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Abstract

We analyzed a large health insurance dataset to assess the genetic and environmental contributions 

of 560 disease-related phenotypes in 56,396 twin pairs and 724,513 sibling pairs out of 44,859,462 

individuals that live in the United States. We estimated the contribution of environmental risk 

factors (socioeconomic status, air pollution, and climate) in each phenotype. Mean heritability (h2 

= 0.311) and shared environmental variance (c2 = 0.088) were higher than variance attributed to 

specific environmental factors such as zip code-level socioeconomic status (SES) (varSES = 0.002), 

daily air quality (varAQI = 0.0004), and average temperature (vartemp = 0.001) overall, as well as 

for individual phenotypes. We found significant heritability and shared environment for a number 

of comorbidities (h2 = 0.433, c2 = 0.241) and average monthly cost (h2 = 0.290, c2 = 0.302). All 

results are available using our “Claims Analysis of Twin Correlation and Heritability (CaTCH)” 

web application.
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Editorial summary:

Analysis of a health insurance dataset comprising over 44 million individuals allows for the 

estimation of genetic and environmental contributions in 560 phenotypes using twins and sibling 

pairs.

Introduction

Disentangling how genetic and environmental factors contribute to many phenotypes in the 

same population has been largely unfeasible to date. Most study designs consider a single 

disease or environmental factor at a time. Large administrative health datasets are an 

emerging stream of health data that enables more comprehensive analysis involves large 

administrative health data. Here, we analyze a massive, individual-level claims dataset of 

44,859,462 individuals to systematically partition phenotypic variance between genetic and 

non-genetic factors across a large U.S. population. Documenting both the genetic and 

environmental contributions of phenotypic variance is instrumental for major health studies, 

such as the United States’ All of Us effort1,2. Furthermore, the use of genome sequence data 

in medical decision making is under debate2 and estimating heritability in a “real world” 

setting can help quantify the clinical utility of genome sequencing3.

In human genetics, heritability is defined as the amount of phenotype or disease variation 

that can be attributed to genetic factors. In family studies, other important quantities, such as 

“shared environment” and “non-shared environment” complement heritability and quantify 

variation in phenotype due to non-genetic factors. Estimation of heritability and 

environmental components of phenotypic variation have historically used family-based 

studies, such as those involving twins that are concordant (and discordant) for disease. 

However, building twin registries can be resource-intensive in the ascertainment of both twin 

pairs and phenotypes. What is missing are family-based studies that measure numerous 

phenotypes across a large and diverse population that experience a variety of environmental 

exposures. First, health administration data enable such an approach because these data give 

a comprehensive snapshot of health (e.g., thousands of disease diagnoses and laboratory 

reports, in addition to cost of healthcare), and they enable family-based4,5 or twin-based 

studies across a large number of diseases. While twin-based analysis in such datasets is 

difficult due to lack of zygosity information, we employ methodology6 that utilizes sex 

information to differentiate between identical and non-identical twin pairs.

Second, there has also been a great deal of interest in understanding the contribution of one’s 

residence or zip code to their disease state7. Patient-level data with geographical and 

temporal information (i.e., patient mailing zip code and time of diagnosis) can enable an 

understanding of the contribution of specific geographically linked environmental factors to 

phenotypic variation. There is growing interest in understanding whether one’s residence 

(i.e., zip code) or genetic “code” is more important in health8 but, to our knowledge, only 

one study has attempted to quantify the relative contribution of local environment and 

genetics9. In our analysis, we quantify the relative contribution of local environment and 

genetics by integrating individual-level data with zip code-level information that serve as 

geographical indicators of the area’s socioeconomic status, air pollution quality level, and 
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weather/climate. We then estimated heritability, shared environment, and contribution of zip 

code specific environmental factors for 551 disease-related phenotypes.

We estimated heritability and shared environmental variance for 560 phenotypes (based on 

diagnostic billing codes and laboratory tests) in a cohort of 56,396 twin pairs born on or 

after 1985 (individuals that are on their parent’s/guardian’s insurance plan) using an 

individual-level claims dataset of 44,859,462 individuals from the United States. We also 

estimated phenotypic correlation for same sex and opposite sex siblings using a cohort of 

724,513 sibling pairs (Supplementary Note). We estimated the contribution of specific 

environmental risk factors such as socioeconomic status, pollution, and climate to these 

phenotypes by linking individual claimants to external datasets via residential locations 

(Figure 1d-g). In addition, we computed genetic and environmental contributions of cost of 

care utilization and total co-morbidities. Finally, we estimated the validity of our estimates 

for heritability and shared environment through systematic comparison of documented 

estimates in the published literature.

Results

Data overview

We utilized de-identified member claims data from Aetna Inc., a national health insurance 

company, to assemble a cohort of 56,396 twin pairs and 724,513 sibling pairs (Online 

Methods and Supplementary Note) that were members for at least 3 years in the period 

between 01/01/2008 - 02/01/2016. The median age of twin and sibling pairs at the start of 

surveillance was 7 years (Table 1). The age range for twins and siblings in this cohort was 

between 0-24 years. Using the claims data, we mapped health claims codes to higher level 

phenotypes called PheWAS codes10 (Online Methods). Phenotypic filtering produced 551 

PheWAS codes, 7 quantitative phenotypes, and 2 derived quantitative phenotypes. The twin 

cohort was geographically heterogeneous. There were 38 states with at least 100 twin pairs, 

while 6 states had no twin pairs (Figure 1a). Overall, the twin pairs resided in areas with 

higher income and population density (Figure 1b-c). Prevalence of PheWAS phenotypes, 

among twin pairs, was variable within and between different functional domains [prevalence 

= 0.30% - 73.2%] (Supplementary Figure 1). All results, including phenotype specific data, 

are available using our “Claims Analysis of Twin Correlation and Heritability (CaTCH)” 

web application (see URLs).

Estimation of h2 and c2

We used a twin-based method to estimate the proportion of phenotypic variance due to 

additive genetic factors (i.e. the narrow-sense heritability, h2) and variance due to 

environmental factors shared between twins (c2). Due to lack of zygosity information, we 

URLS:
American Community Survey: https://factfinder.census.gov/
EPA AQI: https://aqs.epa.gov/aqsweb/airdata/download_files.html#AQI
NOAA Monthly Temperature: https://www.ncdc.noaa.gov/data-access/land-based-station-data
International Society for Twin Registries: http://www.twinstudies.org/information/twinregisters/
ICD 10 Codes: https://www.cdc.gov/nchs/icd/icd10cm.htm
Claims Analysis of Twin Correlation and Heritability (CaTCH) web application: http://apps.chiragjpgroup.org/catch/
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estimated h2 and c2 using the difference in correlation between same sex (rtwinSS) and 

opposite sex twin pairs (rtwinOS), assuming that opposite sex pairs are dizygotic and same 

sex twin pairs are a mixture of monozygotic and dizygotic twin pairs (Online Methods). We 

tested the validity of the assumption that rtwinOS is a good proxy for same sex dizygotic twin 

correlation (rtwinDZSS) by creating a sibling cohort and estimating the correlation between 

same sex sibling correlation (rsibSS) and opposite sex sibling correlation (rsibOS) for all 551 

binary phenotypes (Supplementary Note). We found rsibSS and rsibOS were highly correlated 

(r = 0.978, 95% CI: [0.974, 0.981]) (Supplementary Figure 2). Also, for 95% of phenotypes, 

rsibSS - rsibOS ranged between −0.012 and 0.051 and rsibSS was, on average, 0.017 higher 

than rsibOS (Supplementary Figure 3), but for 23.5% of phenotypes rsibSS - rsibOS followed 

the null distribution (pi0 statistic11). We conclude that rtwinOS is highly correlated with 

rtwinDZSS for these 551 phenotypes. However, we found that rtwinOS is slightly lower, on 

average, than rtwinDZSS. Therefore, the estimates of h2 and c2 will be slightly biased. We also 

found rtwinOS is, in general, larger than both rsibOS and rsibSS (Supplementary Figure 4). 

Therefore, using rsibSS instead of rtwinOS as a proxy for rtwinDZSS simply replaces one biased 

estimator for another(Supplementary Note). We also found strong evidence to the validity of 

our assumption of Weinberg’s Rule (Supplementary Note).

Overall phenome-wide summary of h2 and c2

The inverse-variance weighted mean estimate among all phenotypes was 0.316 (95% CI: 

[0.296, 0.335]) for h2 and 0.088 (95% CI: [0.074, 0.102]) for c2 (Figure 2a). Also, among all 

phenotypes, the opposite and same sex correlations for twins (rtwinSS = 0.307, 95% CI: 

[0.297, 0.318], rtwinOS = 0.240, 95% CI: [0.229, 0.251]) are higher than for the siblings 

(rsibSS = 0.199, 95% CI: [0.192, 0.206], rsibOS = 0.182, 95% CI: [0.175, 0.189]). The rtwinSS 

estimate is highest because same sex twin pairs are a mixture of monozygotic and dizygotic 

twin pairs. The higher value for rtwinOS compared to both rsibSS and rsibOS is due to a larger 

twin shared environment versus the sibling shared environmental effect.

Accounting for multiple hypotheses by controlling the false discovery rate (FDR) at 5% we 

found 326/560 (58.2%) phenotypes had a non-zero heritability (h2 > 0) and 180/560 (32.1%) 

phenotypes had non-zero shared environmental effects (c2 > 0). Of these phenotypes, 

225/560 (40%) h2 estimates and 138/560 (24.6%) c2 estimates remained significant at a 

more stringent significance level by Bonferroni-adjusted p-value < 0.05. We show a volcano 

plot of both h2 and c2 estimates for all 560 phenotypes, where the dotted line represents the 

FDR threshold for each statistic (Figure 2b-c). The majority of age (βage) and sex (βsex) 

fixed effects were also non-zero (Online Methods, eq. 3). Controlling for multiple 

hypotheses using an FDR threshold of 0.05 there were 487/560 (86.9%) phenotypes for βage

and 281/560 (50.1%) phenotypes for βsex that were FDR significant, respectively (See 

URLs).

Among functional domains with at least 5 phenotypes, the domains with the highest h2 were 

quantitative laboratory measures (h2 = 0.799, 95% CI: [0.551,1.048], 7 out of 7 phenotypes 

reached FDR threshold) and cognitive (h2 = 0.594, 95% CI: [0.355, 0.834], 4 out of 5 

phenotypes reached FDR threshold) (Figure 2a). The lowest were connective tissue (h2 = 
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0.170, 95% CI: [0.108, 0.233], 2 out of 11 phenotypes reached FDR threshold) and 

environment (h2 = 0.211, 95% CI: [0.161, 0.260], 24 out of 45 phenotypes reached FDR 

threshold) (Figure 2a).

The functional domains with highest c2 were ophthalmological (c2 = 0.183, 95% CI: [0.147, 

0.218], 27 out of 42 phenotypes reached FDR threshold) and respiratory (c2 = 0.182, 95% 

CI: [0.151, 0.213], 34 out of 48 phenotypes reached FDR threshold) (Figure 2a). The lowest 

were reproduction (c2 = −0.073 95% CI: [−0.146, 0.000], 3 out of 18 phenotypes reached 

FDR threshold) and cognitive (c2 = −0.048, 95% CI: [−0.145, 0.049], 2 out of 5 phenotypes 

reached FDR threshold) (Figure 2a)

From all 560 phenotypes in this study, there were 294 phenotypes (52.5%) where c2 

followed the null distribution (pi0 statistic11) (Online Methods), consistent with a model 

where twin resemblance was solely due to additive genetic variance.

Cost and comorbidities have significant h2 and c2

We found that average monthly cost had both significant h2 > 0 and c2 > 0 (Figure 3b) in the 

twin pairs. Specifically, the estimate of h2 was 0.290 (95% CI: [0.241, 0.339]) and 0.433 

(95% CI: [0.390, 0.477]) for average monthly cost and number of PheWAS comorbidities, 

respectively. Estimates of c2 were comparable; c2 = 0.302, 95% CI: [0.271, 0.332] for 

average monthly cost and c2 = 0.241, 95% CI: [0.213, 0.268] for number of PheWAS 

comorbidities (Figure 3b). The same and opposite sex twin correlations (rtwinSS and rtwinOS) 

for number of PheWAS comorbidities (rtwinSS = 0.549, 95% CI: [0.543, 0.556], rtwinOS = 

0.458, 95% CI: [0.450, 0.465]) were slightly higher than average monthly claims cost 

(rtwinSS = 0.508, 95% CI: [0.501, 0.515], rtwinOS = 0.447, 95% CI: [0.439, 0.455]) (Figure 

3b).

Specific geocoded environmental factors

In the same model, we estimated the proportion of variance in a phenotype attributable to 

environmental risk factors (based on home zip code), including a socioeconomic status 

(SES) “index” (Supplementary Note) (varSES), median air quality index exposure (varAQI), 

and median monthly average temperature exposure (vartemp) in addition to h2 and c2. The 

variance components for environmental risk factors were modest compared to h2 and c2. For 

all phenotypes varSES = 0.002 (95% CI: [0.002, 0.002]), varAQI = 0.0001 (95% CI: [0.0003, 

0.0005), and vartemp = 0.001 (95% CI: [0.001, 0.001]), much smaller than the mean 

estimates of h2 and c2 described earlier (Supplementary Figure 5). Controlling for multiple 

hypotheses using an FDR threshold of 0.05 there were 145/560 phenotypes for varSES, 

36/560 phenotypes for varAQI, and 117/560 phenotypes for vartemp that passed FDR 

significance. Phenotypes with largest varSES were morbid obesity (varSES = 0.027, 95% CI: 

[0.014, 0.039]) and benign neoplasm of skin (varSES = 0.024, 95% CI: [0.022, 0.027]). 

Phenotypes with largest varAQI were Lyme disease (varAQI = 0.008, 95% CI: [0.006, 0.011]) 

and average monthly cost (varAQI = 0.006, 95% CI: [0.004, 0.009]). Phenotypes with largest 

vartemp were lead poisoning (vartemp = 0.039, 95% CI: [0.029, 0.048]) and influenza (vartemp 

= 0.036, 95% CI: [0.033, 0.039]) (Figure 2d-f).
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Comparison to published literature

We compared our estimates of h2 and c2 to a large meta-analysis of twin studies (MaTCH), 

containing 9,568 phenotypes from 5,169,879 twin pairs where monozygotic and dizygotic 

correlation were reported. The two major differences between CaTCH and MaTCH were 

CaTCH studied 38 infectious diseases compared to MaTCH and the CaTCH cohort was 

younger than most of the studies in MaTCH (Supplementary Note).

Comparing the CaTCH estimates to MaTCH estimates, we observed mean claims 

heritability (h2 = 0.315; (95% CI: [0.296, 0.334]) was smaller than the mean MaTCH 

estimate (h2 = 0.593, 95% CI: [0.577, 0.608]) (Figure 4a). Further, the mean CaTCH shared 

environment (c2 = 0.088, 95% CI: [0.074, 0.102]) was higher than the mean MaTCH 

estimate (c2 = 0.042, 95% CI: [0.028, 0.055]) (Figure 4b) 12. Comparing CaTCH h2 

estimates with MaTCH h2 estimates along functional domains, we observed overlap between 

the 95% CI from h2 CaTCH estimates and 95% CI from h2 MaTCH estimates for 7 out of 21 

functional domains, namely cognitive, endocrine, environment, hematological, infection, 

psychiatric, and reproduction functional domains (Figure 4a). For c2 the 95% CI from 

CaTCH estimates overlapped with the 95% CI from the MaTCH estimates for only the 

infection domain (Figure 4b). In the MaTCH analysis, 69.1% of phenotypes are consistent 

with a model where twin resemblance was due solely to additive genetic variance12 

compared to 52.5% of phenotypes in CaTCH.

While we observed differences in heritability between CaTCH and MaTCH for aggregate 

phenotypic categories, we observed concordance when comparing individual phenotypes. 

We compared our CaTCH estimates to published estimates from the literature on an 

individual phenotype basis (Supplementary Note). We found the correlation for 81 binary 

and quantitative phenotypes between CaTCH estimates and the published literature was 

high, r = 0.817 (95% CI: [0.493, 1.14]) (Figure 3a). We also found 67/81 (82.7%) of 

phenotypes to have overlapping 95% confidence intervals. Of the 81 phenotypes, 49/81 

(60.5%) were higher in the published literature.

Discussion

Here, we have used a large insurance claims dataset to systematically investigate the genetic 

and environmental contributions in phenotypic variation of 560 phenotypes, including 

specific environmental risk factors such as socioeconomic status, pollution exposure, and 

climate. Furthermore, we provide the first estimates of the contributions of genetics and 

environment in aggregate health cost and co-morbidity burden, important for both biological 

research and policy implementation. We also quantified the contribution of one’s genetic 

code and aspects of one’s zip code (socioeconomic status, climate, and air pollution) on the 

same scale of phenotypic variation for 551 disease-related phenotypes, by linking to external 

geographic databases.

A notable strength of our study was the creation of a large twin cohort. To the best of our 

knowledge, we amassed the largest twin cohort in the United States that is reflective of 

household, geographic, and medical service-based variation of the employed US population. 

The largest known US twin registries are the Mid-Atlantic Twin Registry (28,000 pairs) and 
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Michigan State Twin Study (15,924). The largest international twin registries are from 

Sweden (97,000) and Denmark (85,000)13. Our twin cohort is comparable in size to these 

large international twin registries. Although, unlike some of these registries, we lack 

zygosity status for these twin pairs. Further, because we are using insurance claims data, our 

claims datasets contained the full transactional history between all medical providers and the 

insurance company for a particular patient. This includes all ICD 9/10 billing codes sent 

from the medical provider to the insurance company in order to be reimbursed. We claim 

this provides a comprehensive view into a patient’s medical history. In contrast, electronic 

medical records (EMR), because they are a record of the medical examination process, may 

have deeper phenotypic information (e.g. laboratory notes, radiology reports, and x-ray 

images), but will have an incomplete medical history if the patient sees multiple medical 

providers.

Twin designs have lower sample size compared to other family-based designs but are better 

powered to estimate heritability14. However, leveraging the family-based design in a claims-

based cohort is not without disadvantages. First, a common issue in insurance data includes 

a limited observational time window to ascertain phenotype. This can lead to ascertainment 

bias in phenotypes when siblings are of different ages. This is further exacerbated with 

analysis including parents and children where, due to age of onset, the same phenotypic 

code may represent different disease subtypes4. Second, in a family design, it has been 

shown that estimates of h2 will be biased15 if all sources of familial environmental variation 

are unaccounted (e.g. spousal correlation and sibling correlation). Recent family-based 

studies attempted to estimate some of this familial environmental variation4,5; however, 

limitations remain, such as the lack of interpretability of multiple types of “shared 

environment.”4. In contrast, twin studies have a simpler design thereby allowing a single 

parameter (c2) to account for all shared environment. Third, claims data do not consider that 

non-biological relationships can also occur when using next of kin information or subscriber 

relationships. There is a possibility that ‘ascertained’ nuclear families may contain step-

children, adoptions, or half-siblings, however, this can be modeled using Census data and 

pedigree simulations4. By using both the inferred sibling relationship and that they must be 

born on the same day, we claim smaller chance of twins being biologically unrelated.

A major novelty of our analysis was the ability to compare variance components of specific 

environmental factors with standard measures used in family-based analysis such as 

heritability and shared environmental variance. We note that each twin pair has the same 

shared environment, but our analysis attempts to partition phenotypic variance further with 

several identified shared environmental factors (Online Methods, Eq. 7) which are common 

among groups of twin pairs. We believe partitioning the shared environment into identified 

environmental factors (indicators of local SES, air pollution, and climate) is akin to analysis 

in partitioning heritability among functional annotations2-4. We found that variance 

components due to specific environmental factors were significantly lower compared to h2 

and c2 overall and within each functional domain (Supplementary Figure 5). Part of the 

reason could be due to choices in how to assess exposure of the environmental risk variables 

for each particular twin as well as choices in discretizing these variables. In our analysis, we 

selected environmental variables based on an individual’s home residence postal code (zip 

code) versus individual-level exposure data, which may dilute the influence of these 

Lakhani et al. Page 7

Nat Genet. Author manuscript; available in PMC 2019 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variables on phenotypes. We are limited in our ability to answer (1) how many additional 

measured shared environmental or non-genetic factors contribute to phenotypic variation 

beyond geocoded variables and (2) our method requires as input discretized environmental 

factors. Furthermore, environmental factors may also influence phenotypes through 

prolonged exposure. In our study, we are underpowered to detect this signal due to the young 

age of our cohort. A natural extension of this research includes approaches to consider 

continuous environmental variables in these novel and large data streams.

Specific environmental factors played little role in variation of most phenotypes, but we 

found intriguing results for a few phenotypes. The phenotype with largest socioeconomic 

variance component was morbid obesity (varSES = 0.027, 95% CI: [0.014, 0.039]). For Lyme 

disease, the variance components of all three environmental risk factors passed FDR 

significance for the phenotype (varSES = 0.022, 95% CI: [0.015, 0.028], varAQI = 0.006, 95% 

CI: [0.004, 0.009], varSES = 0.028, 95% CI: [0.023, 0.033]). For lead poisoning, vartemp was 

FDR significant (vartemp = 0.029, 95% CI: [0.017, 0.042]).

In the United States, predictors of health care cost and chronically ill patients are of 

particular importance19. In a recent analysis20 of high-cost patients the researchers 

emphasize prediction of high cost patients is important, yet current prediction methods do 

not include any family history information. Our twin analysis concludes that 0.59 of 

variance for average monthly cost is explained by h2 and c2.

Compared to the published literature (as reported by MaTCH) the CaTCH cohort was both 

younger, and also has a different distribution of phenotypes. First, in MaTCH, monozygotic 

correlation, dizygotic correlation, heritability, and shared environmental variance all were 

smaller, on average, for phenotypes ascertained after adolescence12. When comparing h2 

estimates on an individual trait basis the correlation was high (r = 0.817, 95% CI: [0.493, 

1.14]). A prerequisite to our analysis is selection of phenotypes with a minimum prevalence 

threshold and removal of phenotypes with high gender imbalance. Second, we were able to 

estimate genetic and environmental variance in 38 infectious diseases, compared to only 8 

phenotypes in MaTCH12; on the other hand, phenotypes in psychiatric, metabolic, and 

cognitive domains accounted for 51% of all twin studies analyzed in MaTCH12. Such 

differences in both population and phenotypic selection possibly contribute to differences in 

estimates versus MaTCH (while still maintaining high correlation for h2 phenotypes on an 

individual trait basis), but there may be other methodological differences (such as lack of 

zygosity information) that may contribute to differences. Our procedure provides an 

opportunity to investigate phenotypes with large c2, such as lead poisoning and retinopathy 

of prematurity (See URLs) whereas many twin studies select phenotypes based on a prior 

belief of a genetic contribution.

Data on patients from health claims lack zygosity information that is typically ascertained in 

standard twin registries; however, by amassing a large number of non-twin sibling pairs from 

the same dataset, we found that the opposite sex twin correlation was close to sibling 

correlations. For our method to be internally valid, we make the following claims. First, we 

assume that phenotypic correlation of OS sex twin pairs (rtwinOS) is equivalent to dizygotic 

same sex twin pairs (rtwinDZSS). Second, we estimate the proportion of same sex twin pairs 
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are monozygotic by assuming opposite sex and same sex dizygotic twin pairs are equally 

likely (Online Methods,eq. 20). We tested the first claim by interrogating the concordance 

between same sex and opposite sex sibling correlations. We found rsibSS and rsibOS were 

highly correlated (r = 0.978, 95% CI: [0.974, 0.981]), and, on average, rsibSS was slightly 

higher than rsibOS (average rsibSS - rsibOS = 0.017) for the 560 phenotypes passing our 

filtering criterion (Supplementary Note) and for 23.5% of phenotypes rsibSS - rsibOS followed 

the null distribution. We conclude that, overall, rtwinOS is a proxy for rtwinDZSS. We note that 

rtwinOS is higher than rsibOS and rsibSS for most phenotypes, implying increased h2 and 

decreased c2 if rsibOS or rsibSS were substituted for rtwinOS for those traits. We claim that 

high correlation rsibSS and rsibOS is primarily due to two factors. First, our phenotypic 

selection procedure eliminated phenotypes with large imbalances of sex-specific prevalence. 

Second, we add in sex as a covariate (‘fixed-effect’) in order to adjust for the mean 

differences between males and females. If rtwinOS were replaced by rsibSS then for the 

majority of phenotypes the estimate of h2 would increase and c2 would decrease bringing up 

the possibility that the contribution of the environment may change when assessing siblings 

rather than twins. We also tested the assumption of using Weinberg’s Law and effect of IVF 

had little to no effect on h2/c2 estimates (Supplementary Note).

In our analysis, we ascertained twin pairs between the ages of 0 to 24. This selection 

criterion eliminated our ability to study late-onset diseases such as Parkinson’s and 

Alzheimer’s disease. As with any administrative dataset, there may be errors in 

ascertainment of phenotype; for example, doctors may not be sure whether a child has type 1 

diabetes or type 2 diabetes and therefore may bill for both diseases and therefore the 

individual may be ascertained as having both diseases. Such bias may be reduced by 

applying phenotyping algorithms (e.g. for diabetes21) for each phenotype; however, only a 

limited number of such algorithms exist.

In summary, our results provide a comprehensive picture of the contribution of genetics and 

the environment to a large number of phenotypes. We have also estimated the contribution of 

specific environmental risk factors in phenotype. Our estimates provide a useful baseline for 

determining the potential of further genetic and/or epidemiological research for a number of 

phenotypes of clinical relevance, applicable and complementary to precision medicine 

efforts, such as All of US1.

Online Methods

Study Population

We obtained our data from un-identifiable member claims data from Aetna Inc, a national 

health insurance company. The claims dataset contained the ICD 9/10 billing codes of 

44,859,462 members with an Aetna insurance plan from January 2008 to February 2016 

(Supplementary Figure 6a). This was a nationally representative dataset; 26,713 of 41,739 

US mail zip codes have at least 20 members. We extracted a twin and sibling cohort to 

estimate genetic and environmental contribution in 560 phenotypes (Supplementary Figure 

6e-k). The twin and sibling cohort focused on younger individuals born on or after 1985 

because, under current US health care law, they qualified as dependents on their parent’s 

insurance plans (Supplementary Figure 6b). In all of our analysis we selected members 
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enrolled for at least 36 consecutive months in order to have a sufficient period of time for the 

ascertainment of their phenotypes (Supplementary Figure 6b).

Twin and Sibling Cohort Creation

We created the twin cohort by extracting primary subscribers and their dependents. 

Specifically, a primary subscriber would add ‘dependents’ to his/her policy (approximately 

26.19% are sole subscribers) and dependent individuals were coded as ‘child’, ‘grandchild’, 

‘spouse’, ‘domestic partner’, ‘legal dependent’, and ‘student’. We ascertained family 

structure in this dataset using the relationship between the primary subscriber and child 

dependents (Supplementary Figure 6f). We restricted family size to, at most, 15 members 

living in the same zip code in order to reduce the chance multiple families are merged 

together (average family size is 3.98) (Supplementary Figure 6e). Once family units were 

created, we further extracted twins by comparing the birthdate of child subscribers that are 

linked to the same primary subscriber. We selected families where there is only one twin pair 

and eliminated children that are part of a triplet or greater because our estimation of h2 and 

c2 assumed twin pairs are independent and not part of an extended pedigree (Supplementary 

Figure 6g).

We created a sibling cohort as a basis for comparison to our twin cohort. Like the twin 

cohort, the sibling cohort utilized dependent information from the primary subscriber in 

order to determine sibling pairs (Supplementary Figure 6j). The sibling cohort also included 

families where there were at most 15 members, individuals must be born on or before 1985, 

individuals were enrolled as members for at least 36 months, and each individual had at least 

1 ICD9/10 code (Supplementary Figure 6b-d). The age difference between sibling pairs had 

to be at least 11 months and no more than 36 months (Supplementary Figure 6k). Also, for 

each family, a single sibling pair that meet these conditions was selected at random 

(Supplementary Figure 6k).

Comparison of Twin Cohort to National Population

We compare our twin cohort to the general population using American Community Survey 

Census data. In particular, we ascertained all twins that were members, for at least one year, 

between 2009-2013 and compared to the 2009-2013 American Community Survey (ACS) 

estimates. Using census data, we estimated a measure for socioeconomic status for each zip 

code called the depravity index, a measure widely used in epidemiological literature22 

(Supplementary Note). The depravity index is a measure of socioeconomic status for a zip 

code based on 7 census variables which were extracted from the 2009-2013 American 

Community Survey (See URLs). High depravity index values correspond to higher SES 

status and vice-versa. For all individuals in the 2009-2013 ACS we estimated their 

population density (log transform of number of people per square mile) and depravity index 

based on their home zip code and compare to the population density and depravity index of 

all twins, enrolled between 2009-2013, based on their home zip code. We observed that 

more twin pairs live in high population density areas compared to the general population 

(Figure 1b). The SES status of twin pairs, based on their home zip code, is slightly higher 

than the general US population (Figure 1c).
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Phenotype Ascertainment

The claims dataset contained all International Classification of Disease (ICD) version 9/10 

(hereafter ICD9/10 respectively) billing and diagnostic codes provided by the healthcare 

provider to the insurance company (Aetna, Inc) for transactional purposes while the 

individual was a subscriber to the health plan. In practice, many ICD9/10 codes may 

represent the same overarching phenotype, e.g. ICD 250.00 represents type 2 diabetes that is 

controlled, while 250.02 is type 2 diabetes that is uncontrolled. Therefore, we used PheWAS 

code groupings10. PheWAS codes are a way of combining ICD9 codes, used for phenotype-

wide association studies10. Multiple ICD9/10 codes are combined into a single “phenotype”. 

Specifically, an individual was identified as positively having a PheWAS phenotype if they 

had at least one ICD 9/10 code from the PheWAS code grouping e.g. ICD 9 codes 250.00 

and 250.02 both mapped to PheWAS code 250.2 type 2 diabetes. For rarer phenotypes, we 

utilized the groupings found in Blair, Rzhetsky et al.23 (we will collectively refer to these 

phenotypes as PheWAS codes). In total, we mapped Aetna subscriber ICD9/10 diagnostic 

codes to 1,900 PheWAS codes (Supplementary Figure 6c). PheWAS mappings were 

originally constructed using ICD9 codes, but the surveillance period for the insurance data 

spanned the transition from ICD9 to ICD10. In order to accommodate ICD10 codes, we 

utilized the United States Center for Disease Control and Prevention 2016 General 

Equivalence Mapping of ICD10 (see URLs) codes to ICD9 and subsequently to PheWAS 

codes.

For a subset of individuals, the claims dataset provided results of diagnostic clinical 

laboratory tests (hereafter called ‘lab test’) conducted during the individual’s medical care 

(Supplementary Figure 6c). Each lab test was identified by a LOINC code24. For only the 

twin cohort, we ascertained all lab tests where twin pairs were measured on the same day. In 

our analysis we included all laboratory tests where there were at least 2,000 twin pairs that 

match our criterion. The phenotypes we analyzed include common laboratory tests such as 

LDL cholesterol, HDL cholesterol, triglycerides, leukocyte counts, and hemoglobin counts. 

If a twin pair had multiple lab tests, then we randomly sampled a single lab test event for 

analysis.

Out of a total of 1,900 binary phenotypes, we removed phenotypes with low prevalence or 

where disparity in male and female prevalence was high (Supplementary Figure 6d) among 

twin pairs. In particular, for each phenotype, we imposed a filtering criterion where the ratio 

of male prevalence to female prevalence (or female to male prevalence) among twin pairs 

must be less than 5 (Supplementary Figure 6d). Also, only phenotypes with a prevalence of 

at least 0.3% were kept, resulting in phenotypes where at least 338 cases were expected and 

at least one concordant same sex (SS) and opposite sex (OS) pair allowing for stable 

estimation of h2 and c2, resulting in 551 binary phenotypes. In the case of the quantitative 

phenotypes, we analyzed lab value that had at least 2,000 twin pairs (Supplementary Figure 

6d). For the sibling pairs, we ascertained only the 551 binary phenotypes.

For the twin cohort, within the claims dataset, we utilized an opportunity to derive 

phenotypes based on aggregate claims, including the total number of PheWAS codes per 

individual (or, ‘comorbidities’), and the average monthly cost incurred per individual 

(hereafter called ‘average monthly cost’). The number of PheWAS codes was the number of 
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distinct PheWAS codes ascertained for a patient during the time of surveillance (at least 36 

months) and can be thought of as the total number of ‘co-morbidities’ coded for each 

individual. Average monthly cost was the total claim costs divided by the months that the 

individual was a member of this insurance company when the costs were incurred.

Specific Environmental Risk Factors

For each twin pair we ascertained their home zip code and linked to census data depravity 

index, daily air quality index data, and monthly average temperature data. The depravity 

index is a composite score of socioeconomic status for a zip code based on 7 variables from 

the 2009-2013 American Community Survey (Supplementary Note). The EPA used the air 

quality index (AQI) to summarize air pollution level in a particular location. The AQI has a 

range between 0 and 500. An AQI value between 0-50 is considered good air quality, 50-100 

is moderate air quality, and above 100 is considered unhealthy air quality. We downloaded 

all daily county-level AQI data provided by the EPA (see URLs) and estimated the median 

AQI level exposure for each twin pair based on the twin pairs dates of enrollment and closest 

county to their zip code (maximum distance of 30 km) (Figure 1d). We also ascertained all 

monthly average temperature data from sensors located throughout the United States from 

the National Atmospheric and Oceanic Administration (NOAA) (see URLs). For each twin 

pair, we found the closest NOAA sensor to their home zip code and extracted all monthly 

average temperature data based on their months of enrollment within the insurance claims 

dataset, then estimated the median monthly average temperature based on those values 

(Figure 1e). This linkage provided, for each twin pair, a quantitative measurement for 

median family income, median air quality index, and median monthly average temperature 

based on their home zip code. The quantitative value for each environmental risk factor was 

binned into quintiles based on the distribution of the quantitative value among the general 

US population (See Table 2 for the ranges and number of twin pairs in each quintile).

Variance Component Model for Twin Data

Estimation of heritability (h2), and shared environmental variance (c2) all rely on the 

estimation of various variance component parameters on the observed scale. Following the 

convention in Visscher et al.25, the variance component model can be written:

y = Xβ + ∑
i = 1

k
ui + e (2)

where y = 1 for individuals who had a PheWAS code and y = 0 for individuals who did not 

have a PheWAS code for a binary phenotype, y is a real valued inverse normal rank 

transformation of the lab test or utilization trait values26 for quantitative phenotypes, Xβ are 

fixed effects which were sex, months of enrollment, and age (average age during 

surveillance for PheWAS phenotypes and derived quantitative phenotypes or age of test for 

lab tests) in our model. The terms ui ∼ N 0, V i  were random effects used to estimate all 

variance components for this analysis and e is the error term.
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In the twin cohort, we used the variance component model to estimate h2, c2, and 

environmental risk random effects. See supplementary note for estimation of opposite sex 

and same sex sibling correlation (Supplementary Note). All twin estimates relied on the 

model

y = Xβ + upair + uextraSS + e (3)

where var(y) = Vpair + VextraSS + Ve. The random effect upair is common to a pair of both 

opposite sex (OS) and same sex (SS) twin pairs, while uextraSS is common to a pair of SS 

pairs but different for OS pairs, thus the covariance between individuals i and j in a pair is 

cov(yi, yj) = Vpair for OS pairs and cov(yi, yj) = Vpair + VextraSS for SS pairs. SS and OS 

variance components were estimated as follows:

V twinSS = V pair + VextraSS (4)

V twinOS = V pair (5)

V tot = V pair + VextraSS + Vres (6)

This model was extended to include environmental risk random effects uSES, uAQI, and utemp 

based on the quintiles (Table 2) for each environmental risk factor, written as follows:

y = Xβ + upair + uextraSS + uSES + uAQI + utemp + e (7)

The random effects upair and uextraSS are the same as in eq. 3, while the random effects uSES, 

uAQI, and utemp will be common to all individuals belonging to the same depravity index, 

AQI, or temperature quantile bin respectively.

Estimation of twin SS and OS correlation

We used variance components VtwinSS and VtwinOS to estimate h2 and c2 by first 

transforming them into correlation on the observed scale:

rtwinSS01 =
V twinSS

V tot
(8)
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rtwinOS01 =
V twinOS

V tot
(9)

Conversion of binary phenotypes to liability scale

In the case of quantitative (real-valued) phenotypes, we used correlations rtwinSS01 and 

rtwinOS01 on the observed scale to estimate h2 and c2, but in the case of binary phenotypes 

we transformed these correlations onto the liability scale. The transformation of correlation 

from the observed scale to the liability scale was estimated as follows (OS formulas are 

same as SS)27:

T = Φ−1 1 − K (10)

z = Φ T (11)

i = z
K (12)

EbtwinSS = K +
V twinSS

K (13)

T twinSS = Φ−1 1 − EbtwinSS (14)

rtwinSS =
T − T twinSS 1 − T2 − T twinSS

2 1 − T
i

i + T twinSS
2 i − T

(15)

K is the population prevalence for the phenotype (estimated from filtered population) and Φ 
was the standard normal distribution. The formulas for rtwinSS and rtwinOS accounted for the 

reduction of variance expected from the relatives of proband compared to the general 

population27.

Similarly, the variance components for environmental risk factors (varSES, varAQI, or 

vartemp) on the liability scale were estimated as follows (varenv for varenv = varSES, varAQI, 

and vartemp):
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Ebenv = K +
Venv

K (16)

Tenv = Φ−1 1 − Ebenv (17)

varenv =
T − Tenv 1 − T2 − Tenv

2 1 − T
i

i + Tenv
2 i − T

(18)

Estimation of Heritability and Shared Environmental Variance

In traditional twin studies, where zygosity of twins were known, the h2 and c2 of a 

phenotype were calculated using the monozygotic (MZ) twin correlation rtwinMZ and 

dizygotic (DZ) same sex twin correlation rtwinDZSS as follows28:

h2 = 2 * (rtwinMZ − rtwinDZSS) (19)

c2 = 2 * rtwinDZSS − rtwinMZ (20)

In a health administration dataset, the zygosity status of twins is not known. However, 

opposite sex twin pairs are dizygotic and same sex twin pairs are a mixture of monozygotic 

and dizygotic pairs. Assuming the probability of a DZ twin pair being same sex is 50% 

(Weinberg’s Rule29), we estimated the probability (p) of a pair being monozygotic given 

they are same sex is calculated as follows6,30,31:

p MZ = 1 − 2 * p OS = 1 − 2 *
NOS
NSS

(21)

p SS =
NSS
Nall

(22)

p = p(MZ |SS) = p MZ
p SS (23)
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where Nall was the total number of twin pairs, NOS was the number of OS pairs, and NSS 

was the number of SS pairs. Assuming rtwinOS was equal to rtwinDZSS and rtwinSS was a 

mixture of rtwinDZSS and rtwinMZ then h2 and c2 were estimated as follows:

rtwinOS = rtwinDZSS (24)

rtwinSS = p * rtwinMZ + 1 − p * rtwinDZSS (25)

h2 = 2
p * rtwinSS − rtwinOS (26)

c2 =
p + 1 * rtwinOS − rtwinSS

p (27)

We estimated standard errors for rtwinOS, rtwinSS, h2, c2, varSES, varAQI, and vartemp via 

bootstrap resampling (500 samples). In the analysis of binary phenotypes and derived 

quantitative phenotypes, which use the full twin cohort, the parameter p was 0.42. We 

estimated the parameter p for quantitative phenotypes, using eq. 22, based on the subset of 

twins that had that particular quantitative phenotype (Supplementary Note). The p estimates 

for quantitative phenotypes ranged from 0.513 to 0.572.

Multiple Comparisons

For all statistics (variance components h2, c2, varSES, varAQI, and vartemp and fixed effects 

βage and βsex ) we estimated p-values using a two-tail z-test statistic and we accounted for 

multiple hypothesis testing by controlling by estimating the False Discovery Rate (FDR). In 

particular, we used the Benjamini-Yekutieli32 method to estimate the FDR rate which 

assumes dependencies between phenotypes. We estimated FDR adjusted p-values for all 

statistics and report the number of phenotypes, for each statistic, that achieved FDR < 5%.

We fit all random effects models with the ‘lme4’ package in R33. We wrote our own 

bootstrapping procedure in order to estimate standard errors for all statistics presented in this 

paper. We used the p.adjust function in the base stats R package34 for FDR correction.

Matching of PheWAS Codes to Functional Domains from MaTCH

We sought to compare how h2 and c2 estimates compared to the published literature. To 

enhance comparison, we downloaded h2 and c2 estimates from a large and recent meta-

analysis of twin studies12. We mapped PheWAS codes into functional domains as 

determined by the MaTCH study12. Each functional domain constituted a subset of chapters 

and subchapter levels from either the International Classification of Functioning, Disability 
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and Health (ICF) or International Statistical Classification of Diseases and Related Health 

Problems (ICD-10). In the claims dataset, we mapped each PheWAS code to their 

constituent ICD9 code and then mapped again to the corresponding ICD10 chapters and 

subchapters. If the associated chapter or subchapter from a PheWAS code overlapped with a 

functional domain then we considered it part of the domain. We estimated the mean h2 and 

c2 for each domain with an inverse-variance weighting estimate. We also estimated the 

number of phenotypes that follow a model due to additive genetic variance and not non-

additive genetics (including dominance) or shared environmental variance, which was 

estimated by the number of phenotypes that follow 2rtwinDZSS = rtwinMZ. This was 

equivalent to the number of phenotypes that follow the null hypothesis (pi0 statistic11) c2 = 

0, which was directly estimated in our study.

Overall and functional domain values of h2 and c2 were calculated with the ‘metafor’35 R 

package by using the DerSimonian-Laird36 estimator to calculate estimates and standard 

errors. The pi0 statistic was estimated using the ‘qvalue’37 R package.

Comparison of h2 estimates to Published Literature

In our analysis, we compared h2 estimates from the published literature to h2 estimates from 

CaTCH (Supplementary Note). The correlation between CaTCH h2 estimates and published 

h2 estimates used a correlation estimator37 that also incorporated standard errors. We used 

jackknife resampling in order to estimate the standard error for this estimator, as suggested 

by the authors of this method37. We used jackknife resampling in order to estimate the 

standard errors for this estimator.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Geographic distribution of 56,396 twin pairs in CaTCH and example of environmental 
data aggregation on a zip code basis.
(a) Count of twin pairs in CaTCH for each state in the United States. (b) Distribution of log 

of population density for the entire United States and twin pairs. (c) Distribution of 

depravity index for the entire United States and twin pairs. (d) Time series for daily AQI for 

Mecklenburg county. Black lines represents years 2008 and 2014, respectively. (e) Time 

series for average monthly temperature for NOAA sensor closest to zip code 28210. Black 

lines represents years 2008 and 2014, respectively. (f) Distribution of median family income 
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distribution among residents of zip code 28210. Black line represents mean median income 

value. (g) Map of county, zip code, and closest NOAA sensor for hypothetical twin pair 

residing in zip code 28210. Background map image from OpenStreetMap licensed under 

Creative Commons Attribution-ShareAlike 2.0 license (CC BY-SA). (NOAA - National 

Oceanic and Atmospheric Administration; AQI - air quality index)
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Figure 2: Estimates of twin statistics across functional domains and individual basis for 56,396 
twin pairs in CaTCH among all 560 phenotypes.
(a) Barplot of meta-analytic estimates of rtwinOS, rtwinSS, h2, and c2 among all 560 

phenotypes and within functional domains for, error bars represent 95% CI. (b) - (f) Volcano 

plots for estimates of h2, c2, varSES, varAQI, and vartemp respectively along with labels for 

phenotypes with top p-values and large effect sizes for each estimate. Dashed red lines 

represents threshold for Benjamini-Yekutieli FDR adjusted p-values passing significance 

(p=0.05) for each estimate, respectively.
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Figure 3: Comparison of h2 estimates in CaTCH to published literature and estimates for cost 
and comorbidities in CaTCH.
(a) Scatterplot of published h2 estimates from 56,396 twin pairs in CaTCH versus h2 

estimates from 81 published studies, vertical and horizontal error bars are 95% CI for 

CaTCH and published estimates respectively, black line is line with slope 1 and intercept 0, 

blue line is line of best fit, and gray shaded region is 95% CI for line of best fit. (b) Barplot 

of estimates of h2, c2, rtwinOS, and rtwinSS for phenotypes Average Monthly Cost and 

Number of PheWAS comorbidities from 56,396 twin pairs, error bars represent 95% CI.
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Figure 4: Comparison of h2/c2 estimates from 56,396 twin pairs among 560 phenotypes in 
CaTCH to 5,169,880 twin pairs among 9,568 phenotypes in MaTCH (Supplementary Table 1).
(a) Meta-analytic h2 estimates for all phenotypes and functional domains between CaTCH 

and MaTCH, error bars represent 95% CI. (b) Meta-analytic c2 estimates for all phenotypes 

and functional domains between MaTCH and CaTCH, error bars represent 95% CI.
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Table 1:

Characteristic of ascertained insurance claims twin and sibling cohorts

All Pairs FF Pairs MM Pairs MF Pairs

Number of twin pairs 56,396 17,835 17,919 20,642

Number of sibling pairs 724,513 171,095 187,033 366,385

Median age at start of surveillance (IQR) (twin) 7 (3-13) 8 (3-14) 8 (3-13) 7 (2-12)

Median age at start of surveillance (IQR) (sibling) 7 (2-12) 7 (2-12) 7 (2-12) 7 (2-12)

Median months of surveillance (IQR) (twin) 60 (45-84) 60 (45-84) 60 (45-84) 60 (45-84)

Median months of surveillance (IQR) (sibling) 61 (46-84) 61 (46-84) 61 (46-84) 61 (46-84)

Median number of ICD Codes (IQR) (twin) 23 (12-42) 23 (12-41) 22 (11-41) 24 (13-44)

Median number of ICD Codes (IQR) (sibling) 23 (12-42) 24 (13-42) 22 (11-41) 23 (12-42)

Distinct number of zip codes (twin) 11,666 7,302 7,235 7,466

Distinct number of zip codes (sibling) 24,703 17,324 17,606 21,112

Surveillance period 01/01/2008 - 02/01/2016

FF Pairs, twin pairs where both individuals are female; MM Pairs, twin pairs where both individuals are male; MF pairs, twin pairs where one 
individual is male and the other is female.
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Table 2:

Quintiles for each environmental variance component

Quintile Depravity Index
(PC1 Component)

Number of
Pairs

Air Quality Index
(AQI Scale)

Number of
Pairs

Average Temperature
(degrees Fahrenheit)

Number of
Pairs

1 [ −7.516, −1.212) 2,652 [10.580, 33.048) 8,397 [26.190, 50.879) 7,282

2 [ −1.212, −0.210) 3,892 [33.048, 37.319) 12,211 [50.879, 55.241) 12,948

3 [ −0.210, 0.666) 6,098 [37.319, 41.324) 12,420 [55.241, 60.517) 10,777

4 [0.666, 1.915) 10,838 [41.324, 45.602) 11,525 [60.517, 66.437) 7,844

5 [1.915, 9.601) 24,653 [45.602, 62.721) 3,580 [66.437, 81.295) 9,282
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