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Abstract 

Traditional antiviral therapies often ha v e limited effectiveness due to toxicity and the emergence of drug resistance. Host-based antivirals are 
an alternative, but can cause nonspecific effects. R ecent e vidence sho ws that virus-infected cells can be selectively eliminated by targeting 
synthetic lethal (SL) partners of proteins disrupted by viral infection. T hus, w e h ypothesiz ed that genes depleted in CRISPR knockout (KO) 
screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational 
pipeline predicting antiviral SL drug targets. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics 
data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell 
viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, 
with significant enrichment in CRISPR KO-depleted datasets. Our comparison of SARS-CoV-2 and influenza infection data re v ealed potential 
broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL 
relationship with virus-altered states and that such targets can be re v ealed from analysis of omics datasets and SL predictions. 
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e recently proposed that synthetic lethality ( 1 ), a well-
stablished concept in cancer therapy ( 2–12 ), could mitigate
ultiple known shortcomings of current antiviral drugs such

s the paucity of options, restricted target spectrum due to
he small genome size of viruses, the often rapid development
f drug resistance ( 13 ), marginal effectiveness due to dose-
imiting toxicity ( 14 ) and the necessity to redesign drugs as
ew viral strains emerge ( 15 ,16 ). Of 92 approved antiviral
rugs in 2018, two-thirds were aimed at human immunod-
ficiency virus (HIV) and hepatitis C virus and almost 90%
ere small molecule drugs ( 17 ,18 ). A mere 10% were host-
ased therapeutics, half of which were interferon-related bi-
logics. The potential advantages of host-based drugs high-
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light the pressing need for new host-based methodologies to
target infected cells and for strategies predicting these targets
( 19 ,20 ). 

Viruses rely on host cell machinery and induce significant
changes that create specific vulnerabilities ( 1 ). As obligate in-
tracellular pathogens, viruses require the host cell machinery
for every step of the viral life cycle, including attachment,
penetration, uncoating, gene expression and replication, as-
sembly and finally virion release ( 21 ). During these processes,
viruses effectively remodel host cells, converting them into vi-
ral factories by leveraging numerous host cell functions, lead-
ing to wide-ranging cellular changes ( 22 ). These changes are
initiated by the direct interaction of viral proteins with host
proteins, usurping their functions that lead to cascading di-
mber 14, 2023. Accepted: January 3, 2024 
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Figure 1. Strategy for identifying antiviral SL targets. ( A ) Synthetic lethality in virus-infected cells: In uninfected cells, disrupting one member of an SL 
pair (A–B) does not impact viability. In infected cells, where one of the SL partners is hypomorphic, disrupting its SL partner can compromise cells or 
cause cell death. That is, protein B suppresses the negative consequences of A becoming a VIH when cells are infected. Conversely, protein A 

suppresses the negative consequences of drugging B in uninfected cells. However, the combination of a VIH and targeting its SL partner with a drug has 
no recourse from these negative consequences and results in lethality. ( B ) Workflow used for validating predicted SL targets from various omics data 
classes. SL, synthetic lethal; VIH, viral-induced hypomorph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rect and indirect effects, including altered protein complexes,
changes in RNA and protein abundances, protein mislocaliza-
tion, and changes in post-translational modifications (PTMs),
protein cleavage, splice patterns, and metabolomic and regula-
tory networks, to name a few. Thus, virus-infected cells have
distinct host cell states that introduce specific vulnerabilities
to these infected cells. 

The antiviral strategy of synthetic lethality capitalizes on
these virus-induced vulnerabilities and the cell’s reliance on
its genetic network integrity . Notably , while many genes can
be disrupted individually without undermining cell survival,
the disruption of specific genes in combination can be lethal
( 10 , 23–26 ). When a virus compromises a host protein’s nor-
mal functionality, this host protein becomes a viral-induced
hypomorph (VIH) ( 1 ) (Figure 1 A). Synthetic lethal (SL) part-
ners of these VIHs can be strategically targeted to impede the
viral production machinery, cellular viability or both, provid-
ing a means of selectively disrupting the viral life cycle to
contain viral dissemination and disease, while sparing unin-
fected cells ( 1 ). Since the interruption of viral replication can
be achieved by either the impediment of the viral factory or
the death of the virally infected cell, we do not differentiate
between synthetic sick and SL cellular states. 

The feasibility of targeting SL partners as a host-based an-
tiviral strategy has been substantiated by two studies. Pal et al.
demonstrated that by utilizing existing transcriptomics and
CRISPR data, valid SL targets can be predicted in the con-
text of S AR S-CoV -2 ( 27 ). In that study , the authors predicted
potential VIHs from a handful of transcriptomics datasets in
S AR S-CoV-2-infected cell lines and patient tissues. SL part-
ners of these VIHs were then identified from cancer SL pairs
based on the ISLE algorithm ( 28 ) and prioritized by CRISPR
knockout (KO) screens from S AR S-CoV-2-infected cells. The
authors validated 24 predicted SL targets demonstrating re-
duced viral replication in infected cells combined with a de- 
crease in infected cell counts. Similarly, Navare et al. illus- 
trated that virus–host protein–protein interactions (PPIs) can 

render host proteins hypomorphic and expose cells to SL vul- 
nerabilities ( 29 ). Specifically, this study demonstrated that the 
Golgi-specific brefeldin A resistance guanine nucleotide ex- 
change factor 1 (GBF1) ( 30 ) was converted to a hypomorph 

by binding to poliovirus 3A protein and that depletion of ADP 

ribosylation factor 1, an SL partner of GBF1, led to cell death 

specifically in 3A-expressing cells, thus reducing viral replica- 
tion ( 29 ). Importantly, GBF1 is a critical proviral factor and a 
common target of many viruses, suggesting that targeting SL 

partners of GBF1 could have broad antiviral activity. Taken 

together, this evidence suggests that PPIs and transcriptomic 
alterations can generate VIHs, the SL partners of which could 

be targeted to inhibit typical viral infection. 
In this study, we aimed to determine whether various exist- 

ing omics types can accurately predict VIHs and, by extension,
SL targets. We also posited that a certain subclass of genes,
identified through genome-wide CRISPR KO studies, might 
contain members that are synthetically lethal with VIHs and 

thus can be explored as antiviral therapeutics. We expected 

to find such SL targets among genes depleted in CRISPR KO 

screens alongside antiviral genes, since depletion of these sub- 
classes of genes should lead to diminished cell viability or cell 
death. 

To explore this, we have engineered a computational 
pipeline to discern the omics datasets best suited for predict- 
ing VIHs and the associated SL targets. Our findings indicate 
that multiple different omics data classes can be used to pre- 
dict SL targets, as evidenced by enrichment in CRISPR screens.
Among these potential data classes, virus–host protein inter- 
action data were better predictors of VIHs. Furthermore, we 
highlight that many candidate SL targets of S AR S-CoV-2 in- 
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ection are also targets of influenza infection, suggesting that
hared SL targets may be suitable for host-based therapeutics
gainst multiple viruses. 

aterials and methods 

ataset selection 

e utilized 54 published gene sets from 22 studies, encom-
assing 10 different omics data classes (see Table 1 and ref-
rences under the ‘Identification of VIHs’ section), along with
1 S AR S-CoV-2 and 3 influenza genome-wide CRISPR–Cas9
O screens for this study (see Table 2 and references un-
er the ‘Compilation of publicly available CRISPR KO screen
ata’ section). We specifically focused on genome-wide screens
onducted in cell lines or tissues infected with S AR S-CoV-2 or
nfluenza viruses. 

dentification of VIHs 

e defined VIHs as gene products that exhibited signifi-
ant reduction in gene function through direct interaction
ith viral gene products, reduced protein or RNA abun-
ance, decreased translation rate, or changes in protein mod-
fications and other measured behavior that may lead to re-
uced functional performance, but not complete loss. We de-
ermined such changes using the characteristics of 10 omics
ata classes when comparing virus-infected cells to nonin-
ected cells. Omics data classes included bulk or single-cell
NA sequencing (transcriptomes) ( 31–35 ), specialized mass

pectrometry (proteomes, RBP, phosphoproteomes, ubiquito-
es, cleavage) ( 32 ,36–41 ), and combinations of affinity pu-

ification (AP-MS) ( 32 ,42–45 ) or proximity-dependent label-
ng (BioID-MS) ( 45–50 ) with mass spectrometry (Table 1 ). We
lso considered alterations in translation rates (translatome)
 40 ) as well as changes in the host RBP and the host inter-
ctome with viral RNAs ( 51–53 ). All selected datasets were
erived from genome-wide studies in cells infected with live
 AR S-CoV-2 virus, S AR S-CoV-2 pseudovirus, or transduced
ith individual S AR S-CoV-2 virus proteins or RNAs for in-

eractome studies. 
To identify hypomorphs from available omics data, we

dopted the statistical cutoff criteria used in the associated
ublication of the respective dataset or reported FDR-adjusted
- values < 0.05 as significantly altered by infection. Since such
 -values were not available for many datasets, meta-analysis
f provided data would have been a complex undertaking
raught with additional pitfalls. Lists of significant interactors
or virus–host PPIs and virus–host RNA–protein interactions
RPIs) were obtained from relevant publications. Using these
riteria, we identified VIHs for each data class and then deter-
ined the union of VIHs across all datasets within each of the
0 omics data classes. The union for each data class was sub-
equently utilized in our computational pipeline for predicting
L targets. 

rediction of candidate SL targets 

e defined candidate SL targets as the SL partners of VIHs
isted in a combined dataset of SynLethDB 2.0 (last accessed
 November 2023) ( 54 ), including human SL genes only, and
ynLEGG (last accessed 20 November 2023) ( 55 ), which pre-
icts SL pairs based on low gene expression of one SL part-
er combined with a gene depleted in CRISPR KO screens of
83 cell lines. Thus, we identified all VIHs that also appeared
as an SL pair in this newly generated SL pair database and
consolidated the union of all SL genes associated with those
VIHs. This process was performed separately for each list of
VIHs compiled from different omics data classes. The result-
ing list of candidate SL targets was then employed in down-
stream analyses to evaluate prediction accuracy against de-
pleted products in CRISPR KO studies and to assess predic-
tion agreement among different data classes. 

Compilation of publicly available CRISPR KO 

screen data 

We gathered publicly available data from genome-wide
CRISPR KO screens conducted in cells infected with either
S AR S-CoV-2 ( 56–66 ) or influenza virus ( 67–69 ) and identified
significantly depleted genes. Genes were considered signifi-
cantly depleted if they exhibited FDR-adjusted P- values < 0.05
along with negative log 2 fold changes or z -scores < −1.96. The
aggregated set of CRISPR-depleted genes from all the studies
was then used as the surrogate ‘gold standard’ set of SL tar-
gets when evaluating the predictive performance of each omics
data class in our study. 

Enrichment analysis of predicted SL genes in 

CRISPR-depleted genes 

We used hypergeometric tests to quantify the enrichment of
predicted SL targets among depleted genes in CRISPR KO
studies. The union of all genes tested across CRISPR KO
studies was considered the background population. We con-
sidered FDR-adjusted P -values < 0.05, computed using the
Benjamini–Yekutieli method ( 70 ), as indicative of significance.

Sensitivity, specificity and precision metrics 

To compute sensitivity, specificity and precision statistics, we
designated genes depleted in CRISPR KO screens as positive
cases. Negative cases consisted of products evaluated using
CRISPR KO screens but were not depleted. Thus, the complete
set of genes evaluated by CRISPR KO served as the ground
truth against which we assessed SL target predictions. Pre-
dicted SL targets generated by our pipeline were considered
positive tests, while negative tests consisted of genes not pre-
dicted to be SL targets. Therefore, a predicted SL target that
was also depleted in CRISPR KO data was considered a true
positive. A true negative referred to a gene not predicted to be
an SL target and not depleted in CRISPR KO data. 

Datasets used for characterizing broadly antiviral 
candidate SL targets 

We employed several datasets to further characterize candi-
date SL target genes that maybe broadly antiviral for S AR S-
CoV-2, influenza A and possibly other viruses. Gene paralogs
were obtained from Ensembl using the biomaRt package ( 70 )
(version 2.50.3). Extremely multifunctional genes (or hubs)
were downloaded from MoonDB 2.0 (last accessed 3 Novem-
ber 2023) ( 71 ). Essential genes for 10 different cell lines were
downloaded from supplemental tables in ( 72 ). Drugs target-
ing predicted broadly antiviral SL targets were downloaded
from DrugBank (last accessed 22 September 2022) ( 73 ). 

Analysis software 

All analyses were performed using R (version 4.1.1). Heatmap
analyses utilized the pheatmap package (version 1.0.12) with
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ierarchical clustering based on Euclidean distances. GO: bi-
logical process and Reactome enrichment tests were con-
ucted using the clusterProfiler (version 4.2.2) ( 74 ) and Reac-
omePA ( 75 ) (version 1.38.0) packages, respectively. For func-
ional enrichment tests on predicted SL targets derived from
ur pipeline, the background gene set was limited to the com-
lement of genes in the SL pair database used for prediction.
he Benjamini–Yekutieli method was used to FDR-correct en-
ichment test P -values ( 76 ). For all datasets analyzed in our
tudy, gene and gene product identifiers were aligned to a ref-
rence list of gene symbols using the org.Hs.eg.db R package
 77 , https:// bioconductor.org/ packages/ org.Hs.eg.db/ ). 

esults 

L target prediction pipeline 

umerous mechanisms exist by which viruses may induce hy-
omorphic states within host cells that may introduce SL re-
ationships. These include modifications to virus–host PPIs,
ranscription, protein abundance, PTMs, protein reposition-
ng and proteolytic cleavage, among others ( 21 ,22 ). Conse-
uently, a myriad of omics-level data acquisition techniques
ould potentially facilitate the identification of VIHs and sub-
equently their SL partners, which could serve as host-based
herapeutic targets. To examine this, we developed a compu-
ational pipeline to integrate data from various omics data
ources, identify potential VIHs, and predict their prospective
L partners as antivirals (Figure 1 B). Here, we define VIHs
s gene products with reduced levels as evidenced by tran-
criptomics, translatomics or proteomics datasets, as well as
ene products with altered states as evidenced by phospho-
roteomes, ubiquitomes, RNA or protein interaction datasets,
nd others that might result in altered protein function. For
ach omics data category, we selected individual datasets from
s many applicable studies as were available in the literature,
hich led to the inclusion of 1–14 datasets per omics data

lass (Table 1 ). We aimed to encompass a large variety of infec-
ion conditions (varying cell lines, virus strains, infection mul-
iplicity and timeline) cited in the literature and thus adopted
n aggregate approach incorporating all available datasets
ithin each data class. Following this, we applied a filtering
ethodology to identify the candidate SL genes with the high-

st likelihood of successful experimental validation (Figure 1 ).
Initial identification of putative VIHs was achieved by

nding molecular species (transcripts, protein abundance or
TMs) that exhibited significant alterations following S AR S-
oV -2 infection. Subsequently , the SL partners of these VIHs
ere identified within human SL pairs represented in the Syn-
ethDB resource ( 54 ), a public repository of SL pairings de-
eloped for cancer research, as well as in SynLEGG ( 55 ), a
atabase of SL pairs predicted on the basis of transcriptomics
nd CRISPR KO screen data from almost 800 cancer cell lines.
ince genome-wide CRISPR KO screens in the setting of vi-
al infection should contain SL genes due to reduced viability
f cells with SL gene KOs ( 1 ), we used depleted CRISPR KO
ene pools to quantify the power of each omics data class for
redicting SL targets. These measures included enrichment of
andidate SL targets as well as specificity, sensitivity and preci-
ion statistics. Finally, we used the same depleted CRISPR KO
ene pool as a filter to further prioritize candidate SL targets.
his step also filtered out genes in the CRISPR KO-depleted
ene set that might not be in SL relationships such as antivi-
ral genes, by virtue of not being an SL partner of a VIH, and
genes that are essential for cell growth and survival based on
cell death in uninfected cells. The remaining proteins repre-
sent candidate SL targets that have led to decreased cell via-
bility when knocked out during viral infection compared to
infection alone in CRISPR-based KO screens in at least one
published viral infection scenario. 

We are aware that shortcomings exist in all three main data
sources: (i) altered gene products might still retain normal
functionality; (ii) SL pairs in the combined SL pair database
with human SL pairs from SynLethDB and SynLEGG might
have relevance in certain cancer contexts but may not form SL
relationships in the virus-infected cellular contexts we tested;
and (iii) some antiviral genes might be present in the CRISPR-
depleted genes and thus not represent SL interactors of VIHs.
However, our overall rationale for this pipeline is that by com-
bining information from the SL databases, the VIHs identified
from viral infection omics studies, and the CRISPR KO screens
on virus-infected cells, we strengthen the prediction of virus-
specific SL targets: (i) a VIH with an SL partner in our SL
pair database representing known or predicted SL interaction
is more likely to form an SL interaction than one that is not;
(ii) an SL gene that is partnered with a VIH in virus-infected
cells is more likely to be virus-relevant than one that is not; (iii)
an SL gene from a known SL interaction that is also depleted
in a CRISPR KO screen in virus-infected cells is more likely to
be virus-relevant than one that is not; and (iv) a CRISPR KO-
depleted gene in a virus-infected cell is more likely to be in an
SL relationship than one that is not depleted or is enriched. 

Data selection 

We curated datasets from published research focusing on
S AR S-CoV-2 and influenza viruses due to their ongoing global
health and pandemic implications. Given the intensive re-
search on these viruses and their relatives, many datasets de-
scribing various aspects of gene product functionality dur-
ing orthomyxovirus and coronavirus infections are available,
which is ideal for an exhaustive exploration of the most ac-
curate predictors for virus-specific SL targets from a practi-
cal perspective. In total, we compiled 56 omics datasets from
22 distinct studies on S AR S-CoV-2 infection, which analyzed
a wide spectrum of cellular changes (Table 1 ). The datasets
depict host interactors of viral proteins and RNA ( 32 , 42 , 44–
53 ,78 ), infection-induced alterations in host gene expression
( 31–33 , 35 , 79 ) and protein abundance ( 32 , 36–38 , 40 ), changes
in translation rates ( 40 ), and alterations in post-translational
modifications ( 32 ,39 ), cleavage ( 41 ) and the RBP ( 51 ), com-
prising 10 VIH data classes in total. Host interactors of vi-
ral proteins were further split based on technology: AP-MS
or BioID-MS (Table 1 ). Both techniques used individual viral
open reading frames (ORFs) as baits to identify interacting
host proteins. AP-MS was predominantly employed to cap-
ture virus–host multiprotein complexes ( 80 ) whereas BioID-
MS ( 81 ) serves as a complementary method to examine tran-
sient interactions based on physical proximity, a frequent oc-
currence throughout the viral infection cycle ( 82 ). 

SL target prediction 

Identification of VIHs and their SL partners by analyzing
omics data from virus-infected cells 
Our pipeline’s initial step (Figure 1 B) involves the iden-
tification of potential VIHs by selecting gene products

https://bioconductor.org/packages/org.Hs.eg.db/
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Figure 2. Percentage of predicted VIHs and SL targets for individual 
omics data classes. For each class, bar width indicates the percentage of 
VIHs (blue, upper bar) and SL targets (y ello w, lo w er bar) predicted out of 
the combined set of all predictions across data classes. The numbers at 
the ends of the bars indicate the absolute number of VIHs and SL targets 
identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

significantly impacted by viral infection, as evident from
the 10 omics data classes outlined in Table 1 . For VIH
identification, we relied on the significance criteria stipu-
lated in each dataset’s corresponding publication cited here
( 31–33 , 35–42 , 44–51 , 53 , 78 , 79 , 83 ). We subcategorized VIHs
based on the increase or decrease in molecular species abun-
dance post-infection for transcriptomics, proteomics, RNA-
binding proteomics and translatomics data. For phosphopro-
teome, ubiquitome and protein cleavage data, we ascertained
the total absolute change for each protein based on the aggre-
gate changes reported for all pertinent peptides. 

Following VIH identification from each data class, we nar-
rowed down the VIHs to human gene products that were
also present in the commonly utilized SynLethDB version 2.0,
and then identified the SL partners of putative VIHs (Fig-
ure 1 B and Table 2 ). SynLethDB ( 54 ) comprises a collec-
tion of SL pairs procured from various sources: confirmed SL
pairs from the literature based on genome-wide small inter-
fering RNA (siRNA), CRISPR KO screens, bispecific SL short
hairpin RNA screens, predictions from computational algo-
rithms, text mining and other databases. The SynLethDB ver-
sion we accessed for this study contains 35 943 human candi-
date SL pairs, encompassing 9855 unique candidate SL genes.
We also utilized the SynLEGG database, containing 107 545
predicted SL gene pairs. SynLEGG had minimal overlap with
SynLethDB SL pairs, adding nearly 7000 unique candidate
SL genes to our combined SL pair database. In this database,
each gene, on average, is in an SL relationship with three other
genes. 

Across all data classes, we identified a total of 10 454
unique VIHs and 6259 unique SL partners for those VIHs
(Table 3 ). The number of unique VIHs and SL partner tar-
gets identified using each data class differed substantially (Ta-
ble 3 and Figure 2 ). Transcriptomic, PPI and proteomic studies
yielded the highest numbers of VIHs and SL partners, whereas
translatome and cleavage studies produced the fewest. We 
found significant correlations between the number of datasets 
in a class and the total number of predicted VIHs (Pearson 

coefficient = 0.74, P -value = 0.01) as well as their predicted 

SL partners (Pearson coefficient = 0.71, P -value = 0.02). As 
expected, this confirmed the poor overlap observed between 

individual datasets within each data class, resulting from the 
wide range of infection scenarios included. The high numbers 
of predicted VIHs stem from the fact that the union of unique 
genes from two datasets is higher when the datasets have little 
overlap as compared to datasets that have large intersects. For 
example, no VIHs consistently appeared in all 14 of the tran- 
scriptomics datasets used. The maximum number of datasets 
in which a VIH consistently appeared was 9 and the median 

was 2. We chose the union of VIHs in each data class, as this 
approach offered a more comprehensive list of candidate SL 

targets from a broader range of relevant infection scenarios 
for further evaluation. 

Performance of omics data classes in predicting 

valid SL targets 

A central aim of our study was to evaluate the predictive ac- 
curacy of each data class in identifying legitimate, experimen- 
tally verified SL targets. Unfortunately, there is no universally 
accepted ‘gold standard’ for validating SL targets. To create 
a representative pool of SL targets that could serve as a sur- 
rogate gold standard bolstered by adequate experimental ev- 
idence, we aggregated depleted genes from multiple, diverse 
CRISPR KO screens ( Supplementary Table S1 ). However, we 
note the unknown percentage of false negatives associated 

with antiviral activity and potentially some essential genes as- 
sociated with these data. Moreover, there were no genes that 
exhibited universal depletion across all CRISPR KO datasets,
potentially due to variable cell type selection among other ex- 
perimental variables. As with our omics datasets, we opted to 

pool depleted genes from multiple disparate CRISPR screens 
to ensure representation of diverse S AR S-CoV-2 infection sce- 
narios. With these caveats, we used the list to assess the per- 
formance of each data class for predicting SL targets in S AR S- 
CoV-2 infection. Performance measures included hypergeo- 
metric enrichment tests as well as sensitivity, specificity and 

precision metrics. 
Sensitivity and specificity scores spanned a broad range 

across data classes, with the highest sensitivity observed in the 
transcriptome, virus–host PPI and proteome classes and the 
highest specificity within the translatome, RBP and cleavage 
data classes ( Supplementary Figure S1 ). Our analysis showed 

significant enrichment of SL targets among genes depleted 

in CRISPR KO studies, regardless of the employed omics 
data class. FDR-adjusted P -values ranged from 0.001 (trans- 
latome) to 3.44E −60 [virus–host PPI (BioID)]. However, we 
also found that the complement of genes in SynLethDB itself is 
highly enriched for genes depleted in CRISPR KO studies (hy- 
pergeometric test P -value = 3.75E −63). Therefore, to com- 
pare data class predictive capabilities in a way that accounts 
for the existing enrichment of SynLethDB for CRISPR KO- 
depleted genes, we performed a randomization test to deter- 
mine the level of enrichment one would expect by chance from 

each omics class (Figure 3 ). Thus, for each omics data class,
we randomly selected N genes from SynLethDB, where N is 
the number of VIHs found in SynLethDB for the data class.
We then collected the SL partners of the randomly selected 

https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
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Table 3. Number of VIHs identified among omics data classes, VIHs in SynLethDB and SynLEGG, and predicted SL partners 

Data class N VIHs 
N VIHs in 
SynLethDB 

N SL partners of VIHs 
(SynLethDB) 

N VIHs in Syn- 
LethDB + SynLEGG 

N SL partners of VIHs 
(SynLethDB + Syn- 
LEGG) 

Cleavage 77 60 520 68 2643 
Phosphoproteome 2281 1633 4225 1940 7619 
Proteome 1030 662 3269 810 5790 
RBP 217 175 784 191 2120 
Transcriptome 7941 4663 7783 5798 10 802 
Translatome 4 3 37 3 74 
Ubiquitinome 170 131 2481 148 3672 
Virus–host PPI (AP) 2078 1420 5273 1729 8403 
Virus–host PPI (BioID) 4193 2877 6184 3494 9440 
Virus–host RPI 312 251 1175 273 4063 
Total unique 10 454 6259 8993 7784 11 673 

Data classes are ordered alphabetically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

genes and computed hypergeometric P -values to test their en-
richment for CRISPR KO-depleted genes. This procedure was
repeated 10 000 times for each data class to build null distri-
butions of enrichment P -values. We then computed percentile
scores for each data class’s actual enrichment P -value relative
to the corresponding null distribution (Figure 3 ). We found
that interactomic data classes (virus–host PPI, virus–host RPI)
along with the cleavage data class were most significantly dis-
tinct from the null distributions ( > 95th percentile), indicating
that SL targets derived from these classes were significantly
enriched and the best predictors of SL targets. 

We also examined precision results from the same ran-
domization test and found that across all randomization it-
erations, predictive precision using SynLethDB was low. Me-
dian values for each data class’s null distribution of precision
scores were 0.13 or below, with the third quartile not exceed-
ing 0.2. This indicates that, across the different omics data
classes, statistical precision for predicting CRISPR-depleted
genes in a S AR S-CoV-2 context is limited by a high propor-
tion of false positives that arise when using SynLethDB to se-
lect SL partners from VIHs. This is most likely because Syn-
LethDB contains SL pairs derived from cancer research, and
many of those relationships are not applicable in the context
of viral infection. Thus, the low statistical precision we ob-
served for each omics data class may not reflect issues with
the data derived from the data classes themselves but rather
from false positive predictions inherent to using SynLethDB
in this research context. We also tested whether limiting Syn-
LethDB pairs to those with confidence scores ≥0.5 or 0.8
would enhance precision but found that, even at the 0.8 cut-
off, the highest precision value for a data class was 0.28, and
increases in precision came at the cost of reduced sensitivity,
which averaged 0.11 across classes. Therefore, to accurately
predict SL targets from any omics data class investigated here,
it is essential to further filter candidates using data from stud-
ies that validate the impact of target disruption on cell via-
bility, such as CRISPR KO and siRNA data, to reduce false
positives. 

The inclusion of antiviral genes that are not in an SL rela-
tionship with our ‘gold standard’ CRISPR KO-depleted genes
likely contributes to the observed low precision. To further
understand this, we cross-referenced a list of 77 known an-
tiviral proteins from DRAVP ( 84 ), a comprehensive database
of antiviral peptides and proteins based on the literature, with
our S AR S-CoV-2 and influenza candidate SL targets. Only a
small percentage, 0.8% and 0.5%, of the S AR S-CoV-2 and 

influenza candidate SL targets, respectively, matched known 

antiviral genes, confirming that our pipeline generally omits 
antiviral genes when predicting SL targets. 

We also investigated whether the predictive accuracy of 
each omics data class correlated with the number of datasets 
compiled for that class. Using results from the randomization 

test described above, we saw no significant correlations be- 
tween the number of datasets in a data class and percentile 
scores for enrichment, sensitivity, specificity or precision (data 
not shown). 

Discovering that the highest predictive sensitivity across all 
omics data classes was 0.61 for transcriptome, we aimed to 

boost the sensitivity of our pipeline by including additional 
SL pairs from the SynLEGG database. Unlike SynLethDB, the 
SL pairs in SynLEGG are derived from genes paired based 

on low expression and CRISPR KO depletion in 783 diverse 
cell lines without prior selection for cancer-related genes ( 55 ).
SynLEGG depends upon an algorithm (MultiSEp) for unsu- 
pervised assignment of cell lines into gene expression clus- 
ters, which provides the basis for analysis of CRISPR scores 
to discover mutually exclusive loss signatures and propose 
candidate SL pairs. Using the combined set of SL pairs from 

SynLethDB and SynLEGG, we increased the overall sensitiv- 
ity of our pipeline: The count of unique genes predicted as 
SL targets by at least one omics data class and also depleted 

in CRISPR studies rose by 16%, from 664 to 772. This in- 
crease in sensitivity was accompanied by a small drop in aver- 
age predictive precision across data classes from 0.11 to 0.09 

and a decrease in average specificity from 0.86 to 0.75 (Ta- 
ble 4 and Supplemental Figure S2 ). The remaining analyses 
and results reported here are derived from the version of our 
pipeline that uses the merged SynLethDB and SynLEGG SL 

pairs. 
Upon examining the pattern of positive predictions for can- 

didate SL genes that were also CRISPR KO-depleted SL tar- 
gets, we identified two distinct data class clusters: one clus- 
ter for the groups of candidate SL targets predicted by the 
transcriptome, proteome, phosphoproteome, ubiquitome and 

virus–host PPI omics data classes, and another cluster that in- 
cludes the virus–host RPI, RBP, cleavage and translatome data 
classes (Figure 4 ). The two primary clusters share overlapping 
SL targets but differ in the number of SL targets predicted.
Overall, the cluster consisting of transcriptome, virus–host 
PPI, phosphoproteome, proteome and ubiquitinome classes 

https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
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Table 4. Metrics of performance among omics data classes for predicting valid SL targets against SARS-CoV-2 infection 

Data class 
N candidate SL targets 
also CRISPR-depleted Sensitivity Specificity Precision 

Cleavage 184 0.19 0.88 0.07 
Phosphoproteome 542 0.56 0.65 0.07 
Proteome 480 0.50 0.74 0.08 
RBP 222 0.23 0.91 0.10 
Transcriptome 716 0.75 0.50 0.07 
Translatome 11 0.01 1.00 0.15 
Ubiquitinome 307 0.32 0.83 0.08 
Virus–host PPI (AP) 620 0.65 0.62 0.07 
Virus–host PPI (BioID) 676 0.70 0.57 0.07 
Virus–host RPI 317 0.33 0.81 0.08 
Total unique 772 

Table 5. Metrics of performance for predicting valid SL targets against influenza infection using omics data from SARS-CoV-2 infections 

Data class 
N candidate SL targets 
also CRISPR-depleted Sensitivity Specificity Precision 

Cleavage 235 0.14 0.87 0.09 
Phosphoproteome 694 0.41 0.62 0.09 
Proteome 514 0.31 0.71 0.09 
RBP 185 0.11 0.89 0.09 
Transcriptome 965 0.57 0.46 0.09 
Translatome 3 0.00 1.00 0.04 
Ubiquitinome 325 0.19 0.82 0.09 
Virus–host PPI (AP) 744 0.44 0.58 0.09 
Virus–host PPI (BioID) 857 0.51 0.53 0.09 
Virus–host RPI 345 0.20 0.80 0.09 
Total unique 1063 
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distinct features from coronaviruses: influenza viruses use sia- 
redicted a greater number of valid SL targets than the sec-
nd cluster consisting of virus–host RPI, RBP, cleavage and
ranslatome data classes. While this second cluster identified
 smaller number of candidate SL targets (lower sensitivity),
ts members predicted a higher proportion of true positives
higher precision) (Table 4 ). 

Our pipeline identified 772 genes as high-confidence SL tar-
ets (Table 4 , Figure 4 and Supplementary Table S2 ), sup-
orted by three crucial lines of evidence: (i) CRISPR KO screen
ata from virus-infected cells, highlighting that disrupting
hese genes impairs cell survival under such conditions; (ii)
ata indicating a negative genetic relationship with gene prod-
cts dramatically altered by viral infection; and (iii) indica-
ions of their involvement in SL relationships in the context
f cellular changes due to cancer. The remaining 188 CRISPR-
epleted genes (Table 4 and Figure 4 ), not flagged as SL part-
ers by our pipeline, may reflect host dependency factors not

dentified as VIHs by the omics data classes we investigated,
r they may reflect SL relationships that remain undiscovered.

unctional profiling of high-confidence SL targets 

e performed GO:biological process and Reactome enrich-
ent analyses to identify the cellular pathways and functions

ssociated with the 772 high-confidence SL targets mentioned
bove. There were 137 GO:biological process classes enrich-
ng for the SL targets, and they were primarily associated
ith RNA processing (including RNA splicing / processing
s well as ribosomal RNA- and noncoding RNA-related
rocesses), ribosomal biogenesis, mitochondrial gene expres-
ion and translation, aerobic cellular respiration, metabolism,
NA replication, chromosome organization, various DNA re-
air processes and the cell cycle ( Supplementary Table S3 ).
Significantly enriched biological processes ( P < 0.05) also in-
cluded virus-associated terms such as virion assembly and vi-
ral budding via the endosomal sorting complex required for
transport (ESCRT) complex. Reactome pathways showing en-
richment ( N = 123) were primarily associated with transla-
tion, mitochondrial processes, RNA splicing / processing, tran-
scription including transcriptional termination, the cell cycle,
DNA repair, stress responses, metabolism, ribosomal path-
ways, DNA replication, chromosome organization, p53 regu-
lation, nuclear envelope reassembly and cytosolic iron–sulfur
cluster assembly ( Supplementary Table S4 ). Virus-associated
pathways were also significantly enriched ( P < 0.05) and in-
cluded viral life cycle, viral transcription, translation and repli-
cation, as well as maturation and budding of virus. 

Overall, these findings align well with those of Pal et al. in
associating cellular stress responses, RNA splicing / processing,
DNA repair and translation with SL targets ( 27 ). However,
because our results are based on larger and more diverse
datasets, they revealed a broader array of biological functions
associated with SL targets in the context of S AR S-CoV-2 in-
fection and, importantly, included multiple processes corre-
sponding to viral infection themes that included the entire vi-
ral life cycle. 

Identification of common SL targets for 
SARS-CoV-2 and influenza viruses 

To investigate the existence of pan-viral SL targets, we ex-
plored whether some SL targets predicted from S AR S-CoV-
2 omics data might also be present in CRISPR-depleted gene
sets from cells infected with other viruses. We selected the in-
fluenza virus as a contrasting global viral threat, noting its

https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
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Figure 3. Null distributions of scores from tests quantifying enrichment 
of SL targets in CRISPR KO-depleted genes. Histograms indicate the 
distribution of hypergeometric test P -values expected by chance for each 
omics data class. The dashed line indicates where the omics class’s 
actual enrichment test value fell. The number to the right of the line is the 
percentile of that test with respect to the null distribution. 

Figure 4. Candidate SL targets across omics data classes depleted in 
SARS-CoV-2 CRISPR KO studies. Binary heatmap showing which genes 
in the SARS-CoV-2 CRISPR-depleted gene pool (rows) were SL partners 
of VIHs and thus predicted to be SL targets for each omics data class. 
Predicted targets are indicated in dark blue (refer to 
Supplementary Tables S1 and S2 for gene names). Light gray cells 
indicate CRISPR-depleted gene products that are not SL partners of VIHs 
and are thus not predicted to be SL targets. R o ws are sorted by number 
of omics data classes predicting the product as an SL target. 
lyloligosaccharides for cell entry, have a segmented genome 
and replicate in the host cell nucleus ( 85 ) in contrast to the 
continuous double-stranded RNA genome and cytoplasmic 
replication of coronaviruses ( 82 ). We compiled 1684 unique 
genes significantly depleted in three influenza CRISPR KO 

studies ( Supplementary Table S5 ) and assessed their predic- 
tion as SL targets using our pipeline. This comparison showed 

that precision remained uniformly low, akin to the S AR S-CoV- 
2 context, with sensitivity and specificity values suggesting no 

greater accuracy than random chance (with the sum of these 
values across data classes approximately 1.0) (Table 5 ). 

https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
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Figure 5. Candidate SL targets across omics data classes depleted in 
influenza A CRISPR KO studies. Binary heatmap showing which genes in 
the influenza CRISPR-depleted gene pool (rows) were predicted to be SL 
targets for each omics data class. As in Figure 4 , predicted targets are 
indicated in dark blue (refer to Supplementary Tables S5 and S6 for gene 
names). Light gray cells indicate CRISPR-depleted products not predicted 
to be an SL target. R o ws are sorted by number of data classes predicting 
the product as an SL target. 
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However, this analysis revealed that more than half of the
nfluenza CRISPR KO-depleted genes were predicted as SL
argets using the S AR S-CoV-2 omics data-based predictions
Figure 5 , Supplementary Table S6 ). This substantial overlap
ed us to hypothesize that a set of SL targets common to both
iral infections existed. Examining the overlap between signif-
cantly depleted genes in S AR S-CoV-2 and influenza CRISPR
O data ( Supplementary Tables S1 and S5 ), we identified 78
hared genes, of which 61 (78%) were predicted as SL targets
 Supplementary Table S7 ). These 61 genes potentially repre-
ent broad viral SL targets. Intriguingly, a GO:biological pro-
ess enrichment test found no significantly enriched processes
mong these genes using an FDR-correction cutoff of 0.1. A
eactome enrichment test identified one significantly enriched
athway: translation (FDR-adjusted P -value = 0.09). 
These 61 broadly antiviral candidate SL targets need to be
further scrutinized and prioritized before undergoing experi-
mental testing. Notably, only one of our broadly antiviral can-
didates was also predicted by Pal et al. as an SL target for
S AR S-CoV-2: poly(RC) binding protein 1 (PCBp1), which is
crucial for pre-mRNA processing, translation, ferroptosis and
the initiation of viral replication and viral translation ( 86 ). 

A key consideration for deprioritization includes high func-
tional interconnectivity, which risks off-target effects, as iden-
tified in the MoonDB database ( 71 ). Additionally, genes es-
sential in a specific or multiple cell lines should be avoided,
as their disruption could kill both infected and uninfected
cells ( 72 ). The presence of numerous paralogs in candidate
SL genes also demands careful consideration due to potential
functional redundancy hindering effective synthetic lethality.
Interestingly, gene pairs that are paralogs have been found to
engage in SL relationships more often than by chance ( 87 ).
The prioritization of VIH–SL pairs can consider these aspects,
with final candidates selected for their druggability and the
availability of existing drugs or ligands (Table 6 ). 

Discussion 

This study seeks to extend previous research establishing
that viruses expose SL relationships during infection, and
to identify VIH-SL partnerships that may be exploited in
the search for host-based antiviral therapeutics. An impor-
tant step in this effort is the establishment of a computational
pipeline for predicting SL targets. Since synthetic lethality is a
type of genetic interaction unexplored in infectious diseases,
such a pipeline, once fully established, can expand the num-
ber of antiviral drug targets and add to the knowledgebase of
pathogen biology. Our goal is for this pipeline to generate SL
targets to be examined, prioritized and experimentally vali-
dated. 

Our pipeline generated a list of potential SL targets that
are enriched with genes depleted in CRISPR KO studies spe-
cific to S AR S-CoV-2 infection. These targets were predicted
by using an array of available omics datasets, which were spe-
cific for virus-infected cells, in combination with two estab-
lished SL databases. One assumption we made was that the
SL partners of gene products undergoing significant changes in
virus-infected cells would be depleted in CRISPR KO screens,
thus potentially serving as SL targets. Our results supported
this assumption, notwithstanding the fact that the total num-
ber of SL partners of VIHs encompassed almost all SL genes
(11 673 / 12 348) represented in SynLethDB and SynLEGG
due to multiple SL partners per VIH. This confirms what has
become evident from studies in yeast, namely that almost ev-
ery gene can be in an SL partnership ( 88 ). An approach that
would further aid in the prediction of SL targets from CRISPR
KO screens is the addition of viral replication measurements
in addition to cell viability, a practice not typically adopted
for genome-wide functional screens. 

We also investigated whether different classes of omics data
would differ in their ability to accurately predict SL targets by
measuring whether SL prediction by some data classes was
better supported by CRISPR KO screens than others. Explor-
ing various omics classes, each interrogating different facets
of host–virus biology, we observed that despite varying VIH
predictions, there was substantial overlap in the SL vulnera-
bilities predicted from different omics classes. While we have
to take into consideration the unifying effect of filtering our

https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
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Table 6. Characteristics of candidate pan-viral SL targets potentially useful for prioritizing their confirmation 

Gene EMF gene 
Essential in 
N cell lines N paralogs Targeting drug (DrugBank ID) 

ACAD9 No 5 14 
ATXN7L3 No 3 4 
CHERP Yes 9 0 
CHMP2A No 10 4 
COX4I1 No 9 1 DB02659; DB04464 
CPSF2 No 10 3 
DDX11 No 2 3 
DDX49 No 10 38 
DNAJC19 No 1 1 
DPF1 No 0 0 
DRAM1 No 0 4 
DUX4 No 0 0 
EEF2 No 10 18 DB02059; DB03223; DB04315; DB08348; DB11823; DB12688 
EIF2S3 No 8 18 DB04315 
F2R No 0 16 DB00086; DB05361; DB09030; DB11300 
FDX2 No 0 1 
GOLGA8O No 0 18 
GPN2 No 9 2 
ISCA2 No 5 1 
KDM2A No 4 4 
LIG3 No 2 2 DB00290 
LRP1 No 0 0 DB00025; DB00031; DB00100; DB06245; DB13152; DB13998; DB13999 
MAOA No 0 0 DB00191; DB00752; DB00780; DB00805; DB00909; DB01037; DB01171; 

DB01247; DB01363; DB01381; DB01442; DB01472; DB01577; DB01626; 
DB03147; DB04017; DB04820; DB04821; DB04832; DB04850; DB05205; 
DB07641; DB07919; DB09244; DB09245; DB13876; DB14914;DB00182; 
DB00721; DB01168; DB01171 

MRPL43 No 8 0 
MRPS14 No 9 0 
MRPS21 No 5 0 
MTIF2 No 7 18 
MYBBP1A No 10 0 
NOL10 No 10 0 
P4HB No 0 13 DB01593; DB03615; DB09130; DB11638; DB14487; DB14533; DB14548 
PCBP1 No 9 12 
PDE4DIP No 9 1 
PDPK1 Yes 3 5 DB00482; DB01863; DB01933; DB01946; DB02010; DB03777; DB04522; 

DB06932; DB07033; DB07132; DB07300; DB07456; DB07457; DB12010 
PLEKHF2 No 0 13 
POLR2A No 10 2 
POLR2J No 0 3 
PPP2R1A No 9 2 DB02506; DB06905 
PTRH1 No 1 0 
PWP2 No 10 0 
RAD51 No 10 6 DB04395; DB12742 
ROS1 No 0 53 DB11986; DB12010 
RPL28 No 0 0 
RPL3 No 8 1 DB02494; DB04865; DB07374; DB08437; DB09092 
RPL36 No 7 0 
RUVBL1 No 10 1 
SBNO1 No 9 1 
SDHA No 8 0 DB04141; DB04657; DB04795; DB08689; DB09270 
SERINC3 No 0 4 
SLX4 No 1 0 
SMC2 No 10 7 
SMC5 No 8 1 
TAF6 No 10 1 
TCIRG1 No 0 0 DB01133 
TP53RK No 9 0 
TPT1 No 7 0 DB11093; DB11348; DB14481 
TRRAP No 10 5 
TUBB4B No 0 23 DB00518; DB00643; DB01873; DB03010; DB04910; DB05147; DB12695 
TXN No 5 4 DB12695 
UBE2I Yes 9 24 
VPS25 No 10 0 
WAPL No 0 0 

EMF, extremely multifunctional (MoonDB 2.0). The 17 bolded genes are not EMF, are essential in ≤3 cell lines and have ≤5 paralogs. However, we recommend 
that each gene be examined on a wider range of merits and / or by possible ranking algorithms, before testing on the bench. While we consider these to be 
important characteristics, no characteristic alone indicates a high-level SL target. 
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ata through SynLethDB, this may also indicate that com-
on biological pathways and functions may be altered upon
 AR S-CoV-2 infection rendering them vulnerable. Our find-
ngs demonstrate that valid SL targets can indeed be derived
rom different omics data types. Moreover, our data show that
redictions from host proteins that interact directly with viral
roteins or viral RNA outperform other omics data classes in
erms of enrichment for valid SL targets when controlling for
he unifying effect of SynLethDB. This suggests that the hy-
omorphic effects of viral infection may be strongest for pro-
eins that physically interact with viral gene products, which
ay lead to disruption of host protein complexes, interrup-

ion of cofactor binding or mislocalization. Many direct in-
eractors have also been shown to be host dependency factors
nd thus are essential for viral replication. Furthermore, we
peculate that omics datasets describing other ways in which
iral infection alters normal gene and protein functions, such
s changes in RNA splicing or additional post-translational
odifications, might also be beneficial for SL prediction, but

hey are currently fewer in number. 
Analyzing the high-confidence SL targets predicted by dif-

erent omics classes, we found that each data class varied in
ensitivity and specificity in predicting SL targets based on
unctional assays such as CRISPR KO screens ( Supplementary 
igure S1 ), indicating that some omics data classes might be
ore suitable than others for accurate SL prediction. Our ran-
omization analysis confirms this and highlights host–virus
nteractions as the best data classes for SL prediction. We also
iscovered that genes in existing SL databases are themselves
nriched for depleted genes in CRISPR KO studies. However,
e also found that using the databases to predict SL targets led

o low statistical precision across all omics data classes (Table
 ). This finding emphasizes the need to reduce false positives
hen predicting SL targets. An important way to do so is to

imit predicted targets to those found depleted in CRISPR KO
tudies. 

Recent findings by Pal et al. ( 27 ) confirmed that transcrip-
omics data alone could be used to predict SL target genes
eading to reduced viral replication and cell death in S AR S-
oV-2-infected cells when depleted. The authors reported dif-

erences in cell viability between infected and uninfected cells
or several of their top 26 candidate SL targets. We note sub-
tantial overlap in enriched cellular pathways and functions
etween our study and theirs, but also identified additional
athways that may become vulnerable in the virus-infected
ellular state, such as aerobic respiration, RNA splicing, tran-
cription, p53 regulation, ribosomal pathways, DNA repli-
ation, chromosome organization and iron–sulfur cluster as-
embly. This last process involves one of the oldest classes of
ioinorganic cofactors that support and modulate innate im-
une responses restricting viral replication, and some of the
roteins interacting with Fe–S clusters also support replica-
ion of viruses ( 89 ). Six of the proteins involved in such clus-
ers were predicted as SL partners in S AR S-CoV-2 infection
ERCC2, RTEL, CIA O1, CIA O3, NUBP1, NUBP2) by at least
ne and up to six omics classes in our screen and might thus
e worthwhile host targets for follow-up targeted KO stud-
es in infected cells. Additionally, our 772 high-confidence SL
argets were enriched for multiple Reactome and GO terms as-
ociated with viral infection, supporting the relevance of the
argets within the infection context. 

Inclusion of many diverse omics datasets as well as mul-
iple CRISPR KO studies generated a large pool of SL can-
didate genes for further prioritization and validation. Broad-
ening our investigation, we identified SL targets that may be
pan-viral. Even with their distinct life cycles and biology, both
coronaviruses and influenza viruses shared common host SL
targets. One example is 60S ribosomal protein L28 (RPL28)
that plays a role in negatively regulating an influenza A virus
(IAV) encoded peptide for antigen presentation, thus poten-
tially modulating immunosurveillance ( 90 ). Two other candi-
date SL targets for both S AR S-CoV-2 and IAV that emerged
from our screen, VPS25 and charged multivesicular body pro-
tein 2A (CHMP2A), are of particular interest. They are part
of the ESCRT complex ( 91–93 ), which is an important com-
ponent of a major pathway for the lysosomal degradation of
monoubiquitinated membrane proteins ( 94 ) and is involved
in the abscission step of cytokinesis and in the budding pro-
cess of several enveloped as well as nonenveloped viruses. A
recent report shows that depletion of VPS25 by RNA inter-
ference leads to decreased rotavirus replication in CaCo2 cells
via reduced viral entry ( 95 ), confirming the possible efficacy
of targeting VPS25 as an antiviral strategy. Both VPS25 and
CHMP2A represent candidate pan-viral SL targets involved in
multivesicular body assembly, which is directed by the ESCRT
complex and has been shown to be involved in the early viral
life cycle of multiple viruses ( 96–98 ). Furthermore, CHMP2A
interacts with S AR S-CoV-2 Orf9b and has been shown to
contribute to the budding of a variety of viruses including
HIV ( 87 ), equine infectious anemia virus ( 99 ), and murine
leukemia virus ( 88 ), suggesting a critical role for virus re-
lease and thus a potential role as a pan-viral SL target. While
these three candidate SL targets could be promising, none are
listed as drug targets in DrugBank. Additionally, CHMP2A
and VPS25 are essential in 10 / 10 cell lines tested in a recent
study ( 72 ). 

When considering genes in our list of 61 potentially pan-
viral SL targets with more ideal characteristics, we found four
genes that are known drug targets, are neither multifunctional
nor widely essential, and have zero or very few paralogs.
These genes include ligase 3 (LIG3), low-density lipopro-
tein receptor-related protein 1 (LRP1), monoamine oxidase
A (MAOA) and T-cell immune regulator 1, ATPase H 

+ trans-
porting V0 subunit A3 (TCIRG1). Of these, LIG3 fulfills sev-
eral other criteria that make this gene potentially a strong SL
target. For example, the cellular protein PARP1 interacts di-
rectly with the ORF14 encoded protein of S AR S-CoV-2 as well
as with the polymerase complex of IAV ( 42 , 44 , 100 ) render-
ing it a VIH. LIG3 is a predicted SL partner of PARP1 and
the two genes are paralogs, a strong predictor for SL interac-
tions. Additionally, the LIG3 and PARP1 proteins physically
interact and participate in DNA repair, mitochondrial orga-
nization, and regulation of DNA metabolism, among other
processes ( 101 ,102 ). Previous research has shown that PARP1
is involved in the replication process of S AR S-CoV-2 and
other viruses ( 103 ); therefore, it is possible that depletion
of its SL partner LIG3 could critically impair viral replica-
tion and / or lead to the killing of infected cells. Thus, our
results widen the future exploration scope for therapeutic
strategies against multiple viruses, for example by using com-
bined drug regimens that could target two or more host pro-
teins at otherwise subtherapeutic levels, potentially minimiz-
ing off-target effects. However, extensive and systematic in-
vestigation is required to determine the suitability of these
and other candidate SL genes as drug targets for antiviral
therapy. 

https://academic.oup.com/narmolmed/article-lookup/doi/10.1093/narmme/ugad001#supplementary-data
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It is important to note that our methodology, while promis-
ing, is not without limitations. We recognize that no single
dataset or database can predict or validate virus-specific SL
targets with absolute accuracy. For example, not all gene prod-
ucts with altered expression or changed modifications are nec-
essarily true VIHs with reduced functionality. Furthermore,
CRISPR KO-depleted genes are not a true ‘gold standard’ for
SL prediction, but they currently provide the best available
type of data suitable for assessing performance in support of
a gene’s SL candidacy . Additionally , the SynLethDB database
used here contains SL gene pairs derived primarily from cancer
cell lines and tumors ( 54 ), and additional SL pairs from Syn-
LEGG were evaluated in cancer cell lines as well ( 55 ). Thus,
while these databases include many SL interactions that are
relevant in both cancer and viral infection states, it will con-
tain some SL targets that are irrelevant in the virus-infected
cellular state. It may also lack some targets that are impor-
tant in viral infections. Yet, when available data are combined
in the manner demonstrated in our study, they can predict a
significant number of candidate SL genes that can be further
constrained and validated in laboratory settings using virus-
infected cell lines and animal models. 

To prioritize SL targets for experimental validation, fold-
change values for VIHs in omics ( 27 ) and CRISPR datasets
could be used to rank their associated SL partners as poten-
tial targets. The ‘SL statistics’ score provided by SynLethDB
(a weighted confidence score based on the source of the SL
interaction) and the number of VIH partners paired with a
predicted SL target ( 27 ) could also provide additional met-
rics for ranking. Approaches that have been shown to enrich
for SL interactions in a more generic and thus less context-
specific manner include pairing paralogs ( 87 ) as well as coreg-
ulated or mutually exclusive genes ( 104 ,105 ), in addition to
pairing genes that exhibit certain network topology features
( 106 ). Some of these data-driven algorithms are part of SL-
Cloud ( 105 ), a platform that was developed for the cancer
field but can be utilized for infectious disease research. Any
of the above metrics alone or in combination could be inte-
grated into our pipeline to potentially improve predictive per-
formance and help prioritize SL targets for validation. 

To summarize, our research has demonstrated that virus-
specific SL targets can be predicted from various omics data
classes with varying levels of predictive power. We found
that SynLethDB is highly enriched for CRISPR-depleted genes
and has a unifying effect on the predictive capacities of
the omics data classes. We also found that interactomic
data classes performed better in predicting valid SL targets
than others. This may be due to the fact that direct interac-
tions of host proteins with viral factors are among the ear-
liest cellular changes following infection and all other alter-
ations occur as a consequence of these interactions. Moreover,
physical protein interactions may function more like binary
switches controlling protein functions, while other alterations
tend to occur more gradually, likely leading to less abrupt dis-
turbances in protein functions. Regardless of data class, pre-
dicted virus-exposed SL genes are highly enriched in depleted
CRISPR KO data from virus-infected cells. Thus, our pipeline
allows for a new application of many already existing high-
throughput infectious disease datasets that are often underuti-
lized. In human cells, each VIH was seen to form SL interac-
tions with an average of three genes; in yeast, every gene is in
at least one SL relationship across different growth conditions
( 11 ,88 ). Hence, it was not surprising that our study found
many candidate SL targets for the two viruses investigated, all 
having the potential to specifically disrupt virus-infected cells.
These candidate SL targets add to the number of potential 
host-based antiviral targets, mostly host dependency factors,
which have been previously described in the literature. With 

further validation, our presented strategy for identifying SL 

targets has the potential to identify additional SL targets for 
other viruses and cell-dependent pathogens, leading to new 

broadly targeting host-based therapies against infectious dis- 
eases. 
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