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It is difficult for stroke patients with flaccid paralysis to receive passive rehabilitation
training. Therefore, virtual rehabilitation technology that integrates the motor imagery
brain-computer interface and virtual reality technology has been applied to the field
of stroke rehabilitation and has evolved into a physical rehabilitation training method.
This virtual rehabilitation technology can enhance the initiative and adaptability of
patient rehabilitation. To maximize the deep activation of the subjects motor nerves and
accelerate the remodeling mechanism of motor nerve function, this study designed a
brain-computer interface rehabilitation training strategy using different virtual scenes,
including static scenes, dynamic scenes, and VR scenes. Including static scenes,
dynamic scenes, and VR scenes. We compared and analyzed the degree of neural
activation and the recognition rate of motor imagery in stroke patients after motor
imagery training using stimulation of different virtual scenes, The results show that under
the three scenarios, The order of degree of neural activation and the recognition rate
of motor imagery from high to low is: VR scenes, dynamic scenes, static scenes. This
paper provided the research basis for a virtual rehabilitation strategy that could integrate
the motor imagery brain-computer interface and virtual reality technology.

Keywords: brain-computer interface, motor imagery, virtual reality, neural activation, virtual rehabilitation

INTRODUCTION

The brain-computer interface (BCI) is a direct communication and control channel established
between the human brain and computer or other electronic devices (Wolpaw et al., 2002). Through
this channel, people can express ideas or manipulate equipment directly through the brain without
any language or action, which can effectively enhance the ability of patients with severe physical
disabilities to communicate with the outside world or to control the external environment to
improve the quality of life of patients (Ren et al., 2004). Virtual reality (VR) technology creates
a virtual world through the use of a new computer system, allowing the experiencer to integrate
into the virtual environment and achieve mutual interaction. In addition to being used in the
gaming industry, VR also can help stroke patients with flaccid paralysis perform purposeful
training in a virtual environment, thereby improving the effect of rehabilitation training. Motor
imagery (MI) is defined as the cognitive activity in which a subject imagines a movement without
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actually performing the movement (Vries and Mulder, 2007),
and it is a common application paradigm in the field of brain-
computer interface research (Mattia et al., 2012). This method
realizes communication and control with external devices by
imaging body movements (Xu et al., 2013).

Motor imagery brain-computer interface (MI-BCI) is a type
of BCI that recognizes the patient’s motor imagery intention
by guiding the patient to perform motor imagery based on
motor imagery therapy (Clark et al., 2019). It can be used to
effectively remodel the central nervous system in patients with
motor dysfunction (Guger et al., 2017). VR technology can
provide patients with a more immersive training environment
(Ren et al., 2020), help patients perform motor imagery more
accurately (Bayliss and Ballard, 2000), and generate more easily
identifiable electroencephalography (EEG) signals (Li et al.,
2018). Remsik et al. (2016) reviewed 17 independent MI-BCI
stroke rehabilitation studies, and they found that 16 produced
significant treatment effects. Studies have shown that both motor
imagery and actual movement can activate bilateral premotor
areas (Pfurtscheller and Neuper, 2001), parietal lobes, basal
ganglia, and cerebellum. Studies (Pfurtscheller and Neuper, 1997)
also have shown that stroke patients can perform motor imagery
to partially activate the damaged motor network (Fumanal-
Idocin et al., 2021). In addition, studies have found that
the rehabilitation treatment model combining BCI and VR
technology is suitable for people suffering from stroke (Varsehi
and Firoozabadi, 2021), depression, addiction and other diseases
(Takenaka et al., 2021). VR-guided action offers the advantages of
intuitive and specific actions and a strong sense of substitution
(Velasquez-Martinez et al., 2020). Well-designed scene feedback
can produce neural activation (Vourvopoulos et al., 2015).

Rehabilitation training strategies based on VR and MI-
BCI have the following limitations (Benitez-Andonegui et al.,
2020). First, the current rehabilitation strategy based on MI-BCI
improves accuracy primarily by improving the algorithm without
using a scene stimulation to improve the neural activation of the
subject (Xiao and Fang, 2021), and thereby improving the quality
of the EEG signals to improve accuracy (Bagarinao et al., 2020).
Second, the virtual rehabilitation scene is singular (Vidaurre et al.,
2020), the individual adaptability is poor, and few studies (Li et al.,
2021) have compared the neural region activation and enhanced
EEG signals feature mechanisms in different scenes (Barsotti
et al., 2015). Third, most of the existing virtual rehabilitation
training strategies are performed by observing virtual scenes
on a computer screen (Moctezuma and Molinas, 2020). This
training mode is not only less immersive, but also easily disturbed
by the external environment, which introduces difficulties to
the rehabilitation training (Gomez-Pilar et al., 2016). Finally,
visual feedback training is lacking during rehabilitation. At the
neural mechanism level, visual feedback training promotes brain
plasticity changes and functional reorganization through the
activation of the mirror neuron system, thereby promoting the
recovery of motor function (Birbaumer et al., 2006).

In this study, to examine ways to improve the deep activation
mechanism of motor nerves in stroke patients with flaccid
paralysis, we designed different virtual scenes and training tasks
to stimulate motor imagery from different angles. The virtual

scenes include the following: limb MI in static scenes, such
as text and pictures; limb MI in dynamic scenes of three-
dimensional (3D) life and virtual games; and limb MI in the VR
environment. This study compared and analyzed energy changes
in the motor areas of the brain and the recognition rate of motor
imagery before and after rehabilitation training using three-
scene stimulation. This study verified the positive activation
effect of rehabilitation training strategy on stroke patients and
explored the brain activation mechanism using stimulation with
different virtual scenes.

MATERIALS AND METHODS

Experimental Paradigm Under Virtual
Scenes Stimulation
Design of Virtual Scenes and Training Tasks
As shown in Figure 1, in this study, we designed a rehabilitation
training strategy based on MI-BCI and VR. Multiple-evoked MI
stimulation scenes (e.g., static scenes, dynamic scenes, and VR
scenes) induced subjects to perform limb motor imagery. The
EEG signals of the brain motor area were collected in real time
and then the signals were subjected to preprocessing, intention
feature extraction, and intention recognition. Finally, the results
were output to the scene for interactive control.

The virtual scenes were interesting and immersive, and the
patients had a strong awareness of active training. In this
study, we first built the scenes. Then, we added the image
of the virtual left and right hands into the scenes and set
the training tasks and audio-visual feedback. Finally, through
human-computer interaction control, the subjects could feel that
they were performing actual body movements. Then we guided
the subjects to perform active limb motor imagery.

In addition, we observed the brain electrical activity mapping
of the subject and analyzed the degree of neural activation
during the subject’s brain electrical activity mapping. We
observed the activation changes in the brain areas through brain
electrical activity mapping and analyzed the effect of training
on the subjects. According to the current neural activity in the
motor area of the brain, we adaptively adjusted the training
scenes to ensure that the subjects could continuously achieve
maximum activation of nerves and to accelerate the remodeling
of nerve functions.

Different research protocols can lead to different promotion
effects of the BCI rehabilitation training system on either the
unaffected or affected side of the cerebral hemisphere (Dodd
et al., 2017). Different subjects respond differently to different
scenes, and the activation areas and intensity of the cerebral
cortex and the EEG signal features also are different when
the same subject performs different tasks. Considering these
differences, this study used the Unity 3D platform to design
the training scenes (static and dynamic scenes) in the computer
screen as well as the training scenes in the VR environment.
We also designed some life-skills training in the scene to
feature rehabilitation tasks (e.g., holding goods, pouring water,
and picking food).
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FIGURE 1 | Virtual rehabilitation training strategy map.

As shown in Figure 2, this study designed four different static
and dynamic scenes without using VR. They included static text
scenes, static picture scenes, dynamic 3D life scenes, and dynamic
virtual game scenes.

As shown in Figure 3, we also designed scenes in the VR
environment to enhance the immersion and realism of the
subject’s training in this study. The control method of the training
tasks required the patient to perform motor imagery according to
the prompt. In other words, when the patient’s use of left (right)
motor imagery was recognized, the corresponding limb in the
scenes would perform the corresponding movement.

The following describes the scene in detail.
Static scene: Mainly contains text, pictures, etc., the

stimulation effect is poor, but the stimulation is more direct.
Directly prompt the subjects to perform motor imagery through
left, right, etc.

Dynamic scenes: Mainly include videos, games, etc., with
general stimulation effects and strong interactivity. Realize motor
imagery by playing videos or playing games.

VR scene: The main stimulation mode is the same as that
under the computer monitor, but after VR rendering, the sense
of immersion is strong, making the patient feel immersive, and
the stimulation effect is the best.

Experimental Design
Experimental Principle and Process
The purpose of this study was to verify the effect of the
rehabilitation training strategy to improve the subjects’ limb
control ability during motor imagery. At the same time, we
studied the differences in brain activation when subjects were
stimulated to perform motor imagery in different scenes. This
enabled us to analyze the effect of neural activation when

subjects performed motor imagery using stimulation with
different virtual scenes.

In this study, we designed a controlled experiment to compare
and analyze the changes in neural activity of the brain and
to determine the recognition rate of motor imagery using
stimulations with different virtual scenes to find the mechanism
of neural deep activation. Figure 4 shows a schematic diagram of
the experiment. We assessed the subjects’ motor imagery ability
before training and then subjects performed multiple motor
imagery training. After completing the training, participants
finished a post-training assessment.

We selected nine healthy college students in good mental
condition as subjects (all male; average age: 24 ± 2 years old).
All subjects are right handedness. The experiment required that
all the subjects had not completed similar experiments before
and had no history of neurological diseases. All the subjects were
informed of the research intention of the trial, the details of the
study, and the potential dangers associated with the experiment.
Additionally, all of the experiments were conducted within 3 h of
the subject having eaten at noon, and each subject had to close his
eyes and rest for 5 min before starting motor imagery. Doing so
could relieve tension and anxiety and ensured that subjects were
in a good mental state.

We grouped the nine subjects equally into three groups: static
scene control group, called S1–S3; dynamic scene experimental
group, called S4–S6; and VR scene experimental group, called
S7–S9. Except for the different virtual scenes for stimulating
motor imagery training, all of the other conditions were the same.
All the subjects performed a total of 17 days of experiments
(14 days of motor imagery task training experiments and
3 days of motor imagery assessment experiments). The specific
experimental process was as follows: Subjects completed three
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FIGURE 2 | Static and dynamic scenes without VR.

FIGURE 3 | Training scenes in VR enviroment. (A) One scene for computer. (B) One scence for dinner.

FIGURE 4 | Experimental schematics.

sets of enhanced motor imagery paradigm training per day,
and each group included 40 trials. In other words, subjects
had to complete a total of 120 limb motor imagery trials per

day. In the 14-day motor imagery training using virtual scene
stimulation, we obtained the correct rate of 1,680 limb motor
images for each subject.
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Subjects also performed three motor imagery assessment
experiments. Three experiments were conducted on the day
before the motor imagery training, the day after the training
was completed for 7 days, and the day after the training was
completed for 14 days. The subjects completed three sets of
motor imagery tasks according to the assessment paradigm, and
each group contained 30 motor imagery trials. We collected 19
channels of EEG data during the trials and obtained a total of 270
EEG data points for each subject in the motor imagery trials.

Experimental Paradigm
Figure 5 shows the experimental paradigm for the pre-
assessment and post-assessment in the enhanced motor imagery
training. A single trial contained three periods totaling 10 s. From
0 to 2 s, a red dot appeared in the center of the screen and then
shrunk to remind the subjects to concentrate to start the next
motor imagery. From 2 to 7 s, the subjects had to focus on the
direction of the left/right movement of the red dot on the screen
and performed left/right hand (or left/right limb) motor imagery.
From 7 to 10 s, a plus sign (+) appeared in the center of the
screen to remind the subjects that this trial had ended. During
this period, subjects would rest for 3 s and then they would enter
the next trial to repeat this experimental process.

The experimental paradigm of enhanced motor imagery
training in different scenes is shown in Figure 6. We divided

the training process into three groups: the enhanced static scenes
control group, the enhanced dynamic scenes experimental group,
and the VR scenes experimental group. The motor imagery
training process adopted an interactive mode of real-time motor
imagery feedback. A single trial contained three periods totaling
10 s. From 0 to 1 s, a red dot appeared in the center of the
screen to remind the subjects to concentrate on the start of the
motor imagery. At the end of 1 s, the red dot disappeared, which
reminded the subjects to start the limb motor imagery. From 1
to 5 s, subjects had to focus on the prompt information provided
on the screen and performed left/right hand (or left/right limb)
motor imagery. Different prompt information was given to
different groups. From 5 to 7 s, the results of the classification
model in the motor imagery appeared on the screen, and the
virtual characters and limbs in the scenes were controlled to move
accordingly. During this period, subjects took a short rest until
the end of 7 s. Then, the subjects would enter the next trial and
repeat this experimental process.

Electroencephalography Signals
Acquisition and Preprocessing
The electrode distribution of EEG data acquisition adopted the
international standard 10- to 20-electrode lead positioning. We
set the reference electrode in the central area at the top of the

FIGURE 5 | Assessment paradigm before and after enhanced MI training.

FIGURE 6 | Experimental paradigm of enhanced MI training in different scenes.
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head and set the sampling frequency to 1,000 Hz. The acquisition
channels included 19 channels in the motor nerve-related area,
namely, FC1, FC3, FC5, C1, C3, C5, CP1, CP3, CP5, Cz, FC2,
FC4, FC6, C2, C4, C6, CP2, CP4, and CP6.

Most of the EEG acquisition devices were non-invasive dry
electrodes. Although EEG acquisition was simpler and more
convenient, it was unavoidable that various noises would appear
in the acquisition process, such as EOG, ECG, and EMG.
This seriously interfered with the subsequent analysis of EEG
signals and affected the results of EEG signal analysis. Therefore,
it was necessary to preprocess the collected raw EEG signals
to remove noises.

The main noises included baseline drift caused by the device,
50 Hz power frequency interference, and EOG artifacts formed by
blinking. We used the moving average method to remove baseline
drift and used an adaptive 50 Hz filter to remove power frequency
interference. We used an independent component analysis to
remove EOG artifacts and used the sixth-order Butterworth filter
as the band-pass filter. Finally, we acquired 8–32 Hz EEG signals.

RESULTS

Analysis of Energy Changes in Brain
Motor Areas
Brain Electrical Activity Mapping
Studies have shown that when subjects perform motor imagery,
the energy features of EEG signals in the motor areas of the
brain must change. In this study, we used brain electrical activity
mapping to analyze the neural activation of multiple channels in
the motor area, and visual neurofeedback was provided.

Brain electrical activity mapping (BEAM) is a commonly
used method for multichannel EEG signal analysis. This method
collects EEG signals from multiple channels of the head, performs
fourth-order energy extraction, and then uses color bands and
digitization to represent different gray levels. Finally, a dynamic
BEAM can be drawn.

Brain Motor Area Energy Analysis Based on Brain
Electrical Activity Mapping
On the basis of these experiments, we obtained the EEG data of
nine subjects when they conducted motor imagery assessment on
the day before the motor imagery training and on the day after
the training had been completed for 14 days. We obtained and
normalized fourth-order cumulative energy value of each channel
for a single trial for each subject. Then, we used the energy value
of each channel for multiple trials of nine subjects, which then
was used as the input parameter for drawing the BEAM. We
obtained the spatial distribution map of the neural activation in
different lead positions of the left and right limb motor imagery,
as shown in Figure 7.

Figure 7 shows the spatial distribution of neural activation
in the brain regions of the subjects: S1, S4, and S8 before and
after 10 trials of enhanced motor imagery training. Figure 7A
shows that after the subjects were trained in the rehabilitation
strategy designed in this study, the activation range of motor
nerves in the brain region was significantly expanded (i.e., the

activation breadth of motor imagery nerves increased). Figure 7B
shows that after the subjects were trained in the rehabilitation
strategy, the color of the activation area was darker (i.e., the
ERD/ERS phenomenon was more obvious), which indicated that
the activation depth of the motor imagery nerves increased.
Figure 7C shows that compared with static scenes and dynamic
scenes, this strategy had a more obvious effect on the activation
breadth and depth of motor imagery nerves in VR scenes.

Electroencephalography Signals Feature
Extraction, the Modeling of
Electroencephalography Signals, and
Analysis of the Recognition Rate of
Motor Imagery
Electroencephalography Signal Feature Extraction
Feature extraction is the mathematical transformation or
mapping of the input signal to obtain eigenvalues that are
easier to observe and monitor. The widely used EEG signals
that feature the extraction methods used during motor imagery
mainly include the following: power spectrum estimation
method, wavelet transform, independent component analysis,
and common spatial pattern (Xin and Wang, 2017). In this study,
we selected three feature combinations of mean square error,
power spectral density, and common spatial pattern from the
time domain, frequency domain, and spatial domain of EEG
signal as the feature quantities for motor imagery intention
recognition (Yang et al., 2012).

Furthermore, we used the existing particle swarm
optimization (PSO)-support vector machine (SVM) as a
classifier to perform motion imagery intention recognition.

Analysis of the Recognition Rate of Motor Imagery
Studies have shown that there is a positive correlation between the
degree of active participation, the activity degree of motor nerves,
the performance of classification models, and the recognition
rate of motor imagery when subjects perform motor imagery.
The higher the recognition rate of motor imagery, the higher
the active participation of the subjects in motor imagery and
the stronger the control ability of motor nerves. The recognition
rate of motor imagery can be used as an indicator to stimulate
motor imagery ability in different scenes. In this study, the
analysis of the recognition rate of motor imagery intention
included the following two aspects: online MI training and
offline MI assessment.

Online Motor Imagery Training Recognition Rate Analysis
We counted the recognition rate of the nine subjects who
completed online MI training in virtual scenes within 14 days
(Table 1). The recognition rate was the online recognition
result obtained statistically using the experimental paradigm
designed in this study. The feature quantities used in the
classification model were mean square error, power spectral
density, and common spatial pattern features. The classification
model was PSO-SVM.

Each subject performed 120 motor imagery trials per day.
We counted the number of correct motor imagery classifications
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FIGURE 7 | Spatial distribution of the brain activation between the before and after enhanced MI training. (A) For control group. (B) For experimental group. (C) For
experimental group II.

per day and calculated each subject’s single-day recognition rate,
average recognition rate, and standard deviation within 14 days.
The data marked with an asterisk (∗) in the table indicate that the
subject had the highest recognition rate on this day.

According to Table 1, by completing the enhanced motor
imagery training task, the subjects’ motor imagery recognition
rates improved to varying degrees. After training, the average
recognition rate of motor imagery for three subjects (S1–S3) in
static scenes (control group) was between 64.5 and 67.5%, the
average recognition rate of motor imagery for three subjects (S4–
S6) in dynamic scenes (experimental group I) was between 67.5
and 70.5%, and the average recognition rate of motor imagery for
three subjects (S7–S9) in VR scenes (experimental group II) was
between 71.0 and 75.0%.

These data showed that the rehabilitation training strategy
designed in this study could improve subjects’ limb motor
imagery ability. The subjects’ motor imagination ability in these

three scenarios is from weak to strong: static scene, dynamic
scene, and VR scene.

Offline Motor Imagery Assessment Recognition Rate Analysis
By analyzing the improvement range of the subjects’ motor
imagery recognition rate under different training periods, we
used an assessment method to evaluate whether the rehabilitation
training strategy could improve the subjects’ motor imagery
ability. We collected the EEG data of nine subjects when they
conducted motor imagery assessments 1 day before the motor
imagery training, the day after the training was completed for
7 days, and the day after the training was completed for 14 days.
Each subject completed three sets of motor imagery tasks per day,
and each set consisted of 30 random left and right hand (limb)
motor imagery trials.

We subjected the collected data to offline recognition
rate analysis. To obtain accurate results, we used a
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TABLE 1 | Statistical results of online recognition rate during MI training in different virtual scenes (%).

Group Static scenes (control group) Dynamic scenes (experimental group I) VR scenes (experimental group II)

Training day S1 S2 S3 S4 S5 S6 S7 S8 S9

Day_01 60.9% 55.9% 57.6% 61.8% 58.5% 62.6% 62.6% 59.4% 60.3%

Day_02 65.7% 57.4% 60.7% 60.7% 64.8% 59.1% 64.1% 63.1% 64.7%

Day_03 63.4% 61.6% 65.2% 65.1% 67.4% 67.4% 67.4% 64.8% 71.1%

Day_04 69.1% 59.3% 61.5% 69.1% 59.3% 65.9% 71.8% 71.0% 73.9%

Day_05 67.4% 62.7% 70.7% 72.4% 62.6% 70.7% 65.7% 67.3% 74.5%

Day_06 65.9% 66.5% 65.9% 76.8% 65.7% 72.6% 76.8% 73.5% 72.2%

Day_07 56.5% 65.2% 67.6% 70.7% 70.7% 70.7% 72.6% 74.0% 70.7%

Day_08 67.7% 69.8% 56.6% 69.3% 69.3% 65.1% 73.2% 72.7% 75.9%

Day_09 69.3% 67.3% 63.5% 78.2%* 74.3% 74.3% 79.3% 79.2%* 80.8%

Day_10 72.4% 72.7%* 65.6% 72.6% 77.4%* 67.4% 76.6% 76.7% 74.2%

Day_11 70.1% 62.1% 69.3% 67.6% 69.1% 70.0% 82.4%* 72.1% 79.5%

Day_12 74.9%* 69.3% 70.7% 76.6% 68.4% 67.5% 73.4% 70.4% 83.0%

Day_13 68.2% 67.1% 71.6%* 72.5% 70.0% 73.5% 78.3% 76.8% 75.3%

Day_14 70.9% 67.6% 67.6% 74.2% 71.7% 74.0%* 80.0% 78.2% 88.8%*

Average recognition rate 67.3% 64.6% 65.3% 70.5% 67.8% 68.6% 73.2% 71.4% 74.6%

Standard deviation 0.045 0.042 0.046 0.052 0.051 0.043 0.060 0.057 0.070

*denotes the highest MI recognition rate for each subject across the 14 days.

TABLE 2 | Offline evaluation of recognition rate on different virtual scenes before, during and after enhanced MI training (%).

Group Subjects Recognition rate
before the training

Recognition rate
after 7-day training

Increasing
range (%)

Recognition rate
after 14-day training

Increasing
range (%)

Static scenes S1 63.6% 69.7% 6.1 72.8% 3.1

S2 61.6% 66.1% 4.5 68.9% 2.8

S3 64.1% 68.4% 4.3 72.1% 3.7

Dynamic scenes S4 63.8% 69.6% 5.8 74.7% 5.1

S5 64.1% 71.4% 7.3 76.0% 4.6

S6 60.7% 66.4% 5.7 71.3% 4.9

VR scenes S7 64.6% 74.4% 9.8 81.6% 7.2

S8 59.6% 72.5% 12.9 79.3% 6.8

S9 62.7% 73.4% 10.7 80.5% 7.1

three-fold cross-validation method, as follows: First, we divided
the 90 motor imagery datasets into three groups on average. One
group was taken out each time as the test data, and the remaining
data were used as the training data to complete the PSO-SVM
model training. Then, we used the trained model to classify
the test data. Finally, we averaged the obtained three groups of
classification results as the final recognition rate. The statistical
results are given in Table 2.

Table 2 shows that after training, the motor imagery
recognition rate of the nine subjects was improved. In addition,
the overall increase in the recognition rate in the static scenes
(control group) and the dynamic scenes (experimental group I)
was roughly the same, and the overall increase of the recognition
rate in the VR scenes (experimental group II) was significantly
higher than that of the other two groups. This result indicated
that the rehabilitation training strategy designed in this study
could improve the subjects’ EEG signal identification and ability
to control EEG signals. Compared with static scenes and dynamic
scenes, VR scenes had a more significant effect on improving
subjects’ control of their motor nerves.

DISCUSSION

The experiments designed in this study compared the degree
of neural activation as well as the classification and recognition
rate of motor imagery when subjects performed motor imagery
using stimulation with different virtual scenes. The rehabilitation
training strategy designed in this paper greatly improved the
motor nerve activation of the subjects, accelerated the remodeling
of the subjects’ neural functions, and improved the motor
imagery ability of the subjects.

The experiments further investigated in which scene the
subjects’ motor nerve activation layers were wider and deeper.

The virtual scenes designed in this study included static scenes
(e.g., pictures, text), dynamic scenes (e.g., animation, games)
displayed on a computer screen, and VR scenes. After completing
the motor imagery training, we compared and analyzed the
energy changes in the brain motor areas and the motor imagery
recognition rate changes for the different subjects to explore the
neural activation and motor imagery ability changes of subjects
using stimulation of different virtual scenes.
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First, we analyzed the energy changes in the brain motor areas
of subjects under different scene simulation and analyzed the
BEAM of one subject randomly selected from each of the three
groups. By comparing the distribution of BEAM of each subject
before and after training, we found that the range of energy
distribution in the motor area after training expanded and the
color depth deepened. This proved that after training with the
rehabilitation strategy described in this paper, the neural activity
intensity and energy in the motor areas of subjects increased,
which could stimulate the remodeling of damaged motor nerves
to a certain extent.

We further analyzed motor imagery recognition rates. First,
the recognition rates of online training (Table 1) and offline
assessment (Table 2) of the nine subjects under different virtual
scene simulation remained at around 60%. The main reason that
the recognition rate of the latter was slightly higher than that
of the former was that the signal interference was less formed
in the offline state. Second, from the data in Table 1, we found
that with an increase in the number of training days, the motor
imagery recognition rate of the nine subjects followed an overall
upward trend. The fluctuation of the recognition rate in the short
period was affected mainly by the mental state of the subjects
during the experiment and the interference differences of the
EEG signals in each acquisition. Third, by calculating the average
recognition rate of 14 days, we found that the recognition rate
of subjects in the VR scenes was significantly higher than that
of the static scenes and dynamic scenes displayed on a computer
screen. This result showed that the subjects could mobilize more
nerve cells in the motor area to pursue regular physiological
activities in the VR scenes, thereby improving the recognition of
the subjects’ EEG signals. As shown in Table 2, to verify whether
the improved recognition rate could be formed by the transient
stimulation of the virtual scenes or by the change of the motor
nerve activity mechanism, we adopted the same experimental
paradigm of motor imagery for offline assessment. We found
that the improvement of the recognition rate in the VR scenes
was significantly better than that in the static and the dynamic
scenes, which was consistent with previous results, and further
indicated that the VR scenes had a better effect on improving the
recognition of subjects’ EEG signals.

CONCLUSION

Today, the virtual rehabilitation that integrates MI-BCI and VR
holds significant potential in the field of stroke rehabilitation,
and this technology can greatly improve the rehabilitation effect
for patients. To investigate how MI-BCI therapy can maximize
the deep activation of subjects’ motor nerves and accelerate the

remodeling mechanism of motor nerve function, we designed
the following rehabilitation training strategy: we enhanced motor
imagery training under different virtual scenes and compared
and analyzed the degree of neural activation and the recognition
rate of motor imagery in stroke patients after enhanced motor
imagery training using stimulation with different virtual scenes.
The experimental results showed that the motor imagery training
using virtual scene stimulation could improve the motor nerve
activation and motor imagery ability of the subjects. Compared
with the static and dynamic scenes displayed on a computer
screen, the VR scenes had a more significant effect in improving
neural activation intensity and recognition rate.
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