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Abstract: The piezoelectric effect of piezoelectric quasicrystalline materials is coexcited by phonon
and phason fields. Piezoelectric quasicrystalline materials have excellent properties of both piezoelec-
tric materials and quasicrystalline materials, which are expected to be used as actuators in the fields of
aerospace, automotive, and intelligent manufacturing. Based on the three-dimensional elastic theory
of piezoelectric quasicrystals, the state space equation for axisymmetric piezoelectric quasicrystal
circular plate actuators is derived by using the state space method. Afterwards, the finite Hankel
transformation is performed on the state equation, and a system of ordinary differential equations
and corresponding boundary conditions are obtained. Finally, the exact solution of axisymmetric
bending of one-dimensional hexagonal piezoelectric quasicrystal circular actuators under gener-
alized elastic simply supported boundary conditions is obtained by using the propagator matrix
method. Numerical results are given to compare the degradation results in this paper with those in
the literature, and present the influences of the thickness-to-span ratio and stacking sequence on the
phonon, phason, and electric fields when the surface of the laminated circular actuators is subjected
to mechanical load. The exact solution obtained does not introduce any deformation assumption;
therefore, the exact solution can provide references for numerical calculations of the mechanical
behavior of piezoelectric quasicrystals.

Keywords: piezoelectric quasicrystals; circular actuator; axisymmetric bending; state space method;
exact solution

1. Introduction

Piezoelectric materials, known as smart materials, are rapid response and high resolu-
tion, which make them increasingly popular as ideal candidates for actuators and sensors.
Piezoelectric elements are usually incorporated with composite laminates to obtain better
stiffness, lightness, and reliability [1], which are applied in aerospace, medical engineering,
biotechnological engineering, micro-electromechanical systems, and other fields. In order to
reasonably design the laminated piezoelectric devices, the precise deformation solution of
such a structure must be well understood. Establishing an accurate analytical model is an ef-
fective means of predicting the deformation behavior of laminated piezoelectric devices. By
means of the energy method, Wei and Xue [2] proposed a simple nonlinear model to study
the bending wave in a piezoelectric laminated beam. A surface/interface piezoelectric
theory was utilized by Zhu et al. [3] to model the nonlinear vibration control of sandwich
nano-shells with functionally graded piezoelectric nanocomposite sensors and actuators.
Based on the Runge–Kutta method, Dong et al. [4] presented the active vibration control of
sandwich cylindrical shells with piezoelectric actuator/sensor layers. Dehsaraji et al. [5]
used the modified couple stress theory to present a new three-dimensional framework for
buckling analysis of functionally graded piezoelectric cylindrical nano/micro-shells. Min
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et al. [6] proposed an artificial neural network model to predict the displacement amplitude
and natural frequency of piezoelectric actuated rectangular plates.

As a new solid configuration, quasicrystals (QCs) have long-range quasi-periodic
translational order and rotational symmetry, yet they lack the three-dimensional periodicity
and translational symmetry that was discovered by Shechtman et al. [7]. Different from the
well-known phonon excitation, a new elementary excitation (phason) is also introduced
to describe the rearrangements of atomic configurations in the elastic energy theory of
QCs [8]. For piezoelectric QCs, it can be known that their piezoelectric effects are coexcited
by phonon and phason fields [9]. Therefore, piezoelectric QCs may possess the superior
characteristics of both QCs and piezoelectric materials, which are expected to be used
as sensors and actuators [10]. Due to the unique properties and wide perspective of
applications of piezoelectric QCs, a lot of research has been carried out. Fujiwara et al. [11]
first presented the electronic structure and electron transport property of two-dimensional
QCs. Due to the good symmetry of one-dimensional (1D) QCs, the piezoelectric effect of 1D
QCs has received extensive attention from more scholars. By introducing two displacement
functions and utilizing the rigorous operator theory, Li et al. [12] obtained a set of 3D
general solutions to static problems of 1D hexagonal piezoelectric QCs. Zhou and Li [13]
studied cracking problems in 1D hexagonal piezoelectric QCs and determined the exact
closed-form phonon and phason stress and electric fields. Zhang et al. [14] applied the
Legendre polynomial method to study the guided wave propagating in a 1D hexagonal
piezoelectric QC plate. In terms of the complex function method, Li et al. [15] solved
the problem of the interaction between a screw dislocation and an elliptical hole with
two asymmetric cracks in a 1D hexagonal piezoelectric QC. By utilizing the pseudo-Stroh
formalism, Li et al. [16] obtained an exact solution for a functionally graded multilayered
1D QC plate. Hu et al. [17] solved the problem of collinear interface cracks between 1D
hexagonal piezoelectric QCs under anti-plane shear and in-plane electric loading. Based
on the conformal mapping technique and analytical continuation theory, Hu et al. [18]
investigated the circular cylindrical inclusions in an infinite 1D piezoelectric QC medium.

Axisymmetric circular piezoelectric actuators are a typical kind of smart device in
engineering. As for axisymmetric problems, the governing equations reduce to ordinary
differential equations, and thus the three-dimensional problem can be simplified. Such
a simplification is not only mathematically convenient but also of practical implications,
because many circular piezoelectric devices have axisymmetric characteristics in geometry,
physics, and loading simultaneously. Therefore, axisymmetric piezoelectric problems have
attracted a lot of attention from numerous scholars. In terms of the state space method, Ding
et al. [19] made an investigation on the free axisymmetric vibration of transversely isotropic
piezoelectric circular plates. By extending the state space method, Li et al. [20] studied the
influence of the properties of functionally graded materials on piezoelectric quasicrystal
circular plates. By using the direct displacement method, Wang et al. [21] studied the
axisymmetric bending of transversely isotropic and functionally graded circular plates
under arbitrarily transverse loads. Yang et al. [22] assumed the variable separation form of
the displacement function and electrical potential function, and obtained the electro-elastic
solution of the axisymmetric deformation problem of functionally graded piezoelectric
circular plates. By utilizing the direct displacement method, Zhao et al. [23] studied the
axisymmetric problem of a heterogeneous multiferroic circular plate subjected to electric
loading. By virtue of the perturbation method, Lv et al. [24] studied the axisymmetric
contact vibration of a rigid spherical punch on a piezoelectric half-space.

Due to the introduction of phason fields, the electro-elastic theory for piezoelectric
materials cannot be directly applied to QCs. Therefore, it is necessary to develop some
theories to predict the phonon–phason–electric coupling behaviors of piezoelectric QCs. To
the best of the authors’ knowledge, research on the electro-elasticity of circular actuators
made of homogeneous QCs has not yet been investigated. To this end, the axisymmet-
ric circular piezoelectric quasicrystal plate model is established based on the state space
method, which incorporates the phonon, phason, and electric fields simultaneously. By
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virtue of the finite Hankel integral transform, the state vector equations of axisymmetric
piezoelectric QCs can be reduced to a system of ordinary differential equations. Solving
the ordinary differential equations analytically and using a propagator matrix, the exact
electro-elastic axisymmetric solution of 1D piezoelectric quasicrystal circular plate actu-
ators under generalized elastic simply supported boundary conditions is obtained. The
mechanical boundary condition is considered in the numerical examples, and subsequently
the influences of the thickness-to-span ratio and stacking sequence on phonon, phason,
and electric fields are presented.

2. Description of Actuator and Governing Equations

Consider a 1D piezoelectric QC laminated circular plate model of radius a, j-th layer
thickness hj, and the total thickness h, as shown in Figure 1. A cylindrical coordinate system
(r, θ, z) is attached to the circular plate with the origin placed at the shaft center, the r, θ,
z-axes are taken along the radial, circumferential, and axial of the circular plate, respectively,
and the plane z = 0 lies on the top surface of the circular actuator. φ is electric potential,
and the polarization and quasiperiodic directions of the 1D piezoelectric QCs are assumed
to be along the z-axis.
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Figure 1. The axisymmetric 1D piezoelectric QC laminated circular plates model. (a) Main view;
(b) top view.

As for the axisymmetric problem of 1D piezoelectric QC circular actuators, all the
phonon–phason–electric field coupling responses are independent of θ. The governing
equations for the axisymmetric problem of 1D hexagonal piezoelectric QC circular plate
actuators in the absence of body forces and free charges can be expressed in the non-
dimensionalized form as [20,25]:

∂σrr
∂r + 1

s
∂σrz
∂z + σrr−σθθ

r = 0,
∂σrz
∂r + 1

s
∂σzz
∂z + σrz

r = 0,
∂Hzr

∂r + 1
s

∂Hzz
∂z + Hzr

r = 0,
∂Dr
∂r + 1

s
∂Dz
∂z + Dr

r = 0,

(1)

where σij and Hij (i, j = r, θ, z) are non-dimensionalized phonon stresses and phason
stresses, respectively; Dr and Dz refer to dimensionless electric displacements; and s is the
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thickness to span ratio of the circular plate. The following dimensionless quantities are
introduced in the non-dimensionalized equations:

r = r/a, z = z/h, hj = hj/h, s = h/a,

ur = ur/h, uz = uz/h, wz = wz/h,

σrr = σrr/C, σθθ = σθθ/C, σzz = σzz/C,

σrz = σrz/C, Hzz = Hzz/C, Hzr = Hzr/C,
Cij = Cij/C, Rij = Rij/C, Kij = Kij/C,

ξ ij = ξij/ξ, eij = eij/
√

Cξ, dij = dij/
√

Cξ,

Di = Di/
√

Cξ, φ = φ
√

ξ/C/h,

(2)

in which C and ξ are elastic constants and dielectric constants, respectively. Here, C
and ξ are taken as the corresponding elastic constants C(1)

11 and ξ
(1)
33 of the first layer

of the circular plate; Cij, Rij, and Kij denote phonon elastic constants, phonon–phason
coupling elastic constants, and phason elastic constants, respectively; eij, dij, and ξij refer to
phonon piezoelectric constants, phason piezoelectric constants, and dielectric constants,
respectively; ur and uz represent phonon displacements; wr is phason displacements; and
Di stands for electric displacements.

Based on the dimensionless formulations in Equation (2), the constitutive relations for
1D hexagonal piezoelectric QCs in cylindrical coordinates can be rewritten as:

σrr = sC11
∂ur
∂r + sC12

ur
r + C13

∂uz
∂z + R1

∂wz
∂z + e31

∂φ
∂z ,

σθθ = sC12
∂ur
∂r + sC11

ur
r + C13

∂uz
∂z + R1

∂wz
∂z + e31

∂φ
∂z ,

σzz = sC13
∂ur
∂r + sC13

ur
r + C33

∂uz
∂z + R2

∂wz
∂z + e33

∂φ
∂z ,

σrz = σzr = C44

(
s ∂uz

∂r + ∂ur
∂z

)
+ sR3

∂wz
∂r + se15

∂φ
∂r ,

Hzr = R3

(
s ∂uz

∂r + ∂ur
∂z

)
+ sK2

∂wz
∂r + sd15

∂φ
∂r ,

Hzz = sR1
∂ur
∂r + sR1

ur
r + R2

∂uz
∂z + K1

∂wz
∂z + d33

∂φ
∂z ,

Dr = e15

(
s ∂uz

∂r + ∂ur
∂z

)
+ sd15

∂wz
∂r − sξ11

∂φ
∂r ,

Dz = se31
∂ur
∂r + se31

ur
r + e33

∂uz
∂z + d33

∂wz
∂z − ξ33

∂φ
∂z .

(3)

3. State Formulation and Hankel Transform

For layer j of the 1D piezoelectric QC laminated circular actuators, shown in Figure 1,
if ur, σzz, Hzz, Dz, σrz, uz, wz, and φ are set as state variables, the state space equation for
layer j can be obtained from Equations (2) and (3) as:

∂
¯
Rj(r, z)

∂z
=

[
0 Aj
Bj 0

]
¯
Rj(r, z), (4)

where
¯
Rj =

[
ur σzz Hzz Dz σrz uz wz φ

]T , (5)

and the superscript “T” represents the matrix transpose. The matrices Aj and Bj take
the form:
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Aj =

[
Aj1 Aj2
Aj3 Aj4

]
, Aj1 =

[
α1 −s ∂

∂r
−s
(

1
r +

∂
∂r

)
0

]
, Aj2 =

[
−α2

∂
∂r −α3

∂
∂r

0 0

]
,

Aj3 =

 −α2

(
1
r +

∂
∂r

)
0

−α3

(
1
r +

∂
∂r

)
0

, Aj4 =

 α4

(
1
r

∂
∂r +

∂2

∂r2

)
α5

(
1
r

∂
∂r +

∂2

∂r2

)
α5

(
1
r

∂
∂r +

∂2

∂r2

)
α6

(
1
r

∂
∂r +

∂2

∂r2

) ,

(6)

and

Bj =

[
Bj1 Bj2
Bj3 Bj4

]
, Bj1 =

 β1

(
∂2

∂r2 +
1
r

∂
∂r −

1
r2

)
β2

∂
∂r

β2

(
1
r +

∂
∂r

)
β5

, Bj2 =

[
β3

∂
∂r β4

∂
∂r

β6 β7

]
,

Bj3 =

 β3

(
1
r +

∂
∂r

)
β6

β4

(
1
r +

∂
∂r

)
β7

, Bj4 =

[
β8 β9
β9 β10

]
.

(7)

We also obtain other derived variables as

σrr(r, z) = − 1
s

[
β11

ur(r, z)
r + β1

∂ur(r, z)
∂r + β2σzz(r, z) + β3Hzz(r, z) + β4Dz(r, z)

]
,

σθθ(r, z) = − 1
s

[
β1

ur(r, z)
r + β11

∂ur(r, z)
∂r + β2σzz(r, z) + β3Hzz(r, z) + β4Dz(r, z)

]
,

Dr(r, z) = 1
s

[
α3σrz(r, z)− α5

∂wz(r, z)
∂r − α6

∂φ(r, z)
∂r

]
,

Hzr(r, z) = 1
s

[
α2σrz(r, z)− α4

∂wz(r, z)
∂r − α5

∂φ(r, z)
∂r

]
,

(8)

in which the definition of parameters αm (m = 1, 2, . . . , 6) and βn (n = 1, 2, . . . , 11) are
presented in Appendix A.

To deal with the axisymmetric problem of 1D piezoelectric QC circular plates, the
finite Hankel transform is introduced, which is defined as:

Jµ[ f (r, z)] =
1∫

0

r f (r, z)Jµ(kr)dr, (9)

where Jµ(kr) is the µ-th order Bessel function of the first kind. According to the definition
in Equation (9), the state space vector can be represented as:

Rj(k, z) =



Ur(k, z)
S(k, z)
H(k, z)
D(k, z)
T(k, z)

Uz(k, z)
W(k, z)
F(k, z)


j

=



J1[ur(r, z)]
J0[σzz(r, z)]

J0
[
Hzz(r, z)

]
J0
[
Dz(r, z)

]
J1[σrz(r, z)]
J0[uz(r, z)]
J0[wz(r, z)]
J0
[
φ(r, z)

]


j

. (10)

By using Equations (9) and (10), the finite Hankel transformation is performed on the
state equation shown in Equation (4) leading to:

∂Rj(k, z)
∂z

= Kj(k)Rj(k, z) + Qj(k, z), (11)

in which the matrix Kj is
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Kj(k) =
[

0 Kj1(k)
Kj2(k) 0

]
,

Kj1(k) =


α1 sk α2k α3k
−sk 0 0 0
−α2k 0 −α4k2 −α5k2

−α3k 0 −α5k2 −α6k2

, Kj2(k) =


−β1k2 −β2k −β3k −β4k

β2k β5 β6 β7
β3k β6 β8 β9
β4k β7 β9 β10

,
(12)

and the matrix Qj is

Qj(k, z) =
[
Qj1 Qj2 Qj3 Qj4 Qj5 Qj6 Qj7 Qj8

]T
,

Qj1 = −suz(1, z)J1(k)− α2wz(1, z)J1(k)− α3φ(1, z)J1(k),

Qj2 = −sσrz(1, z)J0(k),

Qj3 =
[
−α2σrz(1, z) + α4

∂wz(1,z)
∂r + α5

∂φ(1,z)
∂r

]
J0(k) +

[
α4kwz(1, z) + α5kφ(1, z)

]
J1(k),

Qj4 =
[
−α3σrz(1, z) + α5

∂wz(1,z)
∂r + α6

∂φ(1,z)
∂r

]
J0(k) +

[
α5kwz(1, z) + α6kφ(1, z)

]
J1(k),

Qj5 =
[

β1
∂ur(1,z)

∂r + β1ur(1, z) + β2σzz(1, z) + β3Hzz(1, z) +β4Dz(1, z)
]

J1(k)− β1kur(1, z)J0(k),

Qj6 = β2ur(1, z)J0(k),

Qj7 = β3ur(1, z)J0(k),

Qj8 = β4ur(1, z)J0(k).

(13)

The following formulations can be obtained by letting r = 1 in Equation (8):

sDr(1, z) = α3σrz(1, z)− α5
∂wz(1,z)

∂r − α6
∂φ(1,z)

∂r ,

sσrr(1, z) = −β11ur(1, z)− β1
∂ur(1,z)

∂r − β2σzz(1, z)− β3Hzz(1, z)− β4Dz(1, z),

sHzr(1, z) = α2σrz(1, z)− α4
∂wz(1,z)

∂r − α5
∂φ(1,z)

∂r .

(14)

By substituting Equation (14) into Equation (13), some submatrices in the matrix Qj
can be simplified as:

Qj3 = −sHzr(1, z)J0(k) + α4kwz(1, z)J1(k) + α5kφ(1, z)J1(k),

Qj4 = −sDr(1, z)J0(k) + α5kwz(1, z)J1(k) + α6kφ(1, z)J1(k),

Qj5 = (C12 − C11)s2ur(1, z)J1(k)− sσrr(1, z)J1(k) − β1kur(1, z)J0(k).

(15)

By extending the generalized elastic simple support boundary condition of the circular
plate proposed by Ding et al. [19] to 1D piezoelectric QC circular plates, we obtain:

uz(1, z) = 0, wz(1, z) = 0, φ(1, z) = 0 ,
[(

C11 − C12
)
sur(1, z) + σrr(1, z)

]
= 0 and J0(k) = 0. (16)

Under the above boundary condition, the matrix Qj(k, z) in Equation (11) is elimi-
nated, and thus Equation (11) becomes a homogeneous equation:

∂Rj(k, z)
∂z

= Kj(k)Rj(k, z). (17)

The solution of the ordinary differential equation shown in Equation (17) can be
written as:

Rj(k, z) = Tj(k, z)Rj(k, 0), (18)

where the propagator matrix Tj is

Tj(k, z) = exp
[
Kj(k)z

]
. (19)
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It is assumed that there is a perfect connection interface between two adjacent layers
of circular laminates. Taking z = zj corresponding to layer j and layer j + 1 as an example,
the state variables meet the following relationship:

Rj+1(k, 0) = Rj(k, hj). (20)

Combining with the interface connection conditions and propagator matrix, the state
variables of the circular plate at any z-level can be expressed as:

Rp(k, zp) = P(k)R1(k, 0), (21)

where

P(k) =
N

∏
j=1

Tj(k, hj). (22)

4. Boundary Condition and Its Solutions

Considering that the top and bottom surfaces of the circular actuator are subjected
to mechanical loading, and the dimensionless mechanical boundary conditions can be
expressed as

σzz(r, 0) = σ0(r), σzz(r, 1) = σ1(r), (23)

and the dimensionless electrical boundary condition is:

Dz(r, 0) = Dz(r, 1) = 0. (24)

According to the definition of finite Hankel transformations in Equation (9), the
loading conditions in Equation (23) can be written as:

S(k, 0) =
∫ 1

0 rσ0(r)J0(kr)dr,
S(k, 1) =

∫ 1
0 rσ1(r)J0(kr)dr.

(25)

By virtue of Equations (21) and (23), the state space vector R1(k, 0) on the top surface
is obtained:

Ur(k, 0)
Uz(k, 0)
W(k, 0)
F(k, 0)

 =


P21 P26 P27 P28
P31 P36 P37 P38
P41 P46 P47 P48
P51 P56 P57 P58


−1

S(k, 1)
H(k, 1)
D(k, 1)
T(k, 1)

−


P21 P26 P27 P28
P31 P36 P37 P38
P41 P46 P47 P48
P51 P56 P57 P58


−1

P22 P23 P24 P25
P32 P33 P34 P35
P42 P43 P44 P45
P52 P53 P54 P55

×


S(k, 0)
H(k, 0)
D(k, 0)
T(k, 0)

. (26)

With the aid of Equations (18) and (20), we can obtain the state space vector Rj(k, z)
at any j-th layer. Based on the inverse Hankel transform [26], the dimensionless physical
quantities of phonon, phason, and electric fields are obtained:

ur(r, z) = 2∑
i

Ur(ki, z) J1(kir)
[J1(ki)]

2 , σzz(r, z) = 2∑
i

S(ki, z) J0(kir)
[J1(ki)]

2 ,

Hzz(r, z) = 2∑
i

H(ki, z) J0(kir)
[J1(ki)]

2 , Dz(r, z) = 2∑
i

D(ki, z) J0(kir)
[J1(ki)]

2 ,

σrz(r, z) = 2∑
i

T(ki, z) J1(kir)
[J1(ki)]

2 , uz(r, z) = 2∑
i

Uz(ki, z) J0(kir)
[J1(ki)]

2 ,

wz(r, z) = 2∑
i

W(ki, z) J0(kir)
[J1(ki)]

2 , φ(r, z) = 2∑
i

F(ki, z) J0(kir)
[J1(ki)]

2 ,

(27)

and
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σrr(r, z) = (C12 − C11)s
ur(r,z)

r − 2β1
s ∑

i
kiUr(ki, z) J0(kir)

[J1(ki)]
2 −

β2
s σzz(r, z) − β3

s Hzz(r, z)− β4
s Dz(r, z),

σθθ(r, z) = −(C12 − C11)s
ur(r,z)

r − 2β11
s ∑

i
kiUr(ki, z) J0(kir)

[J1(ki)]
2 −

β2
s σzz(r, z)− β3

s Hzz(r, z)− β4
s Dz(r, z),

Dr(r, z) = α3
s σrz(r, z) + 2α5

s ∑
i

kiW(ki, z) J1(kir)
[J1(ki)]

2 +
2α6

s ∑
i

kiF(ki, z) J1(kir)
[J1(ki)]

2 ,

Hzr(r, z) = α2
s σrz(r, z) + 2α4

s ∑
i

kiW(ki, z) J1(kir)
[J1(ki)]

2 +
2α5

s ∑
i

kiF(ki, z) J1(kir)
[J1(ki)]

2 .

(28)

5. Numerical Examples

Consider a 1D piezoelectric QC circular actuator subjected to mechanical loading,
which is under the generalized elastic simply supported boundary conditions. Three-
layered circular plates with different stacking sequences are considered in this paper. They
are piezoelectric materials/piezoelectric QCs/piezoelectric materials (P/Q/P), piezoelec-
tric QCs/piezoelectric materials/piezoelectric QCs (Q/P/Q), and piezoelectric materi-
als/piezoelectric materials/piezoelectric materials (P/P/P), respectively. The correspond-
ing material parameters of 1D hexagonal piezoelectric QCs [12] and piezoelectric materials
(PZT4) [19] are tabulated in Table 1.

Table 1. Material constants.

1D Hexagonal Piezoelectric QCs Piezoelectric Materials (PZT4)

Phonon elastic (Gpa)

C11 = 150
C12 = 100

C11 = 139
C12 = 77.8

C13 = 90
C33 = 130

C13 = 74.3
C33 = 115

C44 = 50 C44 = 25.6

Phason elastic (Gpa) K1 = 0.18
K2 = 0.30

Coupling (Gpa)
R1 = −1.50
R2 = 1.20
R3 = 1.20

Piezoelectric (C/m2)

e31 = −0.160
e33 = 0.347 e31 = −5.2

e15 = −0.138 e33 = 15.1
d15 = −0.160 e15 = 12.7
d33 = 0.350

Dielectric (C2·N−1 m−2)
ξ11 = 82.6× 10−12 ξ11 = 6.46× 10−9

ξ33 = 90.3× 10−12 ξ33 = 5.62× 10−9

5.1. Verification of the Present Method

In order to verify the correctness of the exact solution obtained in this paper, we con-
sidered a piezoelectric circular plate with thickness to span ratio s = 0.4, whose top surface
is subjected to the mechanical loading σzz(r, 0) = σ0(r) = −1, which was investigated by
Ding et al. [27]. The exact solution presented in this paper is reduced to the piezoelectric
materials. Comparison results of radial displacement ur(0.2, z) and axial displacement
uz(0, z) are shown in Figure 2. It can be observed from Figure 2 that the radial and axial
displacements obtained in this paper agree well with those in [27], which can prove the
correctness of exact axisymmetric solutions for 1D piezoelectric circular plates.
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5.2. Effect of the Thickness to Span Ratio on the Circular Actuator

Consider a piezoelectric circular plate with elastic simply supported boundary condi-
tions, whose top surface is subjected to mechanical loading. Let the boundary condition
expressions be σzz(r, 0) = σ0(r) = −J0(k1r) and σzz(r, 1) = σ1(r) = 0, where k1 = 2.404826
is the first zero point of J0(k) under the generalized elastic simply supported boundary
conditions. We present the influence of thickness to span ratio s on the axial phonon
displacements uz(0, 0.5) of sandwich circular plates with different stacking sequences.

It can be observed from Table 2 that that the z-direction phonon displacements decrease
with an increasing thickness to span ratio. Furthermore, for any given thickness to span
ratio s, the value of uz for the Q/P/Q circular plate is larger than those in the other two
laminated circular plates. This phenomenon indicates that the laminated actuator with
outer layers of QCs has the largest deformation, which reflects the better electro-mechanical
coupling effect. In addition, the difference between the values of uz for different stacking
sequences is small when s is relatively large, but the difference becomes larger with the
decrease of s. The phenomenon concluded can provide a theoretical reference for engineers
designing piezoelectric actuators made of QCs.

Table 2. Comparison of z-direction phonon displacements.

s P/Q/P Q/P/Q P/P/P

0.1 4249.292 6688.337 4194.802
0.2 275.8201 426.0097 272.1027
0.3 57.82975 86.74357 56.99289
0.4 19.7639 28.57065 19.45356
0.5 8.855762 12.27743 8.704454
0.6 4.710162 6.246838 4.622687
0.7 2.815862 3.569921 2.759141
0.8 1.829975 2.218651 1.790067
0.9 1.264742 1.467806 1.234922
1.0 0.915595 1.018318 0.892282

5.3. Effect of the Stacking Sequence on the Circular Actuator

In this section, numerical examples are performed to reveal the influence of stacking
sequence on the axisymmetric bending behaviors of the present circular plate model. Con-
sider a 1D piezoelectric QC circular actuator with the generalized elastic simply supported
boundary condition, whose top surface is subjected to mechanical loading, as mentioned in
Section 5.2, and the thickness to span ratio s is chosen as 0.5.

By observing the values of phonon stress σrz in Figure 3a, phonon stress σzz in
Figure 3b, phason stress Hzz in Figure 3d, and electric displacement Dz in Figure 5b on the
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top and bottom surfaces of the circular plate, all meet the applied boundary conditions. It
can be again observed from those results that the presented exact axisymmetric solution of
1D piezoelectric circular plates is correct.
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Figure 3. Influence of stacking sequence on phonon and phason stresses. (a) Phonon stress σrz;
(b) phonon stress σzz; (c) phonon stress σθθ ; (d) phason stress Hzz.

Figure 3 presents the influence of the stacking sequence of laminated circular plates
on the stress components in phonon and phason fields. Phonon stress σrz (Figure 3a)
distributes as a parabolic function in the laminated circular plates with different stacking
sequences. The point of similarity is that the maximum values of σrz for all laminated
circular plates are at z = 0.5, because the material parameters are symmetrical along the
middle plane of the laminated circular plates. The point of difference is that the maximum
value of σrz is largest in the Q/P/Q circular plate and smallest in the P/Q/P circular plate.
There is little difference for phonon stress σzz (Figure 3b) in laminated circular plates with
different stacking sequences since the same loading is applied on the top surface of the
laminated circular plates. As can be seen from Figure 3c, phonon stress σθθ in the P/P/P
circular plate is continuous at the interface, but it is discontinuous at the interface of the
Q/P/Q and P/Q/P circular plates, mainly due to the change of material parameters for
each layer. In addition, compared with the value of σθθ on the top and bottom surfaces in
the P/Q/P circular plate, their values are smaller when the QC layer is chosen as the outer
layer of the laminated circular plates, which may reduce the risk of delamination of the
laminated actuators. Phason stress Hzz is zero in the piezoelectric layer, but follows the
parabolic function distribution in the QC layer. The value of Hzz in the Q/P/Q circular
plate is larger than that in the P/Q/P circular plate, because there are more QCs in the
Q/P/Q circular plate.

Figure 4 shows the distributions of phonon and phason displacements along the
thickness of the laminated circular plates with different stacking sequences. It can be
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observed from Figure 4a that the axial displacement uz is smallest in the P/P/P circular
plate, while largest in the Q/P/Q circular plate. This difference provides more possibilities
and selectivity for the design of laminated actuators. The radial phonon displacement
ur in Figure 4b is equal to zero at z = 0.5, which is due to the symmetry of the materials
and structures; namely, the mid-plane of the laminated circular plates is the neutral plane.
Furthermore, similar to the behavior of uz, the difference of ur between the P/P/P and
P/Q/P circular plates is small. However, the Q/P/Q circular plate can provide larger
values of ur. Figure 4c shows that the phason displacement wr is zero in the piezoelectric
layer because there is no phason field in piezoelectric materials.
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Figure 5 shows the dependences of electric potential and electric displacement on
the stacking sequence of the laminated circular plates. The values of electric potential φ
(Figure 5a) for the bottom surface of circular plates with different stacking sequences are
relatively close. Due to the different material composition of laminates, the values of φ in
the third layer of the P/P/P and the P/Q/P laminates increases with the decrease of the
z coordinate, but φ in the third layer of the Q/P/Q laminate decreases with the decrease
of the z coordinate. It can be also found from Figure 5a that the maximum value of φ in
the Q/P/Q circular plate is smaller than that in P/P/P laminates, because the dielectric
coefficient of QCs is two orders of magnitude smaller than that of piezoelectric materials.
Following the same trend, we can see from Figure 5b that the maximum value of electric
displacement Dz in the Q/P/Q circular plate is also smaller than that in P/P/P laminates.
These phenomena of electro-mechanical coupling can provide a variety of options for the
design of actuators.
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6. Conclusions

The electro-mechanical coupling behavior of 1D piezoelectric QC laminated circular
plates is studied in this paper under axisymmetric deformation conditions. Piezoelectric
actuators can usually be regarded as a composite laminate structure; therefore, in order
to realize the structural design of piezoelectric actuators, an accurate three-dimensional
mechanical model of 1D piezoelectric QC laminated circular plates is established in the
presented paper. With the aid of the state space method, finite Hankel transform, and prop-
agator matrix, we obtain the exact axisymmetric electro-elastic solution of 1D hexagonal
piezoelectric QC circular actuators under generalized elastic simply supported bound-
ary conditions. In the numerical examples, the influences of thickness to span ratio and
stacking sequence of the circular actuator subjected to top surface mechanical loading in
phonon, phason, and electric fields are discussed. According to the numerical examples,
we find that: (1) since no deformation assumption is introduced, the exact solution ob-
tained can be used to verify the accuracy of the numerical results of axisymmetric bending
of piezoelectric QC laminates; (2) the value of axial phonon displacement uz in Q/P/Q
circular plates for any given thickness to span ratio s is larger than those in the other two
laminated circular plates, which reflects the better electro-mechanical coupling effect; (3)
the value of phonon stress σθθ is smaller when the QC layer is chosen as the outer layer of
the laminated circular plates, which may help to improve the reliability of the laminated
actuators; (4) although the maximum value of electric potential φ and electric displacement
Dz in Q/P/Q laminated circular plates is slightly smaller than those in P/P/P laminates,
QCs have the advantage of high hardness, low thermal conductivity and so on, which can
provide new design ideas for actuators working in a complex environment.
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Appendix A

α1 = 1/C44; α2 = sR3/C44; α3 = se15/C44; α4 = s2
(
−C44K2 + R2

3

)
/C44;

α5 = s2
(
−C44d15 + e15R3

)
/C44; α6 = s2(e2

15 + C44ξ11
)
/C44;

β1 =
(
−C33e2

31K1 + 2C33d33e31R1 + e2
33R2

1 − 2e31e33R1R2 + e2
31R2

2 + C33R2
1ξ33 + C2

13d
2
33 + C2

13K1ξ33 + 2C13e31e33K1

−2C13d33e33R1 − 2C13d33e31R2 − 2C13R1R2ξ33 − C11e2
33K1 − C11C33d

2
33 − C11C33K1ξ33 + 2C11R2d33e33 + C11R2

2ξ33

)
s2/β0;

β2 =
(
−C13d

2
33 − e31e33K1 + d33e33R1 + d33e31R2 − C13K1ξ33 + R1R2ξ33

)
s/β0;

β3 =
(

C13d33e33 − e2
33R1 + e31e33R2 + C13R2ξ33 − C33d33e31 − C33R1ξ33

)
s/β0;

β4 =
(

C33e31K1 − C13e33K1 − C33d33R1 + C13d33R2 + e33R1R2 − e31R2
2

)
s/β0;

β5 =
(

d
2
33 + K1ξ33

)
/β0; β6 = −

(
d33e33 + R2ξ33

)
/β0; β7 =

(
e33K1 − d33R2

)
/β0;

β8 =
(
e2

33 + C33ξ33
)
/β0; β9 =

(
C33d33 − e33R2

)
/β0; β10 =

(
−C33K1 + R2

2

)
/β0;

β11 =
(
−C33e2

31K1 + 2C33d33e31R1 + e2
33R2

1 − 2e31e33R1R2 + e2
31R2

2 + C33R2
1ξ33 + C2

13d
2
33 + C2

13K1ξ33 + 2C13e31e33K1

−2C13d33e33R1 − 2C13d33e31R2 − 2C13R1R2ξ33 − C12e2
33K1 − C12C33d

2
33 − C12C33K1ξ33 + 2C12R2d33e33 + C12R2

2ξ33

)
s2/β0.
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