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Objectives: Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) was first
reported in remote regions of Western Australia (WA) in 1992 and is now the predominant MRSA iso-
lated in the State. To gain insights into the emergence of CA-MRSA, 2146 people living in 11 remote
WA communities were screened for colonization with S. aureus.

Methods: Antibiogram analysis, contour-clamped homogeneous electric field electrophoresis, multi-
locus sequence typing, Panton–Valentine leucocidin determinant detection and accessory genetic
regulator typing were performed to characterize the isolates. MRSA was further characterized by
staphylococcal cassette chromosome mec typing.

Results: The S. aureus population consisted of 13 clonal complexes and two Singleton lineages
together with 56 sporadic isolates. Five lineages contained MRSA; however, these were not the pre-
dominant methicillin-susceptible S. aureus (MSSA) lineages. There was greater diversity amongst the
MSSA while the MRSA appeared to have emerged clonally following acquisition of the staphylococcal
cassette chromosome mec. Three MRSA lineages were considered to have been endemic in the com-
munities and have subsequently become predominant lineages of CA-MRSA in the wider WA commu-
nity. People colonized with MSSA tended to harbour clones of a different genetic lineage at each
anatomical site while people colonized with MRSA tended to harbour clones of the same lineage at
each site. Overall, the isolates were resistant to few antimicrobials.

Conclusions: Although the evidence suggests that in WA CA-MRSA strains arose in remote commu-
nities and have now disseminated into the wider community, there is no evidence that they arose from
the predominant MSSA clones in these communities.
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Introduction

Staphylococcus aureus is one of the most successful pandemic
bacterial pathogens. It is also a ubiquitous inhabitant of human
microbiological flora, with up to 30% of humans persistently colo-
nized asymptomatically, and up to 70% intermittently colonized.1

Initially MRSA was found almost exclusively in hospitals
where it became known as healthcare-associated MRSA
(HA-MRSA). However, it has now emerged in communities
around the world where it is known as community-associated
MRSA (CA-MRSA). The earliest reports of CA-MRSA involved
infections in people from isolated Indigenous2 or disadvantaged
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communities,3 suggesting that these were the primary environ-
ments from which it emerged. In Australia the first CA-MRSA,
colloquially known as ‘WA MRSA’, was reported in 1993 in
infected Indigenous people from remote communities in the
sparsely populated Kimberley region of Western Australia
(WA).2 This was followed by reports of CA-MRSA from
Indigenous people in the Northern Territory,4 Queensland5 and
Central Australia.6

CA-MRSA is responsible for a wide spectrum of infections,
from uncomplicated skin and soft tissue infections through to
necrotizing pneumonia, necrotizing fasciitis and bacteraemia,
which can be fatal in otherwise healthy people. This virulence
has been attributed to the possession of virulence determinants,
such as the Panton–Valentine leucocidin (PVL).7 Apart from
isolated instances, CA-MRSA was resistant to few non-b-lactam
antibiotics and did not initially spread in hospitals. However, the
epidemiology of CA-MRSA is changing and multiply resistant
CA-MRSA spreading in hospitals, communities and internation-
ally has been reported.8,9

To prevent the transmission of MRSA in WA hospitals,
MRSA was made a notifiable organism and a ‘search and destroy’
policy was introduced in 1982. As part of this policy all isolates
are sent to a reference centre for typing and storage.10 Although
this strategy has not prevented the spread of CA-MRSA, which
now comprises 77.5% of MRSA isolated in WA,11 it has enabled
its spread to be closely monitored.. Surveillance data have shown
that between 1983 and 2002 the notification rates for CA-MRSA
in WA increased .50- and 70-fold in rural and metropolitan
health regions, respectively.12,13

CA-MRSA utilizes mobile elements and single nucleotide
polymorphisms to establish local and geographic niches14 and is
thought to emerge when a locally prevalent strain of methicillin-
susceptible S. aureus (MSSA) acquires a staphylococcal cassette
chromosome mec (SCCmec) element. The remote WA
Indigenous communities provide an ideal environment in which
to study the natural genetics of S. aureus and CA-MRSA as the
population has limited contact with healthcare institutions and
therefore HA-MRSA. Consequently, surveys of populations from
remote WA communities were undertaken between 1995 and
2003. The aims of this study were to determine the colonization
dynamics and genetics of S. aureus in the communities and to
gain insights into the emergence of CA-MRSA.

Materials and methods

Ethics approval for the screening of Indigenous communities was
obtained from the WA Aboriginal Health Information and Ethics

Committee and the Curtin University of Technology Human
Research Ethics Committee. Prior to each survey a senior member
of the team travelled to each community to obtain permission from
the community Elders and Councils. Remote region healthcare pro-
fessionals and Indigenous aides provided valuable support.

Although participation in the survey was voluntary, on most
occasions participation was near to 100%. Written informed consent
was obtained from each adult individual, parent or guardian.

Communities

The inhabitants of 11 major remote communities from three geo-
graphical regions of WA, the Kimberley, the Pilbara and the
Goldfields, were screened for S. aureus colonization (Figure 1). The

community population sizes were between 60 and 400 people.
Small fringe or satellite communities with populations of between
9 and 51 were also screened and their results were combined with
results for the larger community in their geographical proximity.

The communities were 700–2000 km from the capital city Perth
and their geographical regions accounted for 6.4% of the total WA
population. While for each episode of community screening inhabi-
tants were screened only once, it was not possible to determine the
number of times an individual was screened over the 9 year duration

of the surveys due to ethical constraints and the nomadic nature of
the population. Therefore, each screening episode has been enumer-
ated as a set of screening swabs only.

Screening

Overall, 2146 sets of screening swabs were collected; 924 from
three Kimberley communities, 258 from a Pilbara community and

964 from seven Goldfields communities. Community 2 was screened
in June (dry season) and December (wet season) of 1995, commu-
nities 3 and 4 were screened in 1995, 1999 and 2003, and commu-
nity 7 was screened in 1999 and 2003. The remaining communities,
1, 5, 6, 8, 9, 10 and 11, were screened once in 1995, 1996, 1998,

1999, 2001, 2001 and 2001, respectively (Figure 1).
The anterior nares, throat and, when applicable, up to two skin

lesions were swabbed with moistened cotton wool swabs. Swabs
were placed in Amies transport medium (Interpath services, Pty Ltd,
West Heidelberg, Australia) and transported in insulated containers

by road and air to the laboratory in Perth. All swabs were processed
within 48 h of collection.

Laboratory processing

Swabs were plated onto mannitol salt agar (MSA) (Oxoid,
Basingstoke, UK) for detection of S. aureus and methicillin aztreonam
mannitol salt agar (MAMSA)15 or methicillin MSA (MMSA) (MSA

containing 4 mg of methicillin/mL) for detection of MRSA. All plates
were incubated at 358C. The MAMSA plates were read after 20 h incu-
bation and the MSA and MMSA plates were read after 48 h incu-
bation. Mannitol-fermenting colonies were cultured overnight in
brain–heart infusion broth (Gibco Diagnostics, Gaithersberg, MD,

USA) and identified as S. aureus by the tube coagulase test.

Susceptibility testing

Antimicrobial susceptibility testing was performed by disc diffusion
on Mueller–Hinton agar (MHA) (BBL, Becton Dickinson,
Cockeysville, MD, USA) using Oxoid discs according to the method
of the CLSI (formerly the NCCLS),16 with fusidic acid susceptibility

criteria as previously published.17 All staphylococci were initially
tested for methicillin resistance using a 1 mg oxacillin disc (Oxoid,
Basingstoke, UK). MRSA was confirmed by detection of the mecA
and nuc genes in a multiplex PCR.18 Following multilocus sequence
typing (MLST) a representative MSSA from each sequence type (ST)

was screened by PCR to confirm the absence of the mecA gene.19

For all MRSA an 18-antimicrobial antibiogram was performed
using the following drugs: gentamicin, kanamycin, neomycin, strep-
tomycin, erythromycin, lincomycin, chloramphenicol, minocycline,
tetracycline, trimethoprim, sulfamethoxazole, fusidic acid, rifampi-

cin, novobiocin, vancomycin, mupirocin, spectinomycin and cipro-
floxacin. Erythromycin-inducible resistance to lincomycin was
determined by the D-test.20 For MSSA isolated after and including
1998 an eight-antimicrobial antibiogram was performed (erythromy-
cin, tetracycline, trimethoprim, mupirocin, gentamicin,
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ciprofloxacin, rifampicin and fusidic acid). The 18-antimicrobial

antibiogram and penicillin susceptibility testing were performed on
representatives of all MSSA STs. All S. aureus that had an
18-antimicrobial antibiogram were tested for b-lactamase production
using Nitrocefin discs according to the instructions of the manufac-
turer (BBL, Becton Dickinson, Franklin Lakes, NJ, USA).

Resistograms were performed as previously described21 on all
MRSA, and all MSSA isolated after 1998.

Contour-clamped homogeneous electric field electrophoresis

Contour-clamped homogeneous electric field electrophoresis
(CHEF) was performed as previously described22 on all

isolates. Chromosomal banding patterns were scanned with a

Fluor-S MultiImager and analysed by MultiAnalyst/PC (Bio-Rad
Laboratories, Hercules, CA, USA) with a 0.8% band position tol-
erance. S. aureus isolates with �80% similarity were considered
to belong to the same CHEF pulsotype; sub-pulsotypes were
assigned according to the sub-clustering of patterns within the

�80% similarity threshold. S. aureus NCTC8325 was used as the
size standard. MRSA CHEF pattern pulsotypes were designated
as previously published23 and MSSA CHEF pattern pulsotypes
were designated numerically. Isolates with pulsotypes containing
fewer than three isolates were considered to be sporadic and,

apart from PVL and antibiogram testing, were not investigated
further in this study.
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MLST

MLST was performed as previously described.24 All MRSA pulso-

types and sub-pulsotypes and all MSSA pulsotypes and sub-
pulsotypes that contained three or more isolates were characterized
by MLST. The sequences were submitted to http://mlst.net where an
allelic profile was generated and an ST assigned. Clonal complex

(CC) was determined using the eBURST V3 algorithm at the same
website. Clones that diverged at no more than one of the seven
MLST loci were considered to belong to the same CC. Double
locus variants (dlvs) were included if the linking single locus
variant (slv) was present in the MLST database. An S. aureus clone

was defined by its ST. Isolates that belonged to the same CC were
considered to be of the same genetic lineage.

SCC mec typing

SCCmec typing was performed using previously published primers
that identified the class of mec complex and type of cassette
chromosome recombinase (ccr) complex encoded on the element.25

Structural architecture was determined with the multiplex PCR
primers of Zhang et al.26 and extra primers were utilized to test for

SCCmec type IV subtypes a, b, c and d.27 SCCmec nomenclature
was as proposed by the International Working Group on the
Classification of Staphylococcal Cassette Chromosome (IWG-SCC)
Elements. Briefly, the structural type is indicated by Roman
numerals with a lower case Arabic letter indicating the sub-type and

the ccr and mec complexes are indicated by an Arabic number and
letter, respectively, in parentheses.

PVL

The PVL determinant was detected using previously published
primers28 and confirmed by sequencing.

Accessory genetic regulator (agr)

agr was typed using either the ArrayTube System according to the
manufacturer’s instructions (Clondiag, Jena, Germany) or primers
from previous studies.29,30

Arginine catabolic mobile element (ACME)

The ACME was detected by PCR as described previously.31

Criteria for testing

A colony was selected from each plate from each anatomical site. If
there was more than one morphological colony type a representative
of each was tested. If these isolates were subsequently found to be
different by the typing methods they were included in the study as

individual strains.

Results

Of the 2146 sets of screening swabs, 663 sets grew MSSA and
153 grew MRSA. Table 1 presents the sites that were positive
for MSSA or MRSA for each set of screening swabs. Of the
1172 S. aureus isolated, 933 were MSSA and 239 were MRSA.
Overall, 762 isolates of S. aureus consisting of 523 MSSA
(from 454 sets of screening swabs) and 239 MRSA (from 153
sets of screening swabs) were characterized in this study.

There was a variation in the ratio of MSSA and MRSA
carriage between the three geographical regions. MRSA com-
prised 4%, 24% and 32% of total S. aureus from the Kimberley,
Pilbara and Goldfields regions, respectively.

There were differences in the colonization sites of MSSA and
MRSA. MSSA was grown from 249 (37.6%), 283 (42.7%) and
305 (46%) anterior nares, throat and skin lesion swabs, respect-
ively, while 79 (51.6%), 56 (36.6%) and 59 (38.6%) anterior
nares, throat and skin lesion swabs, respectively, grew MRSA.
For MSSA the highest rates of colonization were from skin
lesions followed by throat and for MRSA they were anterior
nares followed by skin lesions. When considering the overall
positive screening sites, the highest recovery of MSSA per
screening set was from throat and/or skin lesion swabs (79%)
while the highest recovery of MRSA was from anterior nares
and/or skin lesion swabs (80.4%). Of 59 sets of screening swabs
in which MRSA was cultured from skin lesions, 15 (25%)
demonstrated co-colonization with MRSA in the anterior nares.

Genetic lineages

Using CHEF the 523 MSSA were classified into 84 pulsotypes,
of which 27 pulsotypes had three or more isolates (Table 2).
The 239 MRSA were classified into five pulsotypes (Table 3).
These five pulsotypes also contained MSSA, with MRSA pulso-
types WA-1, -2, -3, -4 and -5 corresponding to MSSA pulso-
types MSSA1, 5, 3, 14 and 26, respectively (Tables 2 and 3).
Overall 92.7% (467 MSSA and 239 MRSA) of the 762
S. aureus clustered into 27 pulsotypes, from which 21 STs
belonging to 13 CCs and two Singleton lineages were identified
by MLST (Table 4). Eight lineages (CC15, CC121, CC101,
CC25, CC20, CC398, CC12 and CC188) and the two Singleton
lineages (Singleton 93 and Singleton 760) contained MSSA
only. Five lineages (CC1, CC5, CC88, CC45 and CC8) con-
tained MSSA and MRSA. CC5 contained two MRSA clones,
ST5-MRSA-IVa (2B) and ST73-MRSA-IVa (2B) (Figure 2) and
CC45 contained two MRSA clones, ST45-MRSA-V (5C2) and
ST45-MRSA-IVa (2B).

Seven previously undescribed STs were identified: Singleton
ST760-MSSA; the CC1 clones ST761-MSSA and ST762-MSSA;
the CC5 clone ST73-MSSA; the CC15 clone ST832-MSSA; the
CC398 clone ST813-MSSA; and ST833-MSSA from CC188.
Together with the previously reported ST73-MRSA-IVa (2B)32

and ST93-MRSA-IVa (2B), which are rarely found outside

Table 1. Sites of isolation of MSSA and MRSA from people in

remote WA communities

Site of isolation MSSA MRSA

Anterior nares only 139 49

Anterior nares and throat 56 15

Anterior nares and skin lesions 33 9

Anterior nares, throat and skin lesions 21 6

Throat only 163 30

Throat and skin lesions 43 5

Skin lesions only 208 39

Total positive screening sets 663 153
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Australia, these isolates appear to represent geographically
limited clones that have probably emerged in Australia.

The lineages of S. aureus that contained the most isolates
were CC1 (18%), CC5 (17.5%), Singleton 93 (14.7%), CC15
(10.6%), CC45 (8.4%), CC88 (6.4%) and CC121 (4.6%). There
was no evidence of the emergence of new dominant clones of
S. aureus during the period of the surveys.

MSSA. The most prevalent MSSA were ST93-MSSA from the
Singleton 93 lineage (21.4%), ST15-MSSA from CC15 (14.9%),
ST73-MSSA from CC5 (10.1%) and ST45-MSSA from CC45
(5.9%) (Table 4).

Four lineages of MSSA (CC1, CC5, CC15 and CC45) con-
tained slvs, with CC1 also containing a dlv (ST761-MSSA)
(Table 2). ST760-MSSA was an ST1-MSSA dlv; however,

because the linking allele could not be found in the MLST data-
base it was classified as a new Singleton lineage.

Some of the MSSA lineages showed divergence of CHEF
pattern pulsotypes (Table 2). CC15 had diversified into five
unrelated pulsotypes, of which one was the slv ST832-MSSA.
CC5 contained three pulsotypes representing each of the CC5
clones, ST73-MSSA, ST5-MSSA and ST6-MSSA. There were
four unrelated pulsotypes in CC45, one of them being the slv
ST508-MSSA clone. CC121 had three pulsotypes, and CC20
had two. The remaining lineages each had one CHEF pulsotype.
CC1 isolates also belonged to only one pulsotype; however,
there were three sub-pulsotypes that represented the clones
ST1-MSSA, ST761-MSSA and ST762-MSSA. ST6-MSSA
(CC5) and ST12-MSSA (CC12), although genetically unrelated
by MLST, both had the same MSSA12 pulsotype.

Table 2. Characteristics of representative methicillin-susceptible S. aureus from remote WA communities

Isolate Resistance/Bla Pulsotype CC ST, allelic profile PVL agr type

W17S PCd Blaþ MSSA6 S 93, 6-64-44-2-43-55-51 þ III

N126S PELICd Blaþ MSSA6 S 93, 6-64-44-2-43-55-51 þ III

C229T Cd Blaþ MSSA6 S 93, 6-64-44-2-43-55-51 þ III

W20S s Bla2 MSSA2 15 15, 13-13-1-1-12-11-13 2 II

WL90T PELICd Blaþ MSSA25 15 15, 13-13-1-1-12-11-13 2 II

N133T PCCd Blaþ MSSA29 15 15, 13-13-1-1-12-11-13 2 II

W16S PCd Blaþ MSSA25 15 15, 13-13-1-1-12-11-13 2 II

P3S PECd Blaþ MSSA20 15 15, 13-13-1-1-12-11-13 2 II

J27T PCd Blaþ MSSA30 15 15, 13-13-1-1-12-11-13 2 II

K43T PCd Blaþ MSSA22 15 832, 13-13-111-1-12-11-13 2 II

WL6N PCd Blaþ MSSA27 5 5, 1-4-1-4-12-1-10 2 II

K185N PCd Blaþ MSSA3 5 73, 1-4-27-4-12-1-10 2 II

K153N PCdEb Blaþ MSSA3 5 73, 1-4-27-4-12-1-10 2 II

WL36N P Blaþ MSSA3 5 73, 1-4-27-4-12-1-10 2 II

K112L PCd Blaþ MSSA12 5 6, 12-4-1-4-12-1-3 2 I

Y15S PFCd Blaþ MSSA1a 1 1, 1-1-1-1-1-1-1 2 III

Y74T PCd Blaþ MSSA1b 1 761, 1-1-104-1-1-103-1 2 NT

K45S PECdHg Blaþ MSSA1c 1 762, 1-1-104-1-1-1-1 2 III

K120L PCd Blaþ MSSA1c 1 762, 1-1-104-1-1-1-1 2 III

C38S PTCd Blaþ MSSA11 S 760, 10-1-1-1-1-102-1 2 III

C49N PCd Blaþ MSSA14 45 45, 10-14-8-6-10-3-2 2 I

C54N s Bla2 MSSA14 45 45, 10-14-8-6-10-3-2 2 I

C30S P Blaþ MSSA21 45 45, 10-14-8-6-10-3-2 2 IV

M11N PCd Blaþ MSSA17 45 45, 10-14-8-6-10-3-2 2 I

K102N PCd Blaþ MSSA28 45 508, 10-40-8-6-10-3-2 2 I

K25S PCd Blaþ MSSA7 121 121, 6-5-6-2-7-14-5 þ IV

Y1S P Blaþ MSSA23 121 121, 6-5-6-2-7-14-5 2 IV

WB94E P Blaþ MSSA19 121 121, 6-5-6-2-7-14-5 2 IV

W67N PCd Blaþ MSSA5 88 78, 22-1-14-23-12-53-31 2 III

W91T PCd Blaþ MSSA4 101 101, 3-1-14-15-11-19-3 2 I

W11T PCd Blaþ MSSA33 25 25, 4-1-4-1-5-5-4 2 I

C57S PCd Blaþ MSSA13 20 20, 4-9-1-8-1-10-8 2 I

J107N PCd Blaþ MSSA24 20 20, 4-9-1-8-1-10-8 – I

N91T P Blaþ MSSA26 8 8, 3-3-1-1-4-4-3 2 I

W101S s Bla2 MSSA10 329 813, 3-37-19-2-20-26-32 2 I

C33S PCd Blaþ MSSA12 12 12, 1-3-1-8-11-5-11 2 II

W36S PCd Blaþ MSSA8 188 833, 100-1-1-8-12-1-1 2 III

Bla, b-lactamase; C, chloramphenicol; Cd, cadmium acetate; E, erythromycin; Eb, ethidium bromide; F, Fusidic acid; Hg, mercuric chloride; L, lincomycin;
P, penicillin; T, tetracycline; superscript I, inducible; superscript þ, positive; superscript 2, negative; s, susceptible to all antimicrobials tested; S, singleton
lineage; NT, non-typeable.
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MRSA. When compared with MSSA there was less diversity in
the MRSA lineages. Five lineages were identified in the commu-
nities screened in the 1995 surveys. No additional lineages were
found in these or the other communities in subsequent surveys.
ST1-MRSA-IVa (2B) was the most frequently isolated MRSA
clone (42.7%), followed by ST73-MRSA-IVa (2B) (17.6%),
ST5-MRSA-IVa (2B) (13.4%), ST45-MRSA-V (5C2) and
ST45-MRSA-IVa (2B) (12.5%), ST78-MRSA-IVa (2B) (12.5%)
and ST8-MRSA-IVa (2B) (1.3%) (Tables 3 and 4).

The five MRSA lineages corresponded to five CHEF pulso-
types that have previously been identified.11,33 Four of the pulso-
types had sub-pulsotypes. Although all lineages containing
MRSA also contained MSSA, they were not the largest MSSA
lineages (Table 4). The CC1 MRSA clone, ST1-MRSA-IVa
(2B), formed 42.7% of all MRSA while the methicillin-
susceptible counterpart, ST1-MSSA, formed only 1.3% of the
MSSA population. Similarly, in CC5, ST5-MRSA-IVa (2B) was
13.4% of the MRSAs while ST5-MSSA formed only 0.6% of
the MSSAs and ST78-MRSA-IVa (2B) was 12.5% of the
MRSA while the corresponding MSSA was only 3.6% of the
MSSA population. MRSAs were not found in the largest MSSA
lineages of Singleton 93 and CC15.

Antimicrobial resistance

MSSA. A full 18-antimicrobial antibiogram and penicillin sus-
ceptibility testing was performed on 37 MSSA clones represen-
tative of the lineages. All were resistant to penicillin and
produced b-lactamase except for three, which were fully sus-
ceptible (Table 2). Two isolates expressed an MLSBi resistance
phenotype (inducible resistance to erythromycin and
erythromycin-inducible resistance to lincomycin), an additional

Table 3. Characteristics of representative MRSA from remote WA communities

Isolate Resistance and Bla Pulsotype CC ST, allelic profile SCCmec PVL agr type ACME

WBG8287 ELIFCd Blaþ WA-1 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

WBG8375 ELICd Blaþ WA-1a 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

WBG9409 ELIFCd Blaþ WA-1c 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

WBG8361 ELICd Blaþ WA-1d 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

M28S Cd Blaþ WA-1f 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

WBG8366 ELI Blaþ WA-2 88 78, 22-1-14-23-12-53-31 IVa (2B) 2 III 2

WL106N EL Blaþ WA-2a 88 78, 22-1-14-23-12-53-31 IVa (2B) 2 III 2

C219N Cd Blaþ WA-2c 88 78, 22-1-14-23-12-53-31 IVa (2B) 2 III 2

C8N ELICd Blaþ WA-3 5 5, 1-4-1-4-12-1-10 IVa (2B) 2 II 2

WBG8381 s Bla2 WA-3a 5 5, 1-4-1-4-12-1-10 IVa (2B) 2 II 2

WB43S ELI Blaþ WA-3b 5 73, 1-27-1-4-12-1-10 IVa (2B) 2 NT 2

WL36N Cd Bla2 WA-3b 5 73, 1-27-1-4-12-1-10 IVa (2B) 2 II 2

WBG8379 ELICd Blaþ WA-3c 5 5, 1-4-1-4-12-1-10 IVa (2B) 2 II 2

WB101N ELI Blaþ WA-3h 5 5, 1-4-1-4-12-1-10 IVa (2B) 2 II 2

WBG8404 CdAs Blaþ WA-4 45 45, 10-14-8-6-10-3-2 45 V (5C2) 2 Ia 2

WBG8399 CdAs Blaþ WA-4a 45 45, 10-14-8-6-10-3-2 45 V (5C2) 2 I 2

WBG8355 CdAs Blaþ WA-4b 45 45, 10-14-8-6-10-3-2 45 IVa (2B) 2 I 2

WBG7583 ELITCd Blaþ WA-5 8 8, 3-3-1-1-4-4-3 IVa (2B) 2 I 2

As, sodium arsenate; Bla, b-lactamase; Cd, cadmium acetate; E, erythromycin; F, fusidic acid; L, lincomycin; superscript I, inducible; superscript þ, positive;
superscript 2, negative; s, susceptible to all antimicrobials tested; NT, non-typeable.

Table 4. Genetic lineages of S. aureus present in remote WA

communities

Genetic lineage,

CC and ST MRSA number (%) MSSA number (%)

Singleton (93) and 93 112 (21.4)

15 and 15 78 (14.9)

15 and 832 3 (0.6)

5 and 5 32 (13.4) 3 (0.6)

5 and 73 42 (17.6) 53 (10.1)

5 and 6 3 (0.6)

1 and 1 102 (42.7) 7 (1.3)

1 and 761 7 (1.3)

1 and 762 21 (4)

Singleton (760) and 760 19 (3.6)

45 and 45 30 (12.5) 31 (5.9)

45 and 508 3 (0.6)

121 and 121 35 (6.7)

88 and 78 30 (12.5) 19 (3.6)

101 and 101 15 (2.8)

25 and 25 16 (3.1)

20 and 20 13 (2.5)

8 and 8 3 (1.3) 16 (3.1)

398 and 813 5 (1)

12 and 12 4 (0.8)

188 and 833 4 (0.8)

Sporadic 56 (10.7)

Totals 239 (100) 523 (100)
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isolate had constitutive erythromycin resistance and another was
chloramphenicol resistant.

An eight-antimicrobial antibiogram was performed on 363
isolates. Eighty-three (22.9%) were fully susceptible to all anti-
microbials; 134 (36.9%) were erythromycin resistant, six (1.7%)
were fusidic acid resistant, 4 (1.1%) were gentamicin resistant, 6
(1.7%) were trimethoprim resistant and 9 (2.5%) were tetra-
cycline resistant.

A resistogram was performed on 423 MSSA. Of these, 254
(60%) were cadmium resistant, 4 were arsenate resistant, 1 was
mercuric chloride resistant, 1 was mercuric chloride and phenyl
mercuric acetate resistant, and 4 were ethidium bromide resist-
ant. There were no associations between antimicrobial resistance
profile and genetic lineage.

MRSA. All except two of the 239 MRSA isolates were addition-
ally resistant to fewer than two antibiotic classes and therefore
non-multi-resistant.10 Fifty-nine (24.7%) of the isolates were
fusidic acid resistant, all of which were ST1-MRSA-IVa (2B).
Within CC1, 59 (57.8%) of the 102 MRSA isolates were fusidic
acid resistant. One hundred and thirty three isolates (55.6%),
including isolates from ST1-MRSA-IVa (2B), ST78-MRSA-IVa
(2B), ST5-MRSA-IVa (2B) and ST73-MRSA-IVa (2B), were ery-
thromycin resistant, four (1.7%) isolates, two from ST5-MRSA-
IVa (2B) and one each from ST45-MRSA-V (5C2) and
ST8-MRSA-IVa (2B), were mupirocin resistant and three (1.3%),
two from ST8-MRSA-IVa (2B) and one ST1-MRSA-IVa (2B)
were tetracycline resistant. All except two of the representative
MRSA (WBG8381 and WL36N) produced b-lactamase (Table 3).

The most prevalent MRSA lineage was also resistant to the
most antibiotics. Forty-two of the ST1-MRSA-IVa (2B) isolates
that were fusidic acid resistant also expressed the MLSBi resist-
ance phenotype; one of these was additionally tetracycline resist-
ant and therefore was multi-resistant by definition.10 The other

multi-resistant isolate was an ST45-MRSA-V (5C2) skin lesion
isolate that had the MLSBi resistance phenotype as well as being
gentamicin, kanamycin and mupirocin resistant. Interestingly,
the individual who harboured this clone also harboured
ST45-MRSA-V (5C2) isolates from the anterior nares and throat
that were susceptible to all antibiotics except the b-lactams.

All except 10 of the MRSA (95.8%) were cadmium resistant
and 26 (10.9%) were arsenate resistant. Arsenate resistance was
exclusively linked with ST45-MRSA-V (5C2) and
ST45-MRSA-IVa (2B) clones.

PVL

At least one representative isolate from all MSSA and MRSA
CHEF pulsotypes and sub-pulsotypes was tested for the presence
of the PVL determinant. Two lineages of MSSA harboured the
determinant; seven of eight ST93-MSSA tested were found to
carry PVL and of three ST121-MSSA tested one carried the
determinant (Table 2). No MRSA carried PVL.

agr and ACME

The agr type was determined on representative clones and
revealed four major agr types in the S. aureus isolates (Tables 3
and 4). Five lineages (CC101, CC25, CC20, CC329 and CC8)
were agr I, two (CC15 and CC12) were agr II, five (Singleton
93, CC1, Singleton 760, CC88 and CC188) were agr III, and
one lineage (CC121) was type IV. CC5 isolates were agr II
except for a ST6-MSSA clone that was type I. CC45 had
members in agr types I, Ia and IV. Two isolates (WB43S and
Y74T) were non-typeable.

MSSA clones from all agr groups were present; however, no
agr type IV MRSA was found. The PVL-positive clones
ST93-MSSA and ST121-MSSA belonged to agr groups III and
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Figure 2. Distribution of MSSA and MRSA amongst the genetic lineages of S. aureus present in remote WA communities. Brackets indicate clones that
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IV, respectively. There was no correlation between site of colo-
nization and agr type, and clones with both the same and differ-
ent agr types colonized the same individual and/or sites (not
shown).

Representative MRSA were tested for the presence of the
ACME and none encoded the element.

Geographical distribution

There were local differences in the S. aureus clones present in
the geographical regions (Figure 3). ST1 was the predominant
clone in the Goldfields region and ST93 and ST73 were predo-
minant in Kimberley and Pilbara. Thirteen of the 21 clones (STs
1, 6, 8, 15, 20, 25, 45, 73, 78, 93, 121, 760 and 762) were found
in all geographical regions.

The MRSA clones ST1-MRSA-IVa (2B), ST78-MRSA-IVa
(2B) and ST45-MRSA-V (5C2) were found in all regions,
ST5-MRSA-IVa (2B) and ST45-MRSA-IVa (2B) were found
only in the Goldfields, and ST8-MRSA-IVa (2B) was found
only in the Kimberley region. The most prevalent MRSA clone
in the Goldfields was ST1-MRSA-IVa (2B) (47%) followed by
ST73-MRSA-IVa (2B) (18%). Similarly, in the Pilbara region
the prevalent MRSA clones were ST1-MRSA-IVa (2B) (32%)
and ST73-MRSA-IVa (2B) (26%), while in Kimberley the pre-
dominant clone was ST45-MRSA-V (5C2) (62.5%).

Clones ST1-MRSA-IVa (2B), ST78-MRSA-IVa (2B),
ST5-MRSA-IVa (2B) and ST73-MRSA-IVa (2B) were found in
all years of the surveys and were considered to be endemic in
the communities. The ST8-MRSA-IVa (2B), ST45-MRSA-V
(5C2) and ST45-MRSA-IVa (2B) clones were not found sub-
sequent to 1998.

Genetics of colonization

There was no apparent correlation between ST and site of iso-
lation (not shown).

People harboured clones belonging to a diversity of genetic
lineages at the same or multiple sites. MRSA and MSSA were
found together in 79 sets of screening swabs; all clones from 30
of these were characterized. No person was found to have
MRSA and MSSA of the same genetic lineage at either the
same or different sites. Two hundred and fifty-seven (12%) sets

of screening swabs had MSSA at more than one site. Of 56 with
characterized clones at multiple sites, only 12 (21%) had clones
of the same genetic lineage at all sites and 44 (79%) had a
different lineage at each site. Two sets of screening swabs that
yielded MSSA at three sites had isolates of a different genetic
lineage at each site.

In contrast to MSSA, of 39 sets of screening swabs where
MRSA was found at multiple sites, 36 (92%) had clones of the
same genetic lineage at all sites with only three (8%) harbouring
MRSA of different lineages.

Discussion

Population studies of S. aureus thus far have identified five main
genotypic clusters, CC5, CC8, CC22, CC30 and CC45, as
forming the essential genetic backgrounds of S. aureus, with
differences occurring principally in the local prevalence of the
genotypes and the presence of minor clones.34 – 36 Although
these studies have been from Europe and the USA, a study by
Melles et al.34 performed in Indonesia, which has prehistoric
links with remote WA, reported a similar S. aureus population
structure to that of Europe and the USA. This study, however,
reveals that the population structure of S. aureus in the geo-
graphically remote regions of WA is different. This difference is
probably a consequence of the geographic and cultural isolation
of the remote populations of WA; however, it has had an impor-
tant influence on the epidemiology of MRSA in the entire WA
community.

From a genetically diverse background consisting essentially
of 21 clones of S. aureus, seven clones of MRSA belonging to
five CCs were found. Four of the clones were considered to have
been endemic in the communities and have subsequently
become the most prevalent CA-MRSA clones in the wider WA
community.23 State-wide surveillance has revealed that in
December 2006, ST1-MRSA-IVa (2B), ST78-MRSA-IVa (2B)
and the CC5 clones [ST73-MRSA-IVa (2B) and ST5-MRSA-
IVa (2B)] comprised 56.7%, 30.5% and 8.9% of clinical and
surveillance CA-MRSA in WA, respectively. The CC45 clones
[ST45-MRSA-V (5C2) and ST45-MRSA-IVa (2B)], and ST8-
MRSA-IVa (2B), which were not found in the remote commu-
nities after 1998, formed only 1.9% and 0.8%, respectively, of
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clinical and surveillance CA-MRSA in WA in 200611 suggesting
that they are not as well adapted to the WA community
environment.

The MRSA did not belong to the most prevalent MSSA
lineages, yet, with the exception of ST8-MRSA-IVa (2B), they
formed the greater proportion of isolates present in the lineage to
which they belonged, suggesting that an advantage was gained by
acquisition of the SCCmec element. It would appear, however,
that only a limited number of clones acquired and maintained the
SCCmec element, even though b-lactamase-stable b-lactams
were widely used empirically in the communities. The clonal
structure of MRSA and the small amount of genetic diversity
when compared with MSSA indicate not only the more recent
emergence of MRSA, but also that dissemination of MRSA has
probably occurred along clonal lines by well-adapted community
clones that could support the SCCmec element.

The most prevalent MSSA lineage was the PVL-positive
Singleton 93 clone ST93-MSSA, which has been rarely found
outside Australia. No Singleton 93 MRSA was found during the
period of the surveys. PVL-positive ST93-MRSA-IVa (2B), also
known as the Queensland clone, however, is an important
Australian CA-MRSA that was originally found in a Caucasian
population in Queensland in 2000 and has been reported in
Indigenous people from Queensland5,37 and the Northern
Territory.38 It is interesting that in an environment of high
b-lactam use a methicillin-resistant variant of ST93-MSSA was
not found in WA during these surveys.

S. aureus isolates from most of the lineages were found at all
sites tested. The highest recovery of MSSA of 42.6% was from
the throat while for MRSA the highest recovery of 51.6% was
from the anterior nares. Although the anterior nares is the pre-
ferred screening site for population studies, in this study many
isolates of S. aureus would have been missed if the throat and
skin lesions had not also been swabbed. It has been established
previously that there is a high incidence of skin pathology
associated with S. aureus in remote Australian communities38

and the recovery figures in this study are clearly influenced by
the high numbers of skin lesions found amongst the survey
participants.

The clonal nature of MRSA and the tendency for people car-
rying MRSA at multiple sites to harbour clones of the same
genetic lineage as opposed to those with MSSA, who tended to
have different lineages at each site, indicates that MRSA in the
WA remote communities are well-adapted colonizers that could
possibly displace MSSA as asymptomatic commensal organ-
isms. Furthermore, unless the use of b-lactamase-stable anti-
biotics is curtailed they could become the predominant
colonizing organisms in the communities.

Very few remote region S. aureus isolates were resistant to
multiple antimicrobials; however, the potential for the emer-
gence of resistance was indicated by the presence of several anti-
microbial resistance determinants amongst the population. In
addition to the SCCmec element, determinants for resistance to
penicillin, fusidic acid, MLSBi, erythromycin, tetracycline, gen-
tamicin, kanamycin, mupirocin, trimethoprim and chlorampheni-
col were present.

The resistance determinants for b-lactamase production,
MLSBi, mupirocin and trimethoprim in remote WA community
MRSA are plasmid borne,33,39 and other studies have shown that
those for gentamicin and kanamycin are on a transposon while
those for erythromycin, tetracycline and chloramphenicol are on

plasmids. In view of the increased isolation rates of CA-MRSA
in clinical specimens in WA it would be instructive to assess the
current status of CA-MRSA in the remote communities to deter-
mine if there is a need to control the local use of antibiotics.
Such control could be predicated upon the known resistance
determinants in the S. aureus populations of the communities. It
is imperative that careful antibiotic management guidelines are
established and administered in the communities to prevent
CA-MRSA acquiring additional resistance determinants and
spreading further. The importance of this was indicated from
results (not shown) from communities 4 and 5. When these com-
munities were initially screened the prevalence of MRSA was
43% and 22%, respectively. As a consequence, non-b-lactam
antibiotics replaced the empirical administration of b-lactam
antibiotics for S. aureus infections and re-screening of the com-
munities four years later revealed that the prevalence of MRSA
had dropped to 11% and 7%, respectively.
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