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We have compared the performance of two different penalty choices for a penalized-likelihood sinogram-restoration strategy we
have been developing. One is a quadratic penalty we have employed previously and the other is a new median-based penalty. We
compared the approaches to a noniterative adaptive filter that loosely but not explicitly models data statistics. We found that the
two approaches produced similar resolution-variance tradeoffs to each other and that they outperformed the adaptive filter in the
low-dose regime, which suggests that the particular choice of penalty in our approach may be less important than the fact that we
are explicitly modeling data statistics at all. Since the quadratic penalty allows for derivation of an algorithm that is guaranteed to
monotonically increase the penalized-likelihood objective function, we find it to be preferable to the median-based penalty.
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1. INTRODUCTION

We have recently developed penalized-likelihood approaches
to the problems of sinogram smoothing and sinogram resto-
ration in computed tomography [1–4], with a particular eye
to the low-dose regime being considered for screening stud-
ies for lung and colon cancer [5–9]. In both cases, we assume
that the statistics of each detector measurement are given
by the sum of a compound Poisson term, representing the
photon counting statistics for polychromatic photons, and a
Gaussian term, representing electronic noise. In the case of
sinogram restoration, we generalize the measurement model
to include blurring coefficients representing sinogram degra-
dations such as off-focal radiation, detector afterglow, and
detector crosstalk [2, 4]. From the noisy, degraded measure-
ments, we then seek to estimate a set of “ideal,” undegraded
line integrals by iteratively maximizing an objective function
comprising a sum of a simple Poisson likelihood (an approx-
imation to the measurement statistics assumed above) and a
roughness penalty. The estimated line integrals can then be
fed into an existing analytic reconstruction algorithm, such
as those typically implemented in hardware on commercial
CT scanners. The hope is that this iterative sinogram-domain
approach would provide some of the statistical advantages of
fully iterative approaches to image reconstruction at a lower
computational cost.

In our previous studies of the smoothing and restora-
tion approaches, we have made use of a quadratic rough-
ness penalty applied in the line integral (log) domain to
the difference between a given sample in sinogram space
and its four adjoining neighbors, that is, between a given
detector channel and its two neighboring channels (we as-
sumed a single-row detector), as well as to its own read-
ing at the preceding and following view angles. While the
approaches performed better in resolution-variance stud-
ies at low doses than did Hsieh’s noniterative adaptive
trimmed mean (ATM) filter [10], the ATM filter was sur-
prisingly effective at reducing the influence of a small num-
ber of very noisy measurements without unduly compro-
mising resolution. The ATM filter is only applied to mea-
surements whose signal strength falls below a certain thresh-
old, and it entails replacing the value in question with the
trimmed mean of the values in a neighborhood of the sino-
gram around the measurement in question. The trimmed
mean filter is a median-like filter based on order statis-
tics, and it varies adaptively between applying a true me-
dian filter and a simple boxcar filter, depending on the
signal level. The relatively strong performance of this fil-
ter suggested that it would be worthwhile to explore the
use of a median-based roughness penalty in the context of
the sinogram smoothing and restoration methods we have
developed.
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The use of median-based roughness penalties in fully it-
erative penalized-likelihood image reconstruction was pio-
neered by Alenius et al., who referred to them as median root
priors (MRPs) [11, 12]. Unfortunately, it does not appear to
be possible to derive an iterative algorithm that is guaranteed
to monotonically increase an objective function based on the
MRP of Alenius et al. However, they derive a heuristic up-
date equation, based on Green’s one-step-late (OSL) strategy
[13], that does not necessarily correspond to the maximiza-
tion of a predefined objective function, but that does yield
good results in practice.

In this work, we explore the use of a standard MRP
penalty like those of Alenius et al. in the context of our sino-
gram-restoration approach and we make use of the heuris-
tic, OSL strategy to derive the iterative update. We compare
the images qualitatively and quantitatively to those obtained
by use of our method with quadratic roughness penalties, as
well as to those obtained by use of Hsieh’s ATM filter.

2. METHODS

2.1. Measurement model

We assume that the CT scan produces a set of measurements
that are represented as a one-dimensional (1D) vector ymeas,
with elements ymeas

i , i = 1, . . . ,Ny , whereNy is the total num-
ber of measurements in the scan, and the index i denotes a
particular attenuation line through the patient (i.e., a specific
combination of detector channel, detector row, and projec-
tion angle).

To review the model, we have been employing [2–4], we
assume, when we simulate data, that each ymeas

i is a realiza-
tion of a random variable Ymeas

i whose statistics are described
by

Ymeas
i

=Gi
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EmPoisson
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with the various terms in this equation defined in Table 1.
The compound Poisson distribution in the first term has
been derived and validated by Whiting [14] and rederived by
Elbakri and Fessler [15, 16]. We assume that Ii, Gi, di, σ2

i , the

average energy Ei ≡
∑M

m=1 Em λ(i)
m of the incident beam, and

an energy-averaged and normalized estimated scatter term

si ≡ (1/Ei)
∑M

m=1 Em s
(i)
m are all known.

Our goal is to estimate a set of ideal, “monochromatic”
attenuation line integrals:

l(mono)
i ≡

∫

Li
μ
(

x,Er
)
dl, (2)

i = 1, . . . ,Ny , at some reference energy Er (usually Ei), from
the set of measurements ymeas

i , i = 1, . . . ,Ny . These estimated

line integrals can then be input to a standard analytic recon-
struction algorithm as mentioned above.

Our strategy for estimating the line integrals entails max-
imizing a penalized-likelihood objective function. Because
the model of (1) does not yield a tractable likelihood, we ap-
proximate it by defining a vector y of new adjusted measure-
ments with elements

yi ≡
[(

ymeas
i − di
EiGi

)
+
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i E
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+

, (3)

where [x]+ is x for positive x and zero otherwise, that are
realizations of random variables Yi which we assume are ap-
proximately Poisson-distributed:

Yi ∼ Poisson

{ Ny∑
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where

l
(poly)
j = f j

(
l(mono)
j

)
, (5)

with f j(l) being an empirically determined function, typi-
cally polynomial, that adequately captures the effect of beam
hardening in slices that do not contain substantial amounts
of bone [17]. Our strategy is then to estimate the vector l(poly),

with elements l
(poly)
j , from the vector of adjusted measure-

ments y, since the needed l(mono)
i can then be obtained by

inverting (5). For simplicity, we drop the (poly) superscripts
from l(poly) in what follows.

2.2. Quadratic penalty approach

Our general strategy thus far [2–4] has been to maximize a
penalized-likelihood objective function

Φ(l; y) ≡ L(l; y)− βR(l), (6)

where

L(l; y) =
NY∑

i=1

yi log

[ Ny∑
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I jbi je
−l j + ri

]
−
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(7)

is the Poisson log-likelihood for the random variables of (4)

and where we have defined ri ≡ si + σ2
i /(G

2
i E

2
i ).

The roughness penalty R(l) can be expressed in a general
form as

R(l) =
K∑

k=1

ψk

( Ny∑

j=1

tk j l j

)
, (8)

given by Fessler [18], where ψk is a potential function that as-
signs a cost to theK combinations of attenuation line integral

values represented by the linear combinations
∑Ny

j=1 tk j l j .
Our quadratic penalty approach entails choosing ψk(t) =

ωkt2/2 and constructing the tk j to create differences of a sino-
gram sample with its horizontal and vertical neighbors, with
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Table 1: Definition of terms in (1).

Variable Meaning

Gi Detector gain

Em Energy of mth spectral bin

bi j Degradation coefficients

Ii Number of incident photons along ith attenuation line

λ(i)
m Probability of a photon incident on ith attenuation line belonging to mth spectral bin

Li Designates ith attenuation line

s(i)m Number of scattered photons of energy Em contributing to measurement i

μ(x,E) Energy-dependent attenuation map, with x being spatial coordinate in patient

di Dark current in ith measurement

σ2
i Electronic noise in ith measurement

ωk = 1/2 for those neighbors. This is equivalent to

R(l) = 1
4

Ny∑

j=1

∑

k∈N j

(
l j − lk

)2
, (9)

where N j denotes the neighborhood comprising the 4 near-
est horizontal and vertical neighbors of measurement j.

We have derived an algorithm that generates a sequence
of estimates of l that are guaranteed to increase the objec-
tive function of (6) by making use of the optimization trans-
fer principal [18], in which at each iteration one defines a
surrogate to the likelihood function, such that the vector of
line integrals maximizing this surrogate is guaranteed to have
a higher penalized likelihood than the previous vector esti-
mate. The resulting update is

l(n+1)
j =

[
l(n)
j − nj + β
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i=1 tk j tkiωkl

(n)
i
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, (10)

where the notation l(n)
j denotes the estimate of l j after the nth

iteration. Here,
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where

ġi(x) = yi/x − 1, vj ≡
K∑

k=1

|tki|tkωk, with tk ≡
Ny∑

i=1

|tki|,
(12)

and the c(n)
j are the curvatures of paraboloidal surrogates

constructed to give rise to an overall, easy-to-maximize
quadratic surrogate to the objective function. One choice for
the curvatures that guarantee monotonicity is

c(n)
j = I j

Ny∑

i=1

bi j , (13)

although in practice we make use of a different set of curva-
tures that do not guarantee monotonicity but that in practice
lead to faster convergence [19].

2.3. Median penalty

For the median penalty approach, we employ a more heuris-
tic approach based on producing a sequence of estimates
that, in the absence of a penalty, would yield a maximum-
likelihood estimate, but that incorporates a penalty term in
each iteration that discourages deviations from the local me-
dian of the last iteration. This is consistent with the approach
of Alenius et al. in fully iterative reconstruction [11, 12].
Specifically, the update is defined as

l(n+1)
j = arg max

l j>0

{
S
(
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where S(l, l(n)) is a surrogate to the log likelihood to be de-
scribed below and

R(med)(l, m̂(n)) ≡ 1
2
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is the median penalty, with
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)
(16)

denoting the median of the values of l(n) in some neighbor-
hood Nk around value k.

The surrogate S(l, l(n)) is defined as
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−l(n)

k + ri, (19)
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Figure 1: Illustration of the numerical ellipse phantom used for resolution-noise studies.

and gi(x) ≡ yi log x − x. This surrogate satisfies both
S(l, l(n)) ≤ L(l), ∀l j ≥ 0 and S(l(n), l(n)) = L(l(n)), and thus
in the absence of the penalty term, finding the l maximizing
this surrogate necessarily increases the likelihood [4].

Substituting (17) and (15) into (14), our update is given
by
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j = arg max
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We can solve for the maximum by setting the derivative with
respect to l j equal to zero. Doing so yields
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Solving for l j yields the update
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3. RESULTS

3.1. Qualitative results

To compare the two penalties to each other as well as to the
ATM filter, we simulated projections of a numerical ellipse
phantom shown in Figure 1 that we have used previously and
that is modeled on the physical phantom employed by Hsieh
[10]. We computed a sinogram of 1024 angles × 1024 bins
of extent 0.5 mm at the isocenter with a source-to-isocenter
distance of 540.0 mm. We simulated the data according to
the forward model of (1) with discretization of a realistic
CT spectrum into 1 keV bins. We assumed that the phantom
was water-equivalent except for the three circular structures,
which we assumed to be bone.

We simulated two exposure levels: a clinically typical
Ii = 2.5 × 106 and a low-dose level Ii = 2.5 × 105. We chose
Gi = 3.57 × 10−3 pA/keV, such that GiEi = 0.25 pA/quanta

for Ei = 70 keV, and σ2
i = 10.0 pA2 for all i. We included

the effects of off-focal radiation in the simulation by con-
volving with kernels having 13 nonzero values arrayed diag-
onally with slope −2 in discrete sinogram space. The cen-
tral value (corresponding to the zero point of the kernel)
had relative value 1.0 and the six values on either side had
relative value 0.02 (these thirteen values were normalized so
that their sum was 1.0). We found through simulations with
water-equivalent phantoms that the beam-hardening effect
of the simulated tube spectrum was well represented as a
second-order polynomial f (l) = l − 0.007l2.

We reconstructed images by means of four different ap-
proaches.

(1) Hanning. Simple discrete deconvolution of the effect
of off-focal radiation, followed by beam-hardening
correction and fan-beam filtered backprojection
(FFBP) reconstruction with a Hanning filter of vary-
ing cutoffs.

(2) ATM. Presmoothing of data by means of the ATM fil-
ter, followed by simple discrete deconvolution of the
effect of off-focal radiation, beam-hardening correc-
tion, and reconstruction by FFBP with an unapodized
ramp filter. The ATM filter was implemented with cut-
off parameter λ = 75.0 pA and baseline parameter
δ = 0.05 pA, as in [10] by Hsieh, and with the filter
length varying from 3 to 19.

(3) Quadratic. Penalized-likelihood sinogram restoration
using the quadratic neighborhood penalty followed
by beam-hardening correction and reconstruction by
FFBP with an unapodized ramp filter. The smoothing
parameter β was varied from 0.01 to 50.

(4) Median. Penalized-likelihood sinogram restoration
using the quadratic neighborhood penalty followed
by beam-hardening correction and reconstruction by
FFBP with an unapodized ramp filter. The smoothing
parameter β was varied from 0.01 to 50. The size of the
neighborhood used in median calculation was 3× 3.

Figure 2 shows typical results of these reconstructions, where
we have selected values of the smoothing parameters for
the ATM and penalized-likelihood images that give approxi-
mately matched resolution at the center insert and approxi-
mately matched noise levels at the right insert, based on the
resolution-variance results to be described below. It can be
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Figure 2: The left column illustrates reconstructions by FFBP employing a Hanning filter with cutoff 0.8 times the Nyquist frequency. The
second column illustrates reconstructions by FFBP after sinogram smoothing by the ATM filter method and off-focal radiation deconvolu-
tion. The third column illustrates reconstructions by FFBP after sinogram restoration by the quadratic penalty method. The final column
illustrates reconstructions by FFBP after sinogram restoration by the median penalty method. Exposures are listed at left. The window width
is 400 and the level is 40.

seen that the noise level in the low-dose data leads to severe
streaking artifacts in the Hanning filter reconstruction and
that these are suppressed by the approaches under consider-
ation, more so for the penalized-likelihood approaches than
for the ATM approach. The results all appear to perform sim-
ilarly at the higher-dose level. These qualitative impressions
were explored quantitatively by use of resolution-variance
studies.

3.2. Resolution-variance tradeoffs

To characterize resolution, we determined the local edge-
spread function at the central and right high-attenuation in-
serts. The vertical profiles through these structures have pro-
files that are well fit by error functions parametrized by width
σb which implies that the effective blurring kernel is Gaus-
sian with standard deviation σb. We employ the FWHM of
the Gaussian, 2.35 σb, as our measure of resolution. To ob-
tain an accurate fit, we performed targeted reconstructions of
the central and right high-attenuation inserts with 0.25 mm
pixel size from 10 different noise realizations. We then av-
eraged the reconstructions together to obtain relatively low-
noise profiles on which to perform the fitting. We charac-
terized noise by calculating the average standard deviation
of the pixel values in circular regions of interest (ROIs) of
diameter 16.0 mm placed adjacent to, but not overlapping,
the central and right high-attenuation inserts. We then plot-
ted the resulting noise measure versus the resolution measure
for the same location. Images reconstructed after smoothing
with different values of the smoothing parameters α or filter
length β provide different combinations of such values and
allowed us to sweep out a resolution-noise curve.

The results are given in Figure 3, where it can be seen
that at the low-dose level, the two penalized-likelihood-
based approaches both outperform the ATM filter in terms
of resolution-noise performance. They perform very simi-
larly to each other, with perhaps a slight advantage to the

quadratic penalty. At high-dose levels, the approaches all per-
form relatively similarly.

4. CONCLUSIONS

We have compared two different penalty choices for a penal-
ized-likelihood sinogram-restoration strategy we have been
developing, one is a quadratic penalty we have employed pre-
viously and the other is a median-based penalty. We com-
pared the approaches to a noniterative adaptive filter that
loosely but not explicitly models data statistics. We found
that the two approaches produced very similar resolution-
variance tradeoffs to each other and that they outperformed
the ATM filter in the low-dose regime, which suggests that
the particular choice of penalty in our approach may be less
important than the fact that we are explicitly modeling data
statistics at all.

It is not possible to conclude, of course, that the penal-
ized-likelihood approaches would outperform any noniter-
ative adaptive filter. In generating the resolution-variance
tradeoffs for the ATM filter, we made use of the parameters
λ and δ given by Hsieh in describing the filter in [10] and
varied the filter length parameter β. The filter length β is the
most natural parameter to vary in sweeping out resolution-
variance curves, but it is possible that further adjusting the
parameters λ and δ could further improve the achievable
tradeoffs. In particular, it is possible that the version of the
ATM filter implemented on GE scanners has been optimized
beyond what was presented in [10].

Since the quadratic penalty allows for derivation of a
monotonic algorithm guaranteed to increase the likelihood
function while the median filter approach offers no such
guarantee, we find it to be preferable to the median-based
penalty. However, it might be worthwhile to explore the
new class of median-like prior proposed by Hsiao et al. that
does indeed involve maximization or minimization of a joint
objective function involving the image of interest and an
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Figure 3: Resolution-noise tradeoffs for exposures 2.5× 105 and 2.5× 106 at the center and right circular inserts in the ellipse phantom for
the three approaches under consideration.

auxiliary field derived from the local medians of the image
[20]. Another possibility for future work would be to explore
a penalty that uses Hsieh’s ATM filter as an OSL prior much
as the median prior was used here.
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