery of viable cells, there are several limitations. First, pure populations of DTCs are not

recovered. Based on spiking experiments, we estimate the purity to be about 0.3% (Table 4).

Thus detection methods need to rely on DTC specific features. Second due to the manipula-

tion of the cells, morphology may not always maintained. Despite this, microfiltration is very

reproducible and allows the rapid enrichment of DTCs without the requirement for sophisti-

cated equipment.

Table 4. Recovery efficiency of breast cancer cells from bone marrow spiking experiments.

Calculation Results

Capture Efficiency CC Captured/ CC actual 87%

Enrichment (CC captured/WBC captured) /(CC actual/WBC initial) 350–400 fold

Purity CC captured/(CC+WBC) captured 0.3%

Throughput Cells/unit time 15 x10^6 cells/ minute

Abbreviations: CC-cancer cell

doi:10.1371/journal.pone.0170761.t004
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In summary, we have optimized a size-based filtration method for enriching for cancer cells

from bone marrow. This technique results in high recovery and the capture of viable cells that

can be used for down-stream analysis requiring intact RNA and DNA for molecular profiling.

Given the ease and reproducibility of size filtration, we envision that this can be readily incor-

porated into clinical practice for the enrichment and molecular analysis of DTCs.
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43. Pösel C M K, Fröhlich W, Schulz I, Boltze J, Wagner DC (2012) Density gradient centrifugation compro-

mises bone marrow mononuclear cell yield. PLoS One 7: e50293. doi: 10.1371/journal.pone.0050293

PMID: 23236366

44. Magbanua MJ, Pugia M, Lee JS, Jabon M, Wang V, et al. (2015) A Novel Strategy for Detection and

Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated

Microfluidic Filtration and Multiplex Immunoassay. PLoS One 10: e0141166. doi: 10.1371/journal.

pone.0141166 PMID: 26496203

45. Rosenberg R, Gertler R, Friederichs J, Fuehrer K, Dahm M, et al. (2002) Comparison of two density gra-

dient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry 49:

150–158. doi: 10.1002/cyto.10161 PMID: 12454978

46. Kasimir-Bauer S, Bittner AK, Konig L, Reiter K, Keller T, et al. (2016) Does primary neoadjuvant sys-

temic therapy eradicate minimal residual disease? Analysis of disseminated and circulating tumor cells

before and after therapy. Breast Cancer Res 18: 20. doi: 10.1186/s13058-016-0679-3 PMID:

26868521

47. Kasimir-Bauer S, Reiter K, Aktas B, Bittner AK, Weber S, et al. (2016) Different prognostic value of cir-

culating and disseminated tumor cells in primary breast cancer: Influence of bisphosphonate intake?

Sci Rep 6: 26355. doi: 10.1038/srep26355 PMID: 27212060

48. Schindlbeck C, Andergassen U, Hofmann S, Juckstock J, Jeschke U, et al. (2013) Comparison of circu-

lating tumor cells (CTC) in peripheral blood and disseminated tumor cells in the bone marrow (DTC-BM)

of breast cancer patients. J Cancer Res Clin Oncol 139: 1055–1062. doi: 10.1007/s00432-013-1418-0

PMID: 23525580

DTC Enrichment by Microfiltration

PLOS ONE | DOI:10.1371/journal.pone.0170761 January 27, 2017 16 / 16

http://www.ncbi.nlm.nih.gov/pubmed/19112790
http://dx.doi.org/10.1080/14653240701851324
http://dx.doi.org/10.1080/14653240701851324
http://www.ncbi.nlm.nih.gov/pubmed/18368599
http://dx.doi.org/10.1371/journal.pone.0050293
http://www.ncbi.nlm.nih.gov/pubmed/23236366
http://dx.doi.org/10.1371/journal.pone.0141166
http://dx.doi.org/10.1371/journal.pone.0141166
http://www.ncbi.nlm.nih.gov/pubmed/26496203
http://dx.doi.org/10.1002/cyto.10161
http://www.ncbi.nlm.nih.gov/pubmed/12454978
http://dx.doi.org/10.1186/s13058-016-0679-3
http://www.ncbi.nlm.nih.gov/pubmed/26868521
http://dx.doi.org/10.1038/srep26355
http://www.ncbi.nlm.nih.gov/pubmed/27212060
http://dx.doi.org/10.1007/s00432-013-1418-0
http://www.ncbi.nlm.nih.gov/pubmed/23525580

