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Abstract: Marsdeniae tenacissimae Caulis (MTC) is a Chinese herbal medicine used 

mainly for treatment of cancer, whose pharmacologically active constituents responsible 

for its in vivo activity and clinical efficacy have not been clearly elucidated. In this study, 

total aglycones of MTC (ETA) showed the ability to sensitize KB-3-1, HeLa, HepG2 and 

K562 cells to paclitaxel treatment. More inspiringly, ETA markedly enhanced the 

antitumor activity of paclitaxel in nude mice bearing HeLa or KB-3-1 xenografts. 

Compared to treatment with paclitaxel alone, treatment with combination of paclitaxel and 

ETA achieved significant reduction in volume and weight of HeLa tumors (p < 0.05), and 

remarkable inhibition to the growth of KB-3-1 tumors (p < 10−6). ETA was characterized 

by the presence of a group of tenacigenin B ester derivatives, among which four reference 

compounds, 11α-O-tigloyl-12β-O-acetyltenacigenin B, 11α,12β-di-O-tigloyltenacigenin B, 

11α-O-2-methylbutanoyl-12β-O-tigloyltenacigenin B, and 11α-O-(2-methylbutanoyl)-12β-

O-benzoyltenacigenin B, accounted for 42.14% of the total peak area of 19 detectable 

components assayed by HPLC. Our study has identified ETA as a promising sensitizer for 

cancer chemotherapy.  
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1. Introduction 

Cancer is one of the major diseases in China. In 2009, there were 3.12 million new cases diagnosed 

with cancer, and up to 2.7 million patients died of cancer. Surgery, radiation and drugs are effective means 

for treatment of cancer, but the average five-year survival rate of cancer patients is only 20.0%–30.0% [1]. 

A main cause for the high cancer mortality is drug resistance. Tumors have either intrinsic or acquired 

resistance to a number of anticancer agents, leading to therapeutic failure [2]. Natural products of plant 

origin play very important roles in research and development of cancer therapeutics [3]. For example, a 

number of clinically used anticancer drugs are of plant origin, including the Vinca alkaloids, taxanes, 

podophyllotoxins, and camptothecins [4–6]. Marsdeniae tenacissimae Caulis [origin: dried stems of 

the Asclepiadaceous plant Marsdenia tenacissima (Roxb.) Wight et Arn] is a Chinese herbal medicine 

used for the treatment of coughs, rheumatism, carbuncles and tumors [7]. A water soluble extract of  

M. tenacissimae (MTE) is used as raw material for Xiao-Ai-Ping injection (XAP), a Chinese herbal 

drug approved for the treatment of cancer [8]. If co-administered with anticancer agents such as 

platinum drugs XAP is reported to be able to enhance the clinical effects of chemotherapy in the 

treatment of lung cancer, liver cancer or gastric cancer, etc. [9,10]. Pharmacological studies showed 

that XAP or its chloroform extract may increase gefitinib sensitivity in drug resistant non-small cell lung 

cancer cells [11], sensitize MG63 cells to doxorubicin-induced apoptosis [12], induce apoptosis of 

hematologic neoplasm cells [13], or affect angiogenesis [14]. So far, more than 40 pregnane 

derivatives were identified from M. tenacissima [15], and several of them were reported to be 

cytotoxic to cancer cell lines [16], or capable of reversing multidrug resistance in Pgp overexpressing 

HepG2 cells [17]. Though the pharmacologically active constituents in MTC have not been clearly 

elucidated yet, liposoluble pregnane derivatives are thought to be responsible or partially responsible 

for its in vivo anticancer or chemosensitizing activities [11–18]. In this study, a hydrophobic extract of 

total pregnane aglycones (ETA) was obtained from the hydrolytic product of the crude glycosides of 

MTC. The possibility for clinical usage of ETA in combination with chemotherapy for treatment of 

human cancers, in vitro and in vivo activity of ETA in increasing antitumor effect of paclitaxel (taxol), 

as well as a quality control method for ETA were investigated.  

2. Results and Discussion 

2.1. Enhanced Inhibitory Effect of Paclitaxel on Cell Viability by ETA 

In the human hepatoma cell line HepG2, leukemia cell line K562, oral epidermoid carcinoma cell 

line KB-3-1 and human cervical cancer cell line HeLa, cell viabilities in the presence of 10 μg/mL of 

ETA were over 98%, thus 10 μg/mL was chosen as the working concentration of ETA in 

investigations of the ability of ETA to enhance the in vitro anticancer activity of paclitaxel. Paclitaxel 

concentrations that inhibited 50% of cell viability (IC50) in the absence or presence of 10 μg/mL ETA in 

K562, HeLa, KB-3-1 and HepG2 cell lines were measured and compared. As shown in Table 1, 

addition of 10 μg/mL of ETA significantly decreased the IC50 values of paclitaxel in HeLa, HepG2 and 

KB-3-1 cells, implying that the anticancer activity of paclitaxel in the three cell lines was enhanced  

by ETA. 
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Table 1. IC50 values of paclitaxel in human cancer cell lines (ng/mL). Cancer cells were 

treated with various concentrations of paclitaxel alone (Control) or in the presence of  

10 μg/mL of ETA for 48 h. Cell viability was measured by CCK-8 assay. Data were 

expressed as Mean ± SD of three independent experiments. * p < 0.05 and ** p < 0.01 

compared to control. 

Treatment 
Tumor Cell Lines 

K562 HeLa HepG2 KB-3-1 
Paclitaxel alone (Control) 4.8 ± 0.4 17.1 ± 4.1 67.2 ± 12.3 8.1 ± 1.3 

Paclitaxel + 10 μg/mL ETA 3.8 ± 0.6 8.3 ± 1.0 * 14.1 ± 8.5 ** 5.1 ± 0.6 * 

2.2. Enhanced Inhibitory Effect of Paclitaxel on Tumor Growth in Nude Mice by ETA 

In our study, ETA actively increased the in vitro anticancer activity of paclitaxel and was therefore 

further investigated for its effects on the in vivo antitumor ability of paclitaxel. Nude mice bearing 

HeLa or KB-3-1 xenografts on their back were either given paclitaxel (Taxol) or ETA alone, or their 

combination. Figure 1 showed the experimental results obtained in KB-3-1 tumor bearing mice. 

Compared to mice treated with vehicle (vehicle group), oral administration of 250 mg/kg/day of ETA 

for 9 days (ETA group) did not affect the body weight (Figure 1A), tumor growth trend (Figure 1B) 

and tumor weight (Figure 1C) of mice (p > 0.05); treatment with 10 mg/kg Taxol by intraperitoneal 

injection every other day for five doses (Taxol group) resulted in smaller tumor weight (p < 0.001, 

Figure 1C) and tumor size (Figure 1D). More inspiring efficacy was observed in mice treated with a 

combination of Taxol and ETA: tumors completely stopped growing and even disappeared in part of 

the mice (Figure 1D). Compared to treatment with Taxol alone, treatment with Taxol in combination 

with ETA did not affect the body weight (Figure 1A), but remarkably reduced the average weight and 

size of tumors (p < 10−6, Figure 1B‒D), implying that ETA significantly enhanced in vivo antitumor 

activity of paclitaxel. The chemosensitizing effect of ETA was also observed in mice bearing HeLa 

xenografts. Compared to vehicle, 10 mg/kg of Taxol alone (Taxol-H), or 200 mg/kg of ETA alone 

(ETA-H) could not inhibit tumor growth, but the combination of 10 mg/kg of Taxol and 50 mg/kg of ETA 

(Taxol-H + ETA-L), or the combination of 5 mg/kg of Taxol and 200 mg/kg of ETA (Taxol-L + ETA-H) 

significantly inhibited tumor growth without affecting the body weight of mice (Figure 2A). Tumor 

weights in the two groups were much lighter than those in the other four groups (Figure 2B). 

In tumor therapy, intrinsic or acquired drug resistance in tumor tissue weakens the effect  

of chemotherapy treatment, and more seriously, can result in treatment failure. The mechanisms of 

drug resistance involved include over-expression of transporter proteins such as Pgp, MRP or BCRP, 

over-expression of glutathione S-transferease, mutation of tumor suppressor gene p53, up-regulation of 

topoisomerase II or topoisomerase II gene mutation, etc. [2]. Paclitaxel is an effective drug for 

gynecological tumors, including breast cancer, ovarian cancer, cervical carcinoma, and carcinoma of 

the endometrium. Paclitaxel is also a transport substrate of Pgp, an ATP-dependent membrane 

transporter protein that pumps substrate drug out of tumor cells [19]. The HeLa tumor model 

established by subcutaneously injecting HeLa cells on the back of nude mice was reported to be highly 

sensitive to paclitaxel [20], but HeLa tumors in this study grew well, even when exposed to  

10 mg/kg of paclitaxel, implying that in vivo HeLa tumor model established in this experiment was 

resistant to paclitaxel. In our study, paclitaxel or ETA alone could not inhibit tumor growth, but 
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paclitaxel in combination with ETA significantly inhibited tumor growth, meaning that the paclitaxel 

sensitivity of the resistant HeLa tumor was restored by ETA. 

Figure 1. ETA enhanced inhibitory effect of Taxol on growth of KB-3-1 tumor. KB-3-1 

tumor-bearing nude mice were given 10 mg/kg Taxol (Taxol) every other day, or  

250 mg/kg/day ETA (ETA), or the combination of Taxol and ETA (Taxol + ETA),  

or equivalent amount of vehicle (Vehicle) for 9 days. Body weight (A), tumor volume (B) 

and tumor weight (C) were recorded and expressed as mean value ± standard error of mean 

(n = 10). Tumor picture was taken at the last experimental day (D). ** p < 0.01, *** p < 0.001 

and **** p < 10−6 compared to Vehicle group, while ▲▲▲▲ p < 10−6 compared to Taxol group. 
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Figure 2. ETA enhanced inhibitory effect of Taxol on growth of HeLa tumors. HeLa  

tumor-bearing nude mice were given 10 mg/kg (Taxol-H) or 5 mg/kg (Taxol-L) of Taxol 

every other day for 5 doses, or 200 mg/kg/day of ETA (ETA-H) for 9 doses, or the 

combination of Taxol-H and 50 mg/kg/day of ETA (Taxol-H + ETA-L), or the combination 

of Taxol-L and ETA-H (Taxol-L + ETA-H). Body weight (A) and tumor weight (B) were 

recorded and expressed as mean value ± standard error of mean (n = 6). Compared to 

Vehicle group, data were significantly different at ** p < 0.01. Compared to Taxol-H 

group, data were significantly different at ▲ p < 0.05. 
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The incidence of oral cancer is high in areas where betel nut and products derived from it are 

socially endorsed masticatory products [21]. In our study, treatment with 10 mg/kg of paclitaxel alone 

significantly slowed down the growth of KB-3-1 tumors, but could not stop the tumor growth. 

However, when paclitaxel was given together with ETA, the growth of KB-3-1 tumors was  

completely inhibited.  

In this study, co-administration of paclitaxel with ETA achieved much better therapeutic effect than 

administration of paclitaxel alone, indicating that ETA is a potential paclitaxel sensitizer in treatment 

of human cancer. Considering that paclitaxel is a transport substrate of Pgp while tenacigenin B 

derivatives could inhibit Pgp transport function [17], it is strongly suggested that ETA might work 

through inhibiting Pgp function. 
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2.3. Chemical Composition of ETA 

Chemical constituents of ETA were well separated through a Phenomenex Luna C18 column  

(4.6 × 250 mm, 5 μm) eluting with methanol (solvent A) and 0.1% aqueous acetic acid (v/v, solvent B), 

at oven temperature 30 °C and detection wavelength 230 nm with gradient elution: 0–30 min,  

58%–63% A; 30–40min, 63%–68% A; 40–70 min, 68%–78% A. The HPLC fingerprints of ETA are 

shown in Figure 3A. Chromatograms of this active extract were characterized by the presence of a 

group of tenacigenin B ester derivatives, including 11α-O-tigloyl-12β-O-acetyltenacigenin B (1), 

11α,12β-di-O-tigloyltenacigenin B (2), 11α-O-2-methylbutanoyl-12β-O-tigloyltenacigenin B (3), and 

11α-O-(2-methylbutanoyl)-12β-O-benzoyltenacigenin B (4) (Figure 3B), which were also numbered as 

peaks 1–4 in the chromatogram. According to the sum of peak area, marker compounds 1–4 accounted 

for 42.14% content of that of 19 detectable components in ETA (Supplementary materials; Table S1). 

Figure 3. Characteristic chromatograms of ETA and the markers assayed by HPLC.  

(A) ETA; 1–19, detectable components; (B) the mixed markers, 1–4, marker  

compounds 1–4. For assay, methanol solutions of mixed markers 1–4 (1.04, 1.21, 0.98, 

0.96 mg/mL) and of ETA (1.42 mg/mL) were used, oven temperature was set at 30 °C, and 

detecting wavelength was set at 230 nm. 
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2.4. Assay of 1 

Reference compound 1 was shown to be a major constituent of ETA (Figure 3) and was therefore 

measured quantitatively. The condition optimized for assay of 1 was the same as described in 

compositional analysis of ETA, except that isocratic elution using methanol mixed with 0.1% aqueous 

acetic acid (65:35; v/v) was chosen. The range of relative standard deviations for accuracy of peak 

area, repeatability of measured concentration, and stability of sample within 12 h were validated as 

0.42%–0.79%. The calibration curve for 1 was Y = 264.04X + 2.0137 (R2 = 0.9998) with a linear range 

of 1.04–16.64 μg. Recovery rates for spiked samples of ETA were determined as 100.65% ± 1.03%. 

Measured concentration of 1 was 11.88% ± 0.50% (n = 3). 

3. Experimental Section  

3.1. Preparation of the Extract of Total Aglycones of M. tenacissima 

The plant was collected from Mengzi County, Yunnan Province, China in October 2011 and 

identified as Marsdenia tenacissima (Roxb.) Wight et Arn. by Fa-Guo Wang, a plant taxonomist at 

South China Botanical Garden, Chinese Academy of Sciences. A voucher specimen (No. 201110 sp-2) 

was deposited at the Chinese Herbal Drug Discovery Lab of theTropical Medicine Institute, 

Guangzhou University of Chinese Medicine. Dried and ground stems of M. tenacissima (8.0 kg) were 

extracted three times with 80% (v/v) ethanol (50L) under reflux, 2 h each time. The combined ethanol 

solution was concentrated in vacuo to remove ethanol and extracted successively with petroleum ether 

(PE), ethyl acetate (EtOAc) and n-butanol (BuOH). After removal of organic solvents and drying  

in vacuo, PE, EtOAc, and BuOH extracts were obtained. EtOAc extract (80.0 g) showed positive 

Lieberman-Burchard (L-B) and Keller-Kiliani (K-K) reactions, suggesting the concentration of steroidal 

glycosides containing 2-deoxyhexose residues and was named as extract of total glycosides [22,23]. A 

sample of the total glycosides (40 g) was dissolved in anhydrous EtOH (500 mL), mixed with 0.05 M 

H2SO4 (500 mL) and refluxed for 1 h. The reactive mixture was neutralized by 10% Na2CO3, distilled 

in vacuo to remove EtOH, and extracted with EtOAc. The EtOAc extract gave a positive L-B reaction 

and negative K-K reaction, suggesting the concentration of total aglycones [22,23], and was named  

as ETA (22 g).  

3.2. In Vitro Anticancer Activity of Paclitaxel in the Presence or Absence of ETA 

Human hepatoma cell line HepG2 and human leukemia cell line K562 were purchased from the cell 

bank of the Chinese Academy of Science (Shanghai, China). Human oral epidermoid carcinoma cell 

line KB-3-1 and human cervical cancer cell line HeLa were kindly provided by Dr. Tse AK of Hong 

Kong Baptist University. K562, HeLa and HepG2 cell lines were maintained in RPMI 1640 (Gibco-BRL, 

Grand Island, NY, USA) containing 10% fetal bovine serum (Gibco-BRL), while KB-3-1 cell line was 

maintained in DMEM (Gibco-BRL) supplemented with 10% fetal bovine serum. All cells were 

cultured at 37 °C, saturated humidity and 5% CO2. To examine the inhibitory effect of paclitaxel alone 

or in combination with ETA on cancer cell viability, 100 μL per well of cell suspension containing  

1 × 104 cells was seeded into a 96-well microplate and incubated 24 h. Cells were then exposed to 
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various concentrations of paclitaxel (Sigma/Aldrich Co., St Louis, MO, USA) in the presence or 

absence of ETA (10 μg/mL) for 48 h. Cell viability was then measured using Cell Counting Kit-8 

(Dojindo Laboratories, Shanghai, China) [24]. IC50 values of paclitaxel in the presence and absence of 

ETA were used to evaluate the in vitro anticancer activity.  

3.3. In Vivo Anti-Tumor Effect of Paclitaxel in the Presence or Absence of ETA 

Animal studies were approved by the Animal Ethics Committee at Guangzhou University of 

Chinese Medicine (Document No. syxk (Yue) 2008-0001) and performed according to its Animal Care 

and Use Guidelines. Female BALB/c nude mice of 4–5 weeks of age were subcutaneously injected with 

5 × 106 of HeLa cells or 3 × 106 of KB-3-1 cells on the back to establish tumor xenografts [25,26]. Two 

days after KB-3-1 cell injection, mice were randomly divided into four groups (10 mice each group) 

and treated with 10 mg/kg of paclitaxel by intraperitoneal injection (Taxol group), or 250 mg/kg of 

ETA by oral administration (ETA group), or the combination of paclitaxel and ETA (Taxol + ETA 

group). Mice given equivalent amount of solvent (8.6% of Cremophor EL, 8% of ethanol in saline,  

10 mL/kg by intraperitoneal injection) were set as drug negative control (Vehicle group). Drug 

treatment lasted for 9 days. Paclitaxel was given every other day for five doses while ETA was given 

orally daily. Body weight and tumor size were recorded every other day. Tumor size was monitored  

by measuring two perpendicular diameters with a caliper and tumor volume was calculated as  

volume = length × width2 × 0.5. The animal experiments were terminated 6 days after the last drug 

treatment by sacrificing mice according to the guidelines. Tumor xenografts were then stripped  

and weighed.  

Twelve days after injection of HeLa cells, mice with tumors growing well were selected and 

randomly divided into four groups (six mice each group) and treated with 10 mg/kg (Taxol-H group) 

or 5 mg/kg (Taxol-L group) of paclitaxel, or 200 mg/kg of ETA (ETA-H group), or the combination of 

10 mg/kg of paclitaxel and 50 mg/kg of ETA (Taxol-H + ETA-L), or the combination of 5 mg/kg of 

paclitaxel and 200 mg/kg of ETA (Taxol-L + ETA-H group), or equivalent volume of solvent (Vehicle 

group). Drug treatment lasted for 9 days and pacltaxel and ETA were given as described above. Body 

weights of mice were monitored routinely. The experiment was terminated 12 days after the last drug 

treatment and the tumor xenografts were obtained. 

3.4. Statistical Analysis 

Data were expressed as Mean ± standard error of the mean (SEM). Effects of various treatments 

were analyzed by ONE-WAY ANOVA analysis. p value < 0.05 was considered statistically significant.  

3.5. Chemical Compositional Analysis of ETA 

Chemical composition of ETA was assayed by reversed phase HPLC and characterized by the 

presences of a group of tenacigenin B esters as marker of quality control. The reference compounds 

used in qualitative analysis were 11α-O-tigloyl-12β-O-acetyltenacigenin B (1) [27], 11α,12β-di-O-

tigloyltenacigenin B (2) [28], 11α-O-2-methylbutanoyl-12β-O-tigloyltenacigenin B (3) [27], and  

11α-O-(2-methylbutanoyl)-12β-O-benzoyltenacigenin B (4) [27]. These compounds were isolated 
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from ETA by chromatography, and their structures were identified by analysis and comparison on their 

NMR and MS data with those reported. NMR (Tables S2, S3) and MS data of 1–4 were listed in the 

Supplementary materials. Chromatographic conditions involving C-18 column, mobile phase, and 

elution manner were screened and optimized.  

3.6. Assay of Marker Compound 1 

Compound 1 was used as assay marker. Mobile phase, standard curve, linearity of calibration curve, 

precision, stability, reproducibility, and accuracy were verified. 

4. Conclusions  

This is the first demonstration that total pregnane aglycones (ETA) manufactured from the plant  

M. tenacissima markedly enhanced the anticancer activity of paclitaxel both in vitro and in vivo. Our 

data support the use of ETA as a sensitizer for paclitaxel treatment of cancer. Results of HPLC assays 

on ETA provided a basis of quality control for this chemosensitizer. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/19/9/13965/s1. 
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