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Nonalcoholic fatty liver disease, a type of metabolic syndrome, continues to rise globally. Currently, there is no approved drug for
its treatment. Improving lifestyle and exercise can alleviate symptoms, but patients’ compliance is poor. More and more studies
have shown the potential of Polygoni Multiflori Radix (PMR) in the treatment of NAFLD and metabolic syndrome. Therefore,
this paper reviews the pharmacological effects of PMR and its main chemical components (tetrahydroxystilbene glucoside,
emodin, and resveratrol) on NAFLD. PMR can inhibit the production of fatty acids and promote the decomposition of
triglycerides, reduce inflammation, and inhibit the occurrence of liver fibrosis. At the same time, it maintains an oxidation
equilibrium status in the body, to achieve the therapeutic purpose of NAFLD and metabolic syndrome. Although more
standardized studies and clinical trials are needed to confirm its efficacy, PMR may be a potential drug for the treatment of
NAFLD and its complications. However, the occurrence of adverse reactions of PMR has affected its extensive clinical
application. Therefore, it is necessary to further study its toxicity mechanism, enhance efficacy and control toxicity, and even
reduce toxicity, which will contribute to the safe clinical use of PMR.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most
prevalent chronic liver diseases, especially in developed
countries, and is considered to be liver manifestations of met-
abolic syndrome which includes obesity, hypertension,
pathoglycemia, and dyslipidemia and leads to atherosclero-
sis, type 2 diabetes, and so on [1]. NAFLD is characterized
by the abnormal accumulation of intracellular triglycerides
without excess alcohol intake and is a progressive form of
liver disease that includes a large range of diseases from stea-
tosis to steatohepatitis, cirrhosis, and hepatocellular carci-
noma eventually [2–4]. Histopathological examination of
the occurrence of triglyceride accumulation in more than
5% of hepatocytes was defined as NAFLD [5, 6]. NAFLD is
reversible in its early stage and can be intervened through

lifestyle and medical treatment. If not diagnosed and treated,
NAFLD may develop into nonalcoholic steatohepatitis
(NASH), which may lead to irreversible liver cancer [7].
NAFLD threatens a third of the world’s population, across
all ages and races [8]. In China, the incidence of NAFLD con-
tinues to rise, reaching 15 percent in fast-growing cities [9].
What is worse, in recent years, research studies show that
NAFLD is closely related to cognitive performance [10, 11],
polycystic ovary syndrome [12], cardiovascular disease,
chronic kidney disease, and other extrahepatic diseases
[13]. With the change of people’s unhealthy lifestyle, the inci-
dence of NAFLD is continuously increasing, which has
attracted wide attention worldwide.

At present, the main recommended treatment method is
a healthy lifestyle, including strengthening physical exercise
and a reasonable diet. However, according to the poor patient
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compliance, the treatment effect does not work well [14].
Some scholars have divided potential therapeutic drugs into
four categories according to different mechanisms while they
have a common goal: improving metabolic problems caused
by simple fat accumulation, inhibiting nonalcoholic steatohe-
patitis, then alleviating liver fibrosis, and finally regulating
intestinal flora to reduce intestinal fat absorption, respec-
tively. And some drugs can have multiple effects [15]. Be that
as it may, there are no approved drugs on the market for the
treatment of NAFLD [16–18]. The drugs used to treat
NAFLD mainly inhibit the accumulation of lipids, including
insulin sensitizers and lipid-lowering drugs [19, 20]. How-
ever, insulin sensitizers have side effects such as edema and
hemodilution, while statins may increase the burden on the
liver [21–23]. Therefore, it is necessary to find effective ther-
apeutic methods and drugs to control the occurrence and
development of NAFLD and solve this problem.

As an important part of the world medical system,
traditional Chinese medicine (TCM) has a long history in
effectively various diseases. It has the characteristics of multi-
pathway and multitarget and can be used for holistic
treatment from different levels because of its remarkable
curative effect and small side effects [24–26]. More and
more studies show that TCM is effective in treating NAFLD
[27, 28]. It is found that the extract of TCM or effective
components can address not only NAFLD but also other
illnesses of the metabolic syndrome, such as obesity, diabe-
tes, and dyslipidemia. Polygoni Multiflori Radix (PMR), as
a tonic medicine recorded in “Kaibao Bencao” firstly, has
a history of hundreds of years in China. PMR has rich
chemical compositions such as stilbenes, quinones, flavo-
noids, and phospholipids [29]. PMR has a wide range of
pharmacological effects such as antiaging, antihyperlipide-
mia, anticancer, and anti-inflammatory effects, promoting
immune regulation as well as nerve protection and healing,
and is determined by its various components [30, 31].
Modern studies have shown that PMR has the potential
to treat Alzheimer’s disease, hyperlipidemia, Parkinson’s
disease, and inflammation. Growing evidence shows that
PMR and its compounds are effective in treating NAFLD
and the related complications, which is worthy of further
study and discussion. Therefore, this review summarizes a
series of evidence for the therapeutic action of PMR and
its main components in NAFLD.

2. Pharmacological Effects of PMR in NAFLD

The diverse and complex pathogenesis of NAFLD is associ-
ated with insulin resistance (IR) which causes the excessive
accumulation of free fatty acids. Without timely treatment,
it may cause more serious problems such as hepatic inflam-
mation, oxidative stress, mitochondrial dysfunction, endo-
plasmic reticulum (ER) stress, and apoptosis eventually
which are explained by “multiple hit” hypothesis [32]. In
addition to the liver injury caused by fat accumulation, the
perspective of the relationship between intestinal flora and
liver disease has become a research focus recently [33, 34].
Changes in the composition of intestinal microbial commu-
nities and their metabolites can also cause liver damage, such

as short-chain fatty acids (SCFA), endogenous ethanol, and
bile acids [35]. Therefore, maintaining intestinal flora
homeostasis plays an important role in the prevention and
treatment of NAFLD. The antisteatosis, antioxidation, anti-
inflammation, liver protection, antiobesity, bile acid metabo-
lism adjustment, and intestinal flora regulation effects of
PMR will contribute to the treatment of NAFLD (Figure 1).
More and more shreds of evidence link NAFLD to metabolic
syndrome, so several aspects could be listed to state the phar-
macological effects of PMR against NAFLD and metabolic
syndrome according to the following seven aspects (Table 1).

2.1. Antisteatosis Activity. The overproduction of total cho-
lesterol (TC) and triglyceride (TG) is considered the sign of
hepatic steatosis. In the normal human body, the average
content of TC and TG is 3.9 and 19.5mg/g wet weight in
the liver, respectively [6]. At the same time, hepatocytes play
a vital role in biosynthesis, biodegradation of low-density
lipoprotein (LDL), high-density lipoprotein (HDL), and
other related lipoproteins [61, 62]. The control of hepatic
steatosis is an important approach to prevent NAFLD and
affect its progression to NASH, liver cirrhosis, and hepatocel-
lular carcinoma.

PMR can regulate lipid production and metabolism to
alleviate simple fatty hepatocytes. PMR and Polygoni Multi-
flori Radix Praeparata (PMRP) steamed with black beans
showed good inhibition of hepatic steatosis. Compared to
PMRP, the water extract of PMR displayed a more remark-
able effect on regulating the level of TC and TG [36, 38, 40]
and the effect of PMR on lipid regulation was more obvious
in liver tissues of early NAFLD [37]. Research showed intui-
tively that PMR and PMRP could inhibit lipase with IC50
values of 38.84μg/mL and 190.6μg/mL by a bioactivity-
based method, respectively [39]. PMR inhibited the
formation of fat and increased the degradation of fat and
the oxidation of fatty acids by upregulating the expression
of peroxisome proliferator-activated receptor α (PPARα),
carnitine palmitoyltransferase 1 (CPT1), CPT2, uncoupling
protein 1 (UCP1), and hormone-sensitive lipase (HSL) and
downregulating adipogenic transcription factors and PPARγ
and diacylglycerol O-acyltransferase 2 (DGAT2) mRNA
expression in 3T3-L1 preadipocyte cells and high-fat diet
models [41, 42].

2.2. Antioxidant Activity. Oxidative stress is an imbalance of
oxidation and antioxidation in the body, which produces a
large number of oxide intermediates such as reactive oxygen
species (ROS) and reactive nitrogen species (RNS). It leads to
neutrophil inflammatory infiltration and increased protease
secretion [63, 64]. Oxidative stress leads to the progression
of NAFLD to NASH, exacerbating the disease [65]. Excessive
fat accumulation can lead to an increase of the oxidation of
fatty acids in the mitochondrion controlled by PPARα and
the production of excessive ROS [66]. Then, ROS mainly
attacks the liver [67] and recruits Kupffer cells which can
produce a variety of cytokines like tumor necrosis factor-α
(TNF-α) later. As regards hepatic stellate cells, lipid peroxi-
dation can result in proliferation and collagen synthesis
caused by oxidative stress [68]. Therefore, treatment for
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NAFLD can be initiated by reducing oxidative stress and
maintaining an antioxidant balance.

PMR has an antioxidant effect [31, 69] that protects the
liver from oxidative stress and may be a potential drug for
the treatment of NAFLD. PMR was often used as an antiag-
ing drug. It was reported that the chemical profiles were
applied to assess the antioxidant activities by establishing
the integrated chemometric fingerprints [70]. Besides, PMR
upregulated mRNA expression in the nuclear factor ery-
throid 2-related factor 2 (Nrf2) signal pathway including
heme oxygenase-1 (HO-1), NQO1, and glutamate-cysteine
ligase catalytic subunit (GCLc) dose-dependently and influ-
enced the nuclear translocation of Nrf2 as well as reduced
the content of ROS in H2O2- and acetaminophen- (APAP-)
induced cells [43]. The enzyme activities of SOD, GSH,
GRD, GSH-Px, and GST were improved by PMR in D-
galactose-injected mice and CCl4-induced mice [44, 46].
PMR and PMRP improved mitochondrial β-oxidation by
increasing the activity of CPT1A enzyme in vivo and
in vitro [47].

2.3. Anti-inflammatory and Antifibrotic Activity. Inflamma-
tion and fibrosis can lead to the progression of simple steato-
sis to NASH and hepatic fibrosis. Therefore, anti-
inflammation and prevention of liver fibrosis are considered
a treatment direction to hold back the development of
NAFLD. Inflammatory response-related signaling pathways

have been reported to be the main signaling pathways for
the development of liver fibrosis. Inflammation plays a major
role in liver fibrosis through communication and interaction
between inflammatory cells [71], cytokines [72, 73], and
related signaling pathways [74].

PMR could regulate inflammatory mediators and
inflammatory transcription factors like nuclear factor
kappa-B (NF-κB) for anti-inflammatory purposes. The
results proved that the ethanol extract of PMR had an
anti-inflammatory effect. The extraction of PMR reduced
the expression of TNF-α, GST-α, and interleukin 6 (IL-6)
which were regarded as therapeutic targets for hepatic
inflammation or fibrosis in high-fat diet (HFD) rats [41,
42]. In CCl4-induced in vivo and in vitro models, PMR
remarkably decreased the content of TNF-α [48]. NF-κB
was an important immune-related transcription factor that
regulated many cytokines and adhesion factors. PMR inhib-
ited the NF-κB transcriptional activity in TNF-α-induced
NF-κB activation compared with the model group evalu-
ated by luciferase reporter gene assays [49]. PMR signifi-
cantly inhibited the activation of hepatic stellate cells
induced by PDGF and facilitated the phagocytic activity
of Kupffer cells in a concentration-dependent manner
[50]. In CCl4-induced rats of liver fibrosis, the water extract
of PMR improved serum albumin which was an indicator
of chronic liver damage and reduced the pathological grade
of liver fibrosis as well as the occurrence of ascites [51].
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Figure 1: Molecular mechanism of PMR in the treatment of NAFLD. PMR exerted pharmacological effects by regulating lipid metabolism,
reducing inflammation and fibrosis, improving fatty acid β-oxidation, alleviating oxidative stress, protecting the liver, and adjusting bile acid
metabolism. PMRmaintained intestinal flora homeostasis via decreasing IR and alleviating inflammation, and PMR reduced the reabsorption
of fatty acids to improve NAFLD.
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2.4. Hepatoprotective Activity. Patients with NAFLD show
elevated levels of ALT and AST, which are important bio-
chemical indicators of liver injury. Without timely treatment
and control, NAFLD can progress into cirrhosis.

PMR could alleviate the damage to the liver and might
become a hepatoprotective medicine to treat NAFLD. The
extract of PMR reduced the contents of AST and ALT in
serum [42–44, 48] and the production of malondialdehyde
(MDA) compared with CCl4-induced liver damage. In addi-
tion, the TNF-α was reduced and histopathology examina-
tion showed relieved adipose tissue and necrosis in the
PMR treatment group [48]. It not only increased the hepato-
cyte growth factor (HGF) which played an important role in
liver regeneration and attenuated development of liver cir-
rhosis but also increased hydroxyproline that was an indica-
tor for collagen content. Consequently, the survival rate was
enhanced largely in the PMR treatment group [50].

2.5. Hypolipidemic Activity. Hyperlipidemia is a common
metabolic syndrome associated with increased TC, TG, and
LDL-C, while decreased HDL-C levels [75]. An overload of
cholesterol in the liver can lead to fatty liver disease. There-
fore, regulating cholesterol balance is an effective means to
treat NAFLD.

PMR might control the development of NAFLD by regu-
lating abnormal markers of cholesterol which indicated the
severity and progression of NAFLD. Traditional Chinese
medicine prescriptions containing PMR have been used for
many years to treat NAFLD and hyperlipidemia such as
Xuezhining Wan and Shouwu Wan [76]. The extraction of
PMR showed a remarkable increase in the activities of 3-
hydroxy-3-methylglutaryl-CoA reductase (HMGR) related
to TC biosynthesis; meanwhile, fatty acid synthase (FAS)
and acetyl-CoA carboxylase (ACC) decreased sufficiently
which played an important role in the biosynthesis of TG
[41]. However, researchers found that PMRP was more effec-
tive in regulating lipids in circulating blood to treat hyperlip-
idemia [37]. In addition, PMR lowered the plasma LDL-C,
TC, and TG levels in high-fat diet rats [41, 55] and hyperlip-
idemia patients [52–54, 56].

2.6. Antiobesity Activity. Due to people’s unhealthy lifestyle,
obesity is prevalent all over the world. It is accompanied with
many health problems including dyslipidemia, type 2
diabetes, and steatosis [77]. Obesity leads to various meta-
bolic abnormalities, and the proliferation of adipose tissue
is closely related to the imbalance of various transcription
factors [78].

Based on the antiobesity effect of PMR, it might be devel-
oped as a potential weight loss drug to replace the existing
weight loss agents with large side effects. In order to reduce
the accumulation of fat in the body, lipase inhibitors have
been selected as targets to prevent the digestion and absorp-
tion of fat for the treatment of obesity [79]. Studies have
shown that many ingredients in PMR were screened for
potential lipase inhibitors such as stilbenes and anthraqui-
nones, which could be used for curing obesity [39]. 70% eth-
anol extract of PMR could not only reduce weight but also
reduce visceral fat weight including epididymal, retroperito-

neal, perirenal, and mesenteric white adipose tissue in
HFD-induced obese mice. PMR reduced the expression of
CCAAT/enhancer-binding protein α (C/EBPα) and PPARγ
which played vital roles in controlling the number and size
of fat cells. Meanwhile, the expression of FAS also decreased
in 3T3-L1 preadipocyte cells cured by PMR [42, 57].

2.7. Intestinal Flora Regulatory Activity. Intestinal flora is
closely related to the development of NAFLD [80]. The accu-
mulating evidence suggests that changes in intestinal flora
can promote the deterioration of NAFLD by influencing pro-
cesses of inflammation, bile acids, and IR, and vice versa [81,
82]. And intestinal flora promotes the development of
NAFLD through the enterohepatic axis [83]. SCFA are
metabolites produced by intestinal flora rather than the host
[84] mainly including acetic acid, propionic acid, and butyric
acid, which can mediate the inflammatory response through
various channels and directly or indirectly affect NAFLD.

PMR can regulate NAFLD by maintaining intestinal flora
homeostasis to change bile acid metabolism and fatty acid
absorption. The extraction of PMR could decrease the con-
tent of TC and TG in the liver tissue of NAFLDmice fed with
a high-fat diet; at the same time, it reduced the total SCFA in
the intestinal canal of the model group. However, there were
gender differences in the change of different SCFA [58]. PMR
could regulate blood glucose and alleviate IR by managing
the diversity of intestinal flora such as changing the imbal-
ance of Firmicutes/Bacteroides which was directly propor-
tional to the level of blood sugar [59, 85] and the relative
abundance of Proteobacteria and so on [60].

3. Pharmacological Effects of Active
Constituents of PMR in NAFLD

There are 133 chemical constituents isolated from PMR,
including stilbene glycosides, anthraquinones, flavonoids,
phospholipids, and phenylpropanoids [86]. Stilbene glyco-
sides and anthraquinones are the main components of
PMR. Studies have shown that tetrahydroxystilbene gluco-
side, emodin, and resveratrol can effectively improve NAFLD
(Figure 2). Therefore, this paper reviews the therapeutic
effects of the three components in NAFLD (Table 2).

3.1. Tetrahydroxystilbene Glucoside. Tetrahydroxystilbene
glucoside, named 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-
glucoside (TSG), is the main component extracted from
PMR. It is regarded as a quality control indicator of PMR
and is required to contain no less than 1% in Chinese Phar-
macopoeia. There was growing evidence that TSG had a wide
range of pharmacological effects such as anti-inflammation,
antioxidation, and antiapoptosis [124, 125].

TSG attenuated the inflammatory response by downreg-
ulating the levels of IL-6 and TNF-α in HFD-induced apoE-/-

mice. In vivo experiment showed that TSG significantly
reduced the release of inflammatory factors IL-6, TNF-α,
and C-reactive protein in high-fat and high-cholesterol diet
rats [89, 90]. Besides, TSG decreased the expression of p-
Smad3 that increased NF-κB inhibitor IκBα degradation
and then promoted the activation of the NF-κB signaling
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pathway. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase inhibitors could increase LDL-C uptake
and metabolism by increasing the number of LDL receptors
on the surface of hepatocytes [126]. TSG could reduce the
LDL level by increasing the expression of LDL receptors
and TC and TG in hyperlipidemic rats and increase the
HDL [45, 89–93]. Hence, TSG may be used as HMG-CoA
reductase inhibitors to decrease the level of LDL. In fat
emulsion-incubated L-02 cells, TSG effectively reduced the
accumulation of triglycerides by inhibiting the expression
of related proteins that synthesized triglycerides [87, 88].
Reverse cholesterol transport (RCT) was involved in cho-
lesterol metabolism by transporting cholesterol to the liver;
TSG mediated the RCT signaling pathway by upregulating
the expression of ATP-binding cassette transporter A1
(ABCA1), ABCG1, and scavenger receptor class B type I
(SR-BI) which regulated cholesterol efflux from the macro-
phage [127] and the expression of cholesterol 7α-hydroxy-
lase (CYP7A1) that was a rate-limiting enzyme of bile acid
synthesis [128]. Therefore, the lipid profiles decreased
owing to the increased level of excretion [92]. In a study
after HFD rats were orally administrated with TSG, the
activity of SOD, CAT, GSH-Px, and T-AOC was increased
remarkably indicating that TSG had an antioxidant effect
to cure hyperlipidemia [90]. Particularly, TSG downregu-

lated the expression of α-SMA associated with the activa-
tion of hepatic stellate cells, and TNFβ correlated to the
fibrosis-related genes [45, 90]. Studies have shown that
TSG could also regulate the homeostasis of intestinal flora
to rectify lipid metabolism by increasing Akkermansia
genera and the ratio of Firmicutes/Bacteroidetes, while
the abundance of Helicobacter pylori decreased [59].

Taken together, TSG might develop as an underlying
agent against NAFLD through mediating liver lipid metabo-
lism, alleviating inflammation, regulating oxidation and
fibrosis, and other ways (Figure 3).

3.2. Emodin. Emodin (1,3,8-trihydroxy-6-methylanthraqui-
none) is a hydroxyanthraquinone derivative in PMR and
has a wide range of physiological activities. The experimental
results demonstrated that it has anti-inflammatory, antioxi-
dant, hepatoprotective, and anticancer activities [129–131].
There was growing evidence that emodin had a significant
effect on the treatment of NAFLD.

Emodin alleviated the lipid accumulation and amelio-
rated hepatic steatosis in vivo and in vitro [96, 97]. It reduced
the expression of sterol regulatory element-binding protein 1
(SREBP1) [95] which was an important lipogenic transcrip-
tion factor associated with triglyceride accumulation [132]
and the phosphorylated mTOR (p-mTOR) that positively
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Figure 2: Chemical structures of three constituents from PMR. (a) tetrahydroxystilbene glucoside, (b) emodin, and (c) resveratrol.
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regulated the activity of SREBP1, while the expression of
AMP-activated protein kinase (AMPK) which was an indi-
rect upstream kinase of SREBP1 was increased. Hence, emo-
din effectively regulated lipid metabolism via the CaMKK-
AMPK-mTOR-p70S6K signaling pathway [94]. Further-
more, emodin inhibited the expression of HMG-CoA reduc-
tase and DGAT1 associated with the synthesis of TC and TG
[88]. In addition, emodin showed a powerful effect on lower-
ing blood lipids by inhibiting the activity of SMase, the con-
tent of CRE, and the quantity of apoptotic foam cell and
promoting antioxidant ability at the same time [96, 98].
Emodin also alleviated inflammation by reducing leukocyte
infiltration as well as the expression of inflammatory factors.
Further study showed that extracellular regulated protein
kinases 1/2 (Erk1/2), p38, toll-like receptor 4 (TLR4), and
NF-κB signaling pathways were inhibited dramatically [96,
100, 101], so we could conclude that emodin could make a
contribution to steatohepatitis in a way. However, it was
reported that emodin could aggravate liver damage and
inflammation in MCD diet-induced NAFLD in mice along
with the increased serumALT and AST levels and the expres-
sion of inflammatory factors IL-1β and IL-6 [99]. Two
completely opposite results might be due to the different
modeling methods and model animals, which needed further
exploration. In addition, emodin improved liver fibrosis via
decreasing transforming growth factor-β1 (TGF-β1) to
inhibit the activation of hepatic stellate cells and the infiltra-
tion of Gr1hi monocytes [102–104].

In conclusion, the emodin could develop into a potential
agent to prevent the progression of NAFLD to NASH owing
to a variety of pharmacological activities (Figure 4).

3.3. Resveratrol. Resveratrol is a polyphenol named trans-
3,5,4′-trihydroxy-trans-stilbene (RES). Resveratrol had both
cis and trans optical isomers, and studies had shown that

the latter was more stable and active [133]. A large number
of studies had shown that it had a powerful effect on the pre-
vention and treatment of NAFLD.

Most of the available experimental data came from two
models including in vivo experiments of mice or rats with
high-fat diet as well as in vitro tests with primary hepatocytes
or HepG2 cells. RES could improve the symptom of NAFLD
by protecting the liver, adjusting lipid metabolism, alleviating
inflammation and fibrosis, regulating the oxidation equilib-
rium status, and enhancing autophagy [119, 120, 122] as well
as controlling the farnesoid X receptor (FXR) [123]. The
increase of serum TC, TG, LDL-C, ALT, and AST content
and the reduction of HDL-C were as serum markers of
NAFLD, and RES could return them to normality effectively
due to the hepatoprotective and lipid metabolic activity
[105–107, 111, 113]. In addition, in FFA-, PA-, OA-, or
HG-induced HepG2 cell models, RES reduced lipid droplet
accumulation indirectly [108, 110, 112]. Sirtuin 1 (SIRT1)
was an important regulator associated with glucose and fat
acid metabolism in the liver. A study showed that RES could
remarkably activate the expression of SIRT1. At the same
time, a series of proteins related to lipid droplets were down-
regulated such as activating transcription factor 6 (ATF6),
cAMP response element-binding protein H (CREBH), and
perilipin 1 (PLIN1) [109, 116]. Liver inflammation was
accompanied with the increase of inflammatory cytokines.
RES reduced the expression and secretion of proinflamma-
tory cytokines (IL-1β, IL-6, TNF-α, and TLR4), and further
studies also suggested that RES suppressed NF-κB which
was a transcription factor combined with its inhibitor IκBα
and bound to DNA and then promoted the expression of
cytokines when it was activated by an external stimulus
[134] via activating the phosphorylation of AMPKα and the
expression of SIRT1 [116–119]. In addition, RES reduced
collagen fiber bundles, hydroxyproline, and lysyl oxidase
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Figure 3: Schematic illustration of mechanism of TSG on improving NAFLD. TSG could not only improve bile acid metabolism
abnormalities caused by NAFLD through the PCT signaling pathway and intestinal flora but also inhibit fat production, inflammation,
and oxidative stress pathways, while promoting the β-oxidation of fatty acids.
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(LOX) to alleviate liver fibrosis [121]. A lot of evidence
showed RES improved redox balance by activating PPARα
related to fatty acid oxidation and inhibiting SREBP1c asso-
ciated to lipogenesis [106, 110, 114]. Meanwhile, the content
and activity of T-SOD and GPx were improved by the treat-
ment with RES, while the content of MDA decreased [107].
The Nrf2-Keap1 pathway participated in the prevention of
metabolic disorders in NAFLD, and RES could activate
Nrf2 signaling to inhibit lipogenesis [115]. However, RES
presented low bioavailability due to poor solubility. Many
researchers were devoted to exploiting new dosage forms,
for example, the PLGA nanoparticles loaded with RES, in
order to improve the effect [135, 136].

To sum up, RES had varieties of biological activities,
which have been proved to play a potential role in treating
NAFLD (Figure 5).

4. Knowledge of Toxicity

With the widespread application of PMR and its prepara-
tions, adverse reactions related to the hepatotoxicity of
PMR have been reported in the early 20th century [137–
139]. Therefore, the toxicity of PMR attracted wide attention.
The adverse reactions of PMR were jaundice, yellowing
urine, cholestasis, liver injury, etc. It was reported that the
toxicity of the ethanol extract of PMR was higher than that
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of the water extract. Therefore, it was not recommended to
make wine with PMR for nourishing. 70% ethanol extract
had the highest toxicity [140]. Studies showed that the occur-
rence of adverse reactions was related to time and dose, and a
long-term large dose was more likely to cause hepatotoxicity
[139]. The other researchers thought that PMR-induced
hepatic injury was an idiosyncratic drug-induced liver injury,
so they built the lipopolysaccharide- (LPS-) induced model of
hepatotoxicity [141–143] to explore the toxic substance basis
and mechanism of PMR.

Many claims have been made to clarify its toxic compo-
nents. Some studies concluded that adverse reactions were
mainly due to its anthraquinone components [31, 144, 145].
Emodin and its derivatives were the most likely hepatotoxic
components [144] and had a time-dependent intracellular accu-
mulation [146], while TSG and physcion may mitigate the
effects of emodin [147]. Nevertheless, some studies held that
the hepatotoxicity of PMR depended not only on the composi-
tion of emodin but also on the content of TSG [147]. Therefore,
there are many uncertainties about the toxic components of
PMR, and more toxicological studies are needed.

The clinical application of PMR pays attention to compat-
ibility, and reasonable compatibility can reduce toxicity. PMR
can be used with other TCM to increase the curative effect and
reduce toxicity. At the same time, its toxicity may be attributed
to high doses and prolonged use. Clinical use of PMR should
attach great importance to the examination of liver function.
PMRP toxicity is more suitable for safe clinical use with lower
toxicity [147]. In the meantime, it is important to improve the
public’s correct understanding of PMR.

5. Discussion

PMR, based on the theory of TCM, PMR, and PMRP, has dif-
ferent effects. PMR can moisten intestines and help defecate,
remove toxicity, and eliminate carbuncles, while PMRP
which is steamed with black soya beans has a large effect
including nourishing the liver and kidney, strengthening
bones and muscles, and blackening the beard and hair. Mod-
ern studies have shown that PMR and PMRP had therapeutic
potential for aging, hair loss, hyperlipidemia, inflammation,
and cancer [148]. Numerous experimental data indicated
the potential of PMR in the treatment of NAFLD. In the
experiments, scholars found that both PMR and PMRP could
effectively reduce TC, TG, and LDL-C and increase HDL-C
content to regulate lipid metabolism. The effective com-
pounds, TSG, emodin, and resveratrol, might have synergic
effects in the body to regulate lipid metabolism in NAFLD.
However, studies have found that PMR had a better effect
on lowering lipids [38, 39, 76]. The possible reason is that
after processing, the content and proportion of active ingre-
dients are changed. For example, conjugated anthraquinone
compounds are hydrolyzed at high temperature to increase
the content of free anthraquinone [149]. At the same time,
the content of TSG decreased significantly [29]. Treatment
of the NAFLD process is complicated by PMR because of
its rich pharmacological effects and complex ingredients. It
can go through the different ways in the different mecha-

nisms to realize regulation by the multicomponent and mul-
tiple targets.

To sum up, the therapeutic mechanism of PMR is mainly
controlled by the following pathways: (1) reducing lipid for-
mation by downregulating SREBP, ACC, and FAS; (2) sup-
pressing the release of inflammatory cytokines through the
NF-κB signaling pathway; (3) resulting in antifibrosis by
inhibiting the activation of hepatic stellate cells; (4) augment-
ing fatty acid β-oxidation via upregulating the PPARα; (5)
reducing oxidative stress and improving antioxidant levels
through Nrf2; (6) reducing IR and improving bile acid
metabolism by regulating intestinal flora and increasing the
expression of CYP7A1; and (7) decreasing ALT and AST
levels to protect the liver. These different pathways work
together to improve NAFLD by regulating lipid metabolism,
reducing inflammation and fibrosis, improving antioxidant
levels, and protecting the liver.

This review also summarizes the research progress of the
three main components of PMR in the treatment of NAFLD.
TSG, emodin, and RES whose pharmacological activities are
consistent with those of PMR all show antisteatosis, anti-
inflammatory, antifibrotic, and antioxidative stress activities
and increase β-oxidation of fatty acids in mitochondria.
Meanwhile, TSG and emodin can regulate bile acid metabo-
lism by increasing the expression of CYP7A1, while RES can
affect bile acid metabolism by regulating LXR and FXR genes
which can adjust CYP7A1 indirectly [150]. Therefore, these
three components may contribute to the activity of PMR in
regulating bile acid metabolism. Of these three components,
the current literature has found that only RES has been shown
to reduce lipid droplet accumulation by upregulating SIRT1 to
activate the autophagy pathway. However, studies on PMR
have not mentioned the reduction of lipid droplets through
autophagy. The possible reason is that the content of RES in
PMR is low, and the administration of the PMR extract does
not reach the concentration to render autophagy, while the
administration of the RES monomer has obvious effects.

6. Conclusion

This review describes in detail the therapeutic effects of PMR
and its chemical components on NAFLD. Its antisteatosis,
antioxidation, anti-inflammation, antifibrosis, liver protec-
tion, lipid reduction, antiobesity, intestinal flora regulation,
and bile acid adjustment effects might contribute to its ther-
apeutic effects. Although stilbene glycosides and anthraqui-
nones are the main components, the relationship between
the two is still unclear; whether they act synergically or
inhibit each other and the sequence of action need further
study. At present, adverse reactions of PMR are frequent,
but its therapeutic effect is undeniable. Therefore, it is neces-
sary not only to understand the basis and mechanism of its
efficacy in the treatment of NAFLD but also to further study
its toxicity mechanism so as to contribute to the safety and
wide use of PMR in clinical practice.
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