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Abstract

Single-cell RNA-sequencing (scRNA-seq) explores the transcriptome of genes at cell level, which sheds light on revealing the
heterogeneity and dynamics of cell populations. Advances in biotechnologies make it possible to generate scRNA-seq
profiles for large-scale cells, requiring effective and efficient clustering algorithms to identify cell types and informative
genes. Although great efforts have been devoted to clustering of scRNA-seq, the accuracy, scalability and interpretability of
available algorithms are not desirable. In this study, we solve these problems by developing a joint learning algorithm [a.k.a.
joints sparse representation and clustering (jSRC)], where the dimension reduction (DR) and clustering are integrated.
Specifically, DR is employed for the scalability and joint learning improves accuracy. To increase the interpretability of
patterns, we assume that cells within the same type have similar expression patterns, where the sparse representation is
imposed on features. We transform clustering of scRNA-seq into an optimization problem and then derive the update rules
to optimize the objective of jSRC. Fifteen scRNA-seq datasets from various tissues and organisms are adopted to validate the
performance of jSRC, where the number of single cells varies from 49 to 110 824. The experimental results demonstrate that
jSRC significantly outperforms 12 state-of-the-art methods in terms of various measurements (on average 20.29% by
improvement) with fewer running time. Furthermore, jSRC is efficient and robust across different scRNA-seq datasets from
various tissues. Finally, jSRC also accurately identifies dynamic cell types associated with progression of COVID-19. The
proposed model and methods provide an effective strategy to analyze scRNA-seq data (the software is coded using MATLAB
and is free for academic purposes; https://github.com/xkmaxidian/jSRC).
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Introduction

Traditional RNA-sequencing technology exploits the gene
expression by using mixed cells, masking the specificity of cells,
whereas single-cell RNA-sequencing (scRNA-seq) overcomes
the drawback by investigating the transcriptome of genes at
cell level [1]. scRNA-seq transforms the paradigm of RNA-seq,
which enables the possibility for the identification of existing,
characterization of cells, classification of tumor sub-populations
and investigation of cellular heterogeneity [2–4]. Clustering of
scRNA-seq is a data-driven and unbiased strategy to classify cell
types, shedding light on revealing the mechanisms of complex
diseases and critical biological processes [5–7].

Clustering of scRNA-seq is highly nontrivial largely due to
the noise, high-dimensionality and heterogeneity of data, and
current algorithms aim at solving one or some of these issues
[8–12]. On the high-dimensionality, scRNA-seq comprises the
profiles of genome-wide genes, resulting in the so-called ‘curse
of dimensionality’, where cell types are difficult to discriminate
since similarity of cells is not reliable. Therefore, dimension
reduction (DR) is the prerequisite for cell discovery [13]. Principle
component analysis (PCA) is the most widely used approach
for DR by projecting data into a low-dimensional space with
an immediate purpose to discover the genes with the highest
variance. There are also some variants of PCA. For example, SC3
[14] utilizes a subset of principle components, while PCAReduce
[15] employs an iterative-based strategy to obtain the critical
components by repeating PCA.

On the clustering of cells, various algorithms have been
developed, where the difference lies in how to explore the
features of cells and how to select clustering strategies. The most
popular algorithm is K-means [3], which iteratively identifies the
centers of clusters and assigns each cell to the nearest cluster.
However, it saves the running time by sacrificing accuracy and
robustness. To overcome the robustness problem, hierarchical
clustering is also popular for the identification of cell types. For
example, CIDR [16] adopts hierarchical clustering for scRNA-
seq by imputing zeros during distance calculation, thereby
improving the stability of estimation of cell distances in low-
depth samples. To overcome the limitation of single algorithms,
the ensemble learning, such as consensus clustering, is
promising for clustering of scRNA-seq. Typical algorithms are
SAME [1], SC3 [14] and SAFE [17], where the difference lies on
the selection of algorithms and ensemble strategies. CellAssign
[18] employs a probabilistic model to leverage prior knowledge
of cell-type biomarker genes. Otherwise, many algorithms
are developed, including DIMM-SC [19], SIMLR [20], SCANPY
[10], SoptSC [21], CellBIC [22], BREM-SC [23], LCA [24] and
CCSN [25].

These algorithms identify cell types by directly exploiting
the expression profile of scRNA-seq, which are sensitive to the
noise of data. Therefore, some algorithms aim to clustering
cells by using the latent features in a latent space where cells
are well separated. For example, SOUP [26] learns the cluster-
ing structure for pure and transitional cells via nonnegative
matrix factorization (NMF), which leads to a better estimation
of cell developmental trajectories. However, independence of DR
and clustering fails to characterize patterns in data, resulting
in unsatisfactory performance entirely. DRjCC [27] is the first
joint learning algorithm for clustering of scRNA-seq, where DR
and cell clustering are iteratively optimized. It improves the
performance of cell clustering and accelerates the speed of
convergence, which is one of the major motivations of this
study.

However, DRjCC has several limitations. First, it fails to derive
the implicit relation among cells and genes, particularly for
the transitional cells, thereby resulting in the undesirable per-
formance. Second, the interpretability of patterns obtained by
DRjCC is lacking because it only exploits the sparsity of features.
Third, it empirically selects the number of cell types. Therefore,
there is a critical need for alternatives for DRjCC to further
improve the performance of algorithms. Actually, the sparse
representation (SR) learning addresses the interpretability of
patterns by using few critical features [28, 29], which is suc-
cessfully applied to image processing, data classification and
other applications [29, 30]. Finally, current algorithms cannot
automatically determine the number of cell types in scRNA-seq,
requiring prior knowledge or empirically strategies.

In this study, we overcome these issues by proposing an
accurate and flexible algorithm for clustering of scRNA-seq,
which joints sparse representation and clustering (jSRC). To
improve the scalability, the DR is employed as a component
of algorithm. jSRC jointly learns the DR and clustering, where
features are selected under the guidance of clustering of cells,
thereby improving the accuracy of clustering. To improve the
interpretability, the SR constraint is imposed on features based
on the hypothesis that cells within the same type have the
similar expression patterns on the biomarker genes. We formu-
late clustering of scRNA-seq into an optimization problem and
design update rules to optimize the objective function, where
the cell types and the number of cell types are automatically
determined by the learned coefficient matrix. We apply jSRC to
15 scRNA-seq datasets with the number of single cells varies
from 49 to 110 824 from various tissues and organisms. The
experimental results demonstrate that jSRC significantly out-
performs 12 state-of-the-art methods with 20.29% improvement
in adjusted Rand index (ARI) on average. And jSRC automat-
ically and precisely selects the number of cell types. Further-
more, the proposed algorithm also improves the interpretability
and robustness. By using scRNA-seq of Coronavirus Disease-
2019 (COVID-19), jSRC accurately identifies cell types and their
dynamics associated with disease progression. jSRC reaches a
good balance between the accuracy and running times since it
takes less than 21 minutes for scRNA-seq with more than 11 000
cells. These result demonstrate that the proposed algorithm is a
promising tool for scRNA-seq analysis.

Algorithm
In this section, we address the objective function, optimization,
parameter selection and informative gene discovery of the pro-
posed algorithm.

Objective function

The overview of jSRC is shown in Figure 1, which consists of
three learning tasks, i.e.SR, DR and cell clustering. Thus, the
objective function of jSRC is also composed of three correspond-
ing costs.

Let capital, bold lower-case and lower-case letters be matri-
ces, vectors and scalars, respectively. Given the expression levels
of n cells measured on m genes, X ∈ Rm×n is the gene-by-cell
normalized expression matrix. On SR learning, given a dictionary
D, x is represented as a linear combination of columns of D with
coefficient vector a, which is formulated as

min
a

‖x − Da‖2 + β‖a‖1, (1)
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Fig. 1. Overview of the jSRC algorithm, which consists of SR learning, DR and cell clustering. DR identifies the critical features of cells under the guidance of clustering

of cells, and SR learning is imposed on the features of cells to improve interpretability. And these three tasks are jointly learned to improve the accuracy. The cell types

and informative genes are directly identified based on the learned features.

where ‖a‖1 is l1 norm to fulfill the sparse constraint, parameter β

controls the relevant importance and ‖X‖ is the Frobenius norm
of X.

Moreover, we expect that cells belonging to the same cell
type have similar expression patterns, where each cell can be
represented by a few of other cells in the same type. SR is very
suitable for recognizing the similarities and the relations of cells.
The similarity, which is reflected by the value of SR coefficient, it
can be used to cluster cells into different cell types. For each cell
vector x.i, it represented by the dictionary of the all cells except
x.i itself.

x.i = a1x.1 + · · · + ai−1x.i−1 + ai+1x.i+1 + · · · + anx.n, (2)

where a = [a1, · · · , ai−1, ai+1, · · · , an] is the representation coeffi-
cients of SR. Similar to [29] and [31], the cell x.i will be represented
as linearly as possible by the cells of the same type, different
types of cells do not participate in the representation. The cor-
responding optimization problem can be written as

min
a

‖x.i − Xa‖2 + β‖a‖1, s.t. ai = 0. (3)

Notice that the second item in Equation 3 is similar to the
LASSO regularization, which is also the L1-norm constraint.
However, LASSO regularization cannot guarantee the self-
representation, resulting in trivial solution. To solve this
problem, we impose constraint on a, i.e. ai=0.

On the dimension reduction, the subspace learning is
employed as

X ≈ PZ, (4)

where P ∈ Rm×k is the project matrix with k features and Z ∈ Rk×n

is the feature matrix of cells in the projected space.
On cell clustering, we explore the intra-connection of cells,

where a pair of cells with similar expression pattern is more
likely to belong to the same type. Here, we simply consider the
nearest neighbor of each cell z.i, i.e. z.j, where j = arg maxj |a.i|. We
assign them into the same cell type by minimizing the distance
among them, i.e.

O(Z) =
n∑

i=1

‖z.i − z.j‖2 (5)

s.t. j = arg max
j

|a.i|, i ∈ {1, . . . , n}.

Therefore, combining Equations 3), 5 and 4, we reformulate
the objective function of jSRC as

min
P,Z,A

‖X − PZ‖2 + ‖Z − ZA‖2

+ α

n∑
i=1

‖z.i − z.j‖2 + β‖A‖1 (6)

s.t. j = arg max
j

|a.i|, diag(A) = 0, i ∈ {1, . . . , n}.

Optimization rules

Since Equation 6 is non-convex since it involves three variables
P, Z and A, we optimize one variable by fixing the others until
the termination criterion is reached. The Lagrange function L of
Equation 6 is formulated as

L(P, Z, A) =‖X − PZ‖2 + ‖Z − ZA‖2

+ α

n∑
i=1

‖z.i − z.j‖2 + β‖A‖1.
(7)

By fixing A and Z, Equation 7 is reformulated as minimization
problem, i.e.

min L(P) = ‖X − PZ‖2, (8)

where the partial derivatives of L(P) with respect to P is
written as

∂L
∂P

= −2(X − PZ)Z
′
. (9)

According to KKT condition, by setting
∂L(P)

∂P
=0, the update rule

for P is obtained as

P ← P
XZ′

PZZ′ . (10)
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By fixing variable A and P, Equation 7 is reformulated as

L(Z) =‖X − PZ‖2 + ‖Z − ZA‖2 + α

n∑
i=1

‖z.i − z.j‖2

=
n∑

i=1

‖x.i − Pz.i‖2 +
n∑

i=1

‖z.i − Za.i‖2

+ α

n∑
i=1

‖z.i − z.j‖2.

(11)

Notice that L(Z) is differentiable with respect to z.i, i.e.

∂L(Z)

∂z.i
= −P

′
x.i + P

′
Pz.i + z.i − Za.i + αz.i − αz.j. (12)

Setting
∂L(Z)

∂z.i
=0, the update rule for z.i is deduced as

z.i ← z.i
P′x.i + Za.i + αz.j

(P′P + I + αI)z.i
, (13)

where Z = [z.i] = [z.1, z.2, · · · , z.i, · · · , z.n].
By fixing Z and P, let

J(a.i, b.i) =‖z.i − Za.i‖2 + β‖b.i‖1

s.t.a.i − b.i = 0.
(14)

Equation 14 can be optimized by ADMM [32] by the augmented
Lagrangian function as

L(a.i, b.i; t.i) =‖z.i − Za.i‖2 + β‖b.i‖1,

+ 〈
t.i, a.i − b.i

〉 + σ‖a.i − b.i‖2,
(15)

where σ > 0 be the penalty parameter and t.i ∈ Rn×1 is the
Lagrange multiplier.

Equation 15 is solved using the following sub-problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a.i ← argmin
a.i

‖z.i − Za.i‖2 + σ‖a.i − b.i + t.i

σ
‖2,

b.i ← argmin
b.i

σ‖a.i − b.i + t.i

σ
‖2 + β‖bi‖1,

t.i ← t.i + σ(a.i − b.i).

According to ADMM, the update rules for sub-problem a.i are
formulated as

a.i ← a.i
Z′z.i + σb.i − T
(Z′Z + σ II)a.i

, (16)

and

P�(a.i) ∈ {a.i ∈ Rn|aii = 0, i = 1, 2, · · · , n}, (17)

where � ∈ Rn is closed convex set to guarantee that aii = 0.

Sub-problem b.i has analytical solution as

b.i ← argmin
b.i

σ‖a.i − b.i + t.i

σ
‖2 + β‖bi‖1

= Sβ/σ

(
a.i + t.i

σ

)
,

(18)

where S is defined as

Sε[x] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x + ε, if x > ε,

x − ε, if x < −ε,

0, otherwise.

The optimization procedure is shown in Algorithm 1 and the
convergence of jSRC is proven (Supplementary Materials).

Algorithm 1 The jSRC algorithm

Input: scRNA-seq data X, k.
Step 1. Initialize P, Z and A;
Step 2. Update the variable P according to Eq. (10);
Step 3. Update the variable Z according to Eq. (13);
Step 4. Update the variable a.i according to Eqs. (16-17);
Step 5. Update the variable b.i according to Eq. (18);
Step 6. Update t.i ← t.i + σ(a.i − b.i);
Step 7. Goto Step 2 until convergent.
Output: Clustering matrix R.

Cell type discovery

jSRC automatically obtains cell types from matrix A. Specifically,
given representation z.i of the i-th cell, the nearest cell z.j∗ is
connected to it where j∗ = arg maxj |a.j|. In this case, the similar-
ity network for cells is constructed. The connected components
in the network correspond to the cell types and the number of
connected components is the number of cell types.

Informative gene selection

Informative gene selection involves which genes have similar
functions or co-expressed and how to extract them. Genes with
similar expression patterns are clustered into modules to iden-
tify the functions of unknown genes or the unknown functions
of genes. The genes in the same module tend to perform similar
functions and participate in the same metabolic process or same
cell pathway. In the scRNA-seq data, a network is constructed
according to the SR-based gene clustering. Different modules
from this network are identified, and the center genes of each
module are selected for the informative genes.

Informative genes are defined as the representative ones
within gene modules. jSRC first identifies gene modules using
the projected matrix P, where the SR learning in Equation 3 is
employed to obtain the coefficient matrix W for genes, i.e.

min
W

‖P − WP‖2 + β‖W‖1, s.t. diag(W) = 0, (19)

where β is a parameter.
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Table 1. Statistics of scRNA-seq datasets used for experiments, where #cells denotes the number of cells, #types corresponds the number of
cell types and Organ is the tissues

Scale Dataset Species #Cells #Types Organ Platform Ref.

Splat1 Simulate 650 3 – – [35]
Simulate Splat2 Simulate 2000 3 – – [35]

Biase Mouse 49 3 Fetal brain SMART-Seq SMARTer [36]
Ting Mouse 187 7 Different tumous scRNA-Seq, modified Tang2010 protocol [37]

Camp Human 220 7 Fetal brain SMART-Seq SMARTer [40]
Zheng Human 500 3 Peripheral blood 10X Genomics [8]

Moderate-scale Mouse1 Mouse 822 13 Pancreas inDrop [38]
Mouse2 Mouse 1064 13 Pancreas inDrop [38]
Human4 Human 1303 14 Pancreas inDrop [38]

Zeisel Mouse 3005 9 Mouse brain Quantitative scRNA-seq with UMI [4]
Human3 Human 3605 14 Pancreas inDrop [38]

Birey Human 11 838 14 Forebrain Quantitative scRNA-seq with UMI [41]
COVID-19 Human 63 103 10 BALF 10x Genomics [42]

Large-scale PBMC Human 68 579 11 Peripheral blood 10X Genomics [8]
Tabula Mouse 110 824 120 20 mouse organs 10X Genomics [39]

Gene modules are identified by using hierarchical clustering
based on matrix W. For each gene module, the eigenvalues of
co-variance matrix of gene expression profiles are calculated,
denoted by λ1 > · · · > λm. Informative genes in each mod-
ule corresponds to the minimal value such that the contribu-
tion of top l eigenvalues is greater than a threshold δ, i.e. l =
argt

∑t
i=1 λi/

∑m
i=1 λi ≥ δ. We set δ=0.8 according to [15].

Parameter selection

jSRC involves three parameters k, α and β, where k is the number
of features, α and β are regularization parameters.

Wu et al. [33] proposed the instability-based NMF model for
the selection of k. Specifically, for each k, jSRC algorithm runs ι

times and obtains ι basis matrices (denoted by P1, · · · , Pι). Given
two matrices P1 and P2, matrix G is defined with the element gij

as the cross correlation between the i-th column of matrix P1 and
the j-th column of matrix P2. The dissimilarity between P1 and P2

is defined as

diss(P1, P2) = 1
2k

(2k −
k∑

j=1

maxg.j −
k∑

i=1

maxgi.), (20)

where g.j denotes the j-th column of matrix G. The instabil-
ity is the discrepancy of all the basis matrices for k, which is
defined as

ϒ(k) = 2
ι(ι − 1)

∑
1≤i≤j≤ι

diss(P1, P2). (21)

The k corresponding to the minimal ϒ(k) is selected. We set α

and β as the tuning parameters, which are selected empirically.

Materials
Performance evaluation

Given the predicted cluster labels c and the ground truth cluster
labels c∗, ARI is defined as follows [34]:

ARI(c∗, c) =
∑
e,t

(net
2

) −
[∑

e

(ne
2

) ∑
t

(nt
2

)]
/
(n

2

)

1
2

[∑
e

(ne
2

) + ∑
t

(nt
2

)] −
[∑

e

(ne
2

) ∑
t

(nt
2

)]
/
(n

2

) ,

where n is the total number of single cells, ne and nt are the
number of single cells in the predicted cluster e and in truth
cluster t, respectively, and net is the number of single cells shared
by e and t.

Accuracy (Acc) is also used to measure the performance of
algorithms, which is defined as

Acc = 1
n

n∑
i=1

δ(ci, c∗
i ), (22)

where ci and c∗
i denote the predicted and truth label of i-th cell,

respectively, and δ(x, y) is 1 if x = y, 0 otherwise.

Datasets

Fifteen scRNA-seq datasets are selected for experiments,
including two simulated, nine moderate-scale and four large-
scale ones. Specifically, the simulated datasets are Splat1
and Splat2 [35]. Moderate-scale datasets including five mouse
scRNA-seq datasets, such as Biase [36], Ting [37], Zeisel [4],
Mouse1 [38], Mouse2 [38] and four human datasets, including
Zheng [8] for peripheral blood mononuclear cells, Camp [40] for
fetal brain, Human3 and Human4 [38] for the pancreas. Large-
scale datasets include Tabula [39] for mouse and Birey [41] for
forebrain spheroids, PBMC [8] of peripheral blood mononuclear
cells and COVID-19 [42] of bronchoalveolar lavage fluid (BALF)
for human. The statistics of these benchmark datasets are
summarized Table 1. Cells have different scales due to the
sequencing depths and cell sizes, the transcript per million
normalization is adopted as SOUP [26].

Results
jSRC automatically determines cell types and accelerate
convergence

We first check convergence of jSRC by taking DR and SR learning
in Equation 3 as baselines, where the relative error (max-min
normalized error) is employed to measure convergence. How rel-
ative errors of algorithms as the number of iterations increases
from 1 to 100 on the Zheng dataset is shown in Figure 2A, where
jSRC is much faster than DR and SR. In detail, jSRC requires
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Fig. 2. Parameters selection: (A) the convergence of algorithms versus the number of iterations on the Zheng dataset, (B) scalability of jSRC on the scRNA-seq datasets

with various number of cells, (C) running time of algorithms on the large-scale COVID-19 dataset and (D) performance of various algorithms on determining the number

of cell types.

20 iterations to converge, whereas DR and SR take more than
80 iterations. Furthermore, the relative error of jSRC is much
less than those DR and SR, implying that jSRC is more precise
and faster than them. Then, we check the scalability of jSRC by
investigating the running time on datasets with various number
of cells, which is shown in Figure 2B. jSRC is efficient since it
takes 21 minutes to clustering scRNA-seq with 11 000 cells. Then,
we compare jSRC with state-of-the-art methods on the large-
scale COVID-19 dataset as shown in Figure 2C, implying that
jSRC is efficient for scRNA data. The convergence of jSRC is
theoretically proved (Supplementary Materials).

How parameters α and β affect the accuracy of jSRC is inves-
tigated (Supplementary Figure S1A and B), and jSRC achieves the
best performance on all these datasets at α=0.2 and β=0.6, where
the SR learning and clustering reach a good trade-off. The num-
ber of features is determined by the instability of matrix factor-
ization (Section Algorithm) as shown in Supplementary Figure
S1C, where k ≥ 50 is a good choice for larger-scale datasets, and
10 for small- and moderate-size datasets. Determining the num-
ber of clusters is challenging in clustering analysis. Vast majority
of current algorithms empirically select it, whereas jSRC auto-
matically learns the number of cell types from the coefficient
matrix (Section Algorithm). The accuracy of various algorithms
on the determination of cell types is also shown in Figure 2D
and Supplementary Figure S2, where jSRC accurately predicts
the number of cell types in six scRNA-seq datasets (two simulate
scRNA-seq and four real biological scRNA-seq datasets).

jSRC improves the interpretability of patterns

jSRC jointly learns SR and clustering of cells, where features
of cells are extracted under the guidance of clustering. It is

natural to ask whether joint learning promotes the performance
of feature selection in representation learning. To check the
discriminative of features in the learned space, we compare the
distributions of cells in the original and learned spaces by visual-
izing cells with t-SNE. The distributions of cells in Zheng dataset
is shown in Figure 3A, where panel A1 is the scatter of cells in the
original space and A2 in the learned space. Interestingly, cells
in the learned space are more compact within the same types
than those in the original space. Furthermore, cells belonging to
various types are well separated in the learned space, whereas
cells in the original space are mixed (rectangular box). To check
whether jSRC is sensitive to dataset, we apply it to all datasets.
The results are shown in Figure 4, demonstrating that jSRC is
robust on the improvement of feature extraction.

jSRC expects that cells belonging to the same type are close
to each in the projected space, which is the foundation for
cell types (Algorithms). To quantify the closeness of cells, we
calculate the similarity of cells in the original and learned space
using the Euclidean distance on the Zheng dataset as shown
in Figure 3B, where panel B1 is the similarity of cells in the
original space and B2 in the learned space. The blue points in the
diagonal blocks denote these cells that are correctly classified,
whereas the red ones representing these are misclassified. The
comparison of Figure 3B1 and B2 indicates that the number of
misclassified cells in the learned is much less than that in the
original space. The similar tendency occurs in other scRNA-seq
dataset (Supplementary Figure S3).

Then, we ask why the mixed cells are well separated in
the learned space (cells in the black box in Figure 3A1). The
representation coefficient learned by jSRC indicates why cells
are similar to each cell. For example, three representative mixed
cells circled on Figure 3A1 are shown in Figure 3C, where each
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Fig. 3. jSRC improves interpretability of patterns: (A) visualization of cells using t-SNE representation in the original space (A1) and learned space by jSRC on the Zheng

dataset (A2), where cell types are labeled with different colors; (B) cluster grid map on the Zheng dataset in the original space (B1) and learned space by jSRC (B2),

respectively; (C) the schematic examples of mixed cells that are represented using few cells in the same type; and (D) the ratio is the percentage of cells that participate

in the representation belong to the diagonal block on Zheng dataset, where (D1) is piechart in the original space and (D2) in the learned space.

of them can be represented by a few of cells within the same
cell type (the height of bar denotes to the similarity between
the mixed cell and the close cell in the same type). Then, we
quantify the percentage of classified and misclassified cells.
The ratios on the Zheng dataset is shown in Figure 3D, where
panel D1 contains the ratios in the original space and D2 in the
learned one. Specifically, 98% of the cells are correctly classified
in the learned space, whereas only 65% of the cells are correctly
classified in original space. The similar tendency repeats the
other scRNA-seq datasets (Supplementary Figure S4).

Furthermore, jSRC also improves the interpretability of clus-
tering of cells. The heatmap of coefficient matrix is shown in
Supplementary Figure S5A, where each cell is represented by
at most three cells within the same cell type. Supplementary
Figure S5B–F shows the clustering result correlation heatmap
of typical scRNA-seq cell clustering methods, including CIDR,
K-means, SC3, Seurat and SOUP. The advantage of SR is that,
for any cell, the strength and relation between a cell and the
others are clearly quantified, whereas state-of-the-art meth-
ods fail to address these issue (Supplementary Figure S5). The
interpretability of patterns obtained by jSRC provides clues for
biologists for further studies.

jSRC significantly improves the accuracy of cell
clustering

The above experiments prove that jSRC accelerates convergence,
automatically determines the number of cell types and improves
interpretability of patterns. Then, we check the performance
of jSRC on the identification of cell types. Fifteen benchmark
datasets are selected, including two artificial and thirteen
biological datasets, which are summarized in Table 1. These
datasets cover a wide spectrum of experimental technology,
sequencing depth, tissues and heterogeneity of cells with the
number of cells ranging from 49 to 110 824. Two common mea-
surements are employed to fully characterize the performance
of cell clustering, such as ARI and Acc (section performance
evaluation).

Twelve state-of-the-art approaches are selected for a compar-
ison to fully evaluate the performance of jSRC, including 2 DRs
and 10 clustering methods. The former category includes UMAP
[43] and DR, where UMAP is adopted because it outperforms t-
SNE [44] and SCVIS [45]. In order to apply the DR algorithm to
cell clustering, the K-means is selected as the post-processing
technique. And the number of features for UMAP and DR are
the same as jSRC. Clustering methods including K-means [3],
SC3 [14], Seurat [9], CIDR [16], SOUP [26], SAME [1], SHARP [46],
DRjCC [27], SR and dimension reduction+sparse representation
(DR+SR). Since jSRC joints DR and SR, we independently execute
two components (DR+SR) and SR alone. DRjCC is the first joint
learning, and SC3, Seurat, K-means and CIDR are typical methods
for scRNA-seq data. SC3, Seurat, CIDR and SAME automatically
determine the number of cell types. For a fairer comparison, the
others use the same number of cell types as jSRC.

We first benchmark jSRC using the two artificial scRNA-seq
datasets [35], where Splat1 contains 650 cells with three cell
types, and Splat2 has 2000 cells with three cell types. Perfor-
mance of various algorithms on the simulated datasets in terms
of ARI are shown in Figure 5A. These results indicate that jSRC
cell clustering result outperforms other methods on simulated
datasets. Specifically, ARIs of jSRC on Spalt1 and Splat2 are
0.677 and 0.924, respectively, whereas those of the best available
methods are 0.545 and 0.894, respectively. jSRC is also superior
to state-of-the-art in terms of accuracy (Figure 5B). These results
prove that jSRC is more precise than the available methods on
the simulated data.

Then, we ask whether jSRC is applicable to the moderate-
scale real biological scRNA-seq datasets from various tissues of
mouse and human (Table 1). Performance of various algorithms
on the cells in terms of ARI is shown in Figure 5A, where jSRC has
a similar performance with the best state-of-the-art methods
on four datasets and significantly outperforms them on five
datasets. Specifically, for the simple case, Zheng dataset [8] con-
tains 500 human peripheral blood mononuclear cells (PBMCs),
which consists of three cell types such as CD56+ NK cells,
CD19+ B cells and CD4+/CD25+ regulatory T cells. SC3, SOUP,
SAME, SHARP and jSRC outperform the others on the Zheng
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Fig. 4. Visualization of the cells using t-SNE in the learned space by jSRC on nine datasets: (A) Splat1, (B) Splat2, (C) Biase, (D) Zeisel, (E) Camp, (F) Mouse2, (G) Human3,

(H) Human4 and (I) Birey.

dataset as shown in Figure 5. Moreover, they have a similar
performance since the difference is subtle. The reason why these
three algorithms achieve an excellent performance is that the
mixture of various cell types in PBMCs is not heavy. For the
challenging case, Camp dataset [40] comprises 220 fetal brain
cells with 7 cell types such as apical progenitors (AP1, AP2),
basal progenitors (BP1, BP2) and neurons (N1, N2, N3). Figure 5
indicates jSRC is much more precise than the others. In detail,
ARI of jSRC on Camp dataset is 0.614, whereas that of SC3, CIDR,
SOUP, DR+SR, SAME, SHARP and DRjCC are 0.502, 0.402, 0.525,
0.523, 5806, 0.5733 and 0.612, respectively. jSRC is superior to
state-of-the-art methods in terms of Acc (Figure 5B), showing
that the superiority of jSRC is not co-factored by the measure-
ments. These results demonstrate that joint learning SR model is
promising for discriminating mixture of cells in tissues with high
heterogeneity.

Finally, we ask whether jSRC can handle large-scale scRNA-
seq datasets using the Birey [41], PBMC[8] and Tabula [39]
datasets, where the first dataset contains 11 838 cells with 14
cell types, PBMC contains 68 579 cells with 11 cell types and

Tabula contains 110 824 cells with 120 cell types. Performance
of various algorithms are shown in Figure 5, where jSRC has
a similar performance with DR+SR and SHARP on Birey and
PBMC datasets, and it outperforms the others on three datasets.
Specifically, ARIs of jSRC are 0.830 (Birey), 0.687 (PBMC) and 0.781
(Tabula), whereas those of the best current methods are 0.838
(DR+SR) for Birey, 0.6998 (SHARP) for PBMC and 0.764 for Tabula.
These results demonstrate that jSRC is accurate and efficient for
the large-scale datasets.

Overall, across 14 datasets, jSRC on average improves ARI
by 20.29% and Acc by 14.93% over state-of-the-art methods,
and up to 1.49% and 0.65% over the best available method for
all datasets. These results further demonstrate that joint SR
adaptive clustering model is promising for cell type discovery.
jSRC employs matrix factorization to learn features and cell
types. Thus, it is natural to check the robustness of algorithms
by using the standard deviation of accuracy with multiple runs
(Figure 6), where the average standard deviation of jSRC is 0.02.
These results demonstrate that joint learning also improves the
robustness of algorithms, which is consistent with [47].
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Fig. 5. jSRC significantly improves the accuracy of cell clustering. Performance of various algorithms on 14 scRNA-seq datasets in terms of various measurements: (A)

ARI and (B) Acc, where these algorithms whose values are less than the minimum value of y-axis are missed.

jSRC accurately selects informative genes

Since characteristics and morphology of cells are tightly con-
nected with the expression of genes, it is critically needed to
extract informative genes. Here, we propose a module-based
strategy to select informative genes (Section Algorithm).

Taking brain cells (Camp dataset) as an example, jSRC identi-
fies seven modules (Figure 7A), where five significant modules
are used to select the informative genes. To check whether
these modules contain differentially expressed genes (DEGs), we
calculate the percentage of DEGs in each module (Figure 7B),
where the two nonsignificant modules have no DEG, and the
percentage of others is at least 47%. jSRC selects 310 informative
genes from the Camp dataset. The heatmap of the top 30 infor-
mative genes of gene expression is shown in Figure 7D, where
expression profiles are differentially expressed across the top

two cell types. The hierarchical clustering is performed on the
informative genes as shown in Figure 7E, where these genes are
classified into three groups.

Moreover, we find that 214 of the 310 (69.03%) informative
genes obtained by jSRC are DEGs across different cell types,
while those of DRjCC and SOUP are 59% and 57.50% (Figure 7C),
respectively. Evidence shows that biomarker genes are associ-
ated with the survival time of patients [48]. Therefore, we assume
that informative genes can also serve as biomarkers to predict
patients’ survival time. By using the gene expression profiles and
clinical information of gliomas from TCGA, we use the Kaplan–
Meier survival analysis to identify the informative genes that
are significantly associated with survival time of patients with a
cutoff 0.05. We find that 22 of 30 informative genes (73.3%) with
highest deviation are significantly associated with the survival
time of patients, while that of DRjCC and SOUP are 53.85% and
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Fig. 6. The distribution of accuracy obtained by jSRC with multiple runs on 12 datasets in terms of various measurements: (A) ARI and (B) Acc.

53.33%, respectively. For example, DMD separates the patients
into high and low/mediate expression groups according to gene
expression level, where the survival time of these two groups
significantly differs with P = 1.4E-4 (Figure 7F). JPH4 is also
significantly associated with the survival time of patient with
P = 2.0E-3 (Figure 7G).

To further investigate the biological functions of informa-
tive genes, the enrichment analysis is performed using soft-
ware Metascape [49]. They are significantly enriched by brain
cancer related biological processes, such as cell division (P=
1.1E-19, hypergeometric test), brain development (P = 4.3E-8,
hypergeometric test) and glial cell differentiation (P = 1.6E-9,
hypergeometric test) (Supplementary Figure S6). The network of
these enriched biological processes is constructed (Supplemen-
tary Figure S7), where each node represents an enriched term
(colored by cluster ID), and sizes of nodes are proportional to the
P-value of significance. Finally, we ask whether the informative
genes are highly associated with brain cell tumors. We find
out eight of them are brain-causing genes as shown in Table 2,
including ZFHX4 [50], NUF2 [51], PTTG1 [52], DMD [53], CDC27
[54], HMGB2 [55], SATB1 [56] and SCHIP1 [57]. These results may
provide biologists with clues for revealing mechanisms of brain
tumors.

Then, we apply jSRC to the pancreatic scRNA-seq data and
the heatmap of informative genes demonstrates the expression
levels are significantly differentially expressed across cell
types (Supplementary Figure S8A). The percentage of DEGs in
informative genes is 90%, 90% and 88.33% for jSRC, DRjCC and
SOUP, respectively (Supplementary Figure S8B). The percentages
of specific informative genes significantly associated with
patients’ survival time is 53.33% for jSRC (Supplementary
Figure S8C and D). We also find that five informative genes
are disease-causing genes for pancreatic cancer as shown
in Table 2, such as CA12 [58], MICB [59], MICA [60, 61], CEL
[62–64], IL22RA1 [65]. The enrichment analysis indicates the
informative genes are significantly enriched by fatty acid
metabolism (P = 6.9E-22, hypergeometric test) and adenylate
cyclase-activating G protein-coupled receptor signaling pathway
(P = 7.1E-16, hypergeometric test) (Supplementary Figures S9
and S10).

jSRC precisely identifies dynamic cell types associated
with progression of COVID-19

Since the emergence of COVID-19 in December 2019, it has been
becoming one of the prominent research directions. Immune
characteristics associated with COVID-19 severity are currently
unclear. Liao et al. [42] characterize the BALF immune cells
from patients with varying severity of COVID-19 and healthy
controls (HCs) using scRNA-seq, where 63 103 cells are selected,
including HCs were 19 173, moderate (M) were 7311 and severe (S)
were 36 619.

We apply jSRC to scRNA-seq of BALF with an immediate pur-
pose to validate whether it can accurately identify the dynamic
cell types associated with progression of COVID-19. The tSNE
presentation of cells at various stages are shown in Figure 8,
where panel A1 is for the mixed cells in all stages, A2 for HC,
A3 for M and A4 for S stage, respectively. In all, jSRC extracts
10 major cell types in BALF, including macrophages, myeloid
dendritic cells (mDCs), T cells, natural killer (NK) cells, B cells,
epithelial cells, plasmacytoid dendritic cells (pDCs), plasma cells,
mast cells and neutrophils. These panels in Figure 8A show
that cell types differ greatly. Macrophage cells dominates in the
HCs, whereas macrophage and T cells are two major types in
the moderate stage and all 10 cell types occur in the severe
stage. Specifically, patients with moderate COVID-19 infection
has a higher proportion of T, NK, B, epithelial, pDC cells and a
lower proportion of macrophages than those of HCs. Patients
with severe/critical infection have a much higher proportion of
macrophages, epithelial, plasmas and neutrophil cell and a lower
proportion of mDCs, T, NK, B and pDCs cells than those with
moderate infection. Consistent with previous studies [42, 66, 67],
jSRC suggests that cytokine storm is associated with the severity
of COVID-19.

The accuracy of various algorithms for clustering of cells in
terms of different measurements is shown in Figure 8B, where
panel B1 is for ARI and B2 is for accuracy, respectively. Figure 8B1
shows that jSRC outperforms state-of-the-art on all three stages
of COVID-19, where ARI is 0.786 (HC), 0.907 (M) and 0.857 (S),
respectively. jSRC also achieves the best performance in terms of
accuracy (Figure 8B2), where accuracy is 0.966 (HC), 0.942 (M) and
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0.936 (S), respectively. The similarity of cells using the Euclidean
distance of features obtained by jSRC shows the number of
cell types and clusters of cells at all stages (Supplementary
Figure S11). These results demonstrate that jSRC can precisely
capture the characteristics of scRNA-seq of COVID-19, implying
the superiority of joint learning.

jSRC identifies 800 informative genes, where 77.03% infor-
mative genes are significantly DEGs in HC, while those for the

moderate and severe are 94.92% and 98.98% (Supplementary
Figure S12). The GO functions of the informative genes are
investigated using the enrichment analysis, and they are
significantly enriched by the leukocyte activation involved
in immune response (P = 8.9E-8, hypergeometric test), T-cell
activation (P = 4.5E-7, hypergeometric test) and apoptotic signal-
ing pathway (P = 2.2E-5, hypergeometric test) (Supplementary
Figure S13).
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Table 2. The biomarker genes obtained by jSRC are highly associated
with corresponding tumors

Organ Gene Description

ZFHX4 Regulated the glioblastoma tumor-initiating
cell state

NUF2 Overexpressed in glioma tissues and differen-
tially expressed in a series of glioma cell lines

PTTG1 PTTG1 axis promotes the proliferation of
glioma through stabilizing E2F1

DMD Decreased Dp71 expression is associated with
cancer proliferation and poor prognosis in
glioblastoma, where Dp71 is DMD gene prod-
uct in the nervous system

Brain CDC27 mir-218-2 promotes glioblastomas growth,
invasion and drug resistance by targeting
CDC27

HMGB2 The oncogene HMGB2 as a downstream target
of miR-130a by using luciferase and western
blot assays

SATB1 SATB1 may represent a promising target
molecule in glioblastoma therapy

SCHIP1 Homozygous nonsense mutation in SCHIP1
causes a neurodevelopmental brain malfor-
mation syndrome

CA12 Knockdown of AE2 and of CA12 inhibited pan-
creatic and salivary gland ductal AE2 activity
and fluid secretion, explain the disease

MICB MICB shedding in PANC-1 pancreatic cancer
cells

MICA Pancreatic tumor cells may avoid immune
surveillance by releasing the transmembrane
MICA protein in soluble form (s-MICA)

Pancreatic CEL Rare mutations in the CEL gene cause a syn-
drome of pancreatic exocrine and endocrine
dysfunction, whereas a recombined CEL allele
increases the risk for chronic pancreatitis

IL22RA1 IL22RA1/STAT3 signaling enhances stemness
and tumorigenicity in pancreatic cancer

Finally, we tracks the dynamics of cell types by counting the
number of, and percentage of, cells in each type obtained by jSRC

across various stages as shown in Figure 8C (Supplementary
Figure S14). For example, the number of macrophages cells is 17
907 (HC), 4345 (M) and 26 525 (S), respectively. And the percentage
of macrophages in HC (93.4%) is much higher than that in stage
M (59.4%) and S (72.4%). The number of T cells increases from
HC (643) to stage S (4356), while the percentage of T cell reaches
the peak at stage M. Interestingly, the number of neutrophil cells
is zero in HC and M and dramatically soars up to 1063 in stage
S. These dynamic patterns of cell types may serve as potential
biomarkers for the diagnosis and therapy of COVID-19.

Discussion
scRNA-seq enables the possibility to explore the expression of
genomic at the single cell level, and the accumulated scRNA-
seq data provides a great opportunity to reveal the underlying
mechanisms of diseases. It also poses a great challenge on
designing effective and efficient algorithms for scRNA-seq data.
Although great efforts have been devoted to this issue, there
are many unsolved problems, such as complexity, accuracy and
interpretability.

To solve these problem, we propose an accurate and flexible
algorithm jSRC for scRNA-seq data, where DR and SR are simul-
taneously learned. It leverages information from cells and genes,
where DR extracts features of genes under the guidance of cell
clustering. We demonstrate that the proposed method improves
the performance of visualization through DR (Figures 3A and 4).
We benchmark jSRC along with 12 state-of-the-art methods on
15 scRNA-seq datasets, where jSRC significantly outperforms
them in terms of various measurements (Figure 5). jSRC not only
improves the robustness and accuracy of algorithms but also
enhances the interpretability of patterns (Figure 3 and Supple-
mentary Figure S4). Furthermore, the number of cell type param-
eters of jSRC are automatically determined, which are more
accurate than others (Figure 2D). jSRC is also precise to select the
informative genes associated with cell types (Figure 7). Finally,
we also testify jSRC using scRNA-seq data of COVID-19. The
experimental results demonstrate that jSRC precisely identifies
dynamic cell types in each stage of COVID-19 (Figure 8A and B),
and it also extracts the dynamic patterns of cells associated with
disease progression (Figure 8C).
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The novelty of jSRC is summarized as follows.

- How to determine the number of cell types is fundamen-
tal for the downstream analysis of scRNA-seq, and the
available methods empirically select it, which is criticized
for the accuracy since they ignore intrinsic properties
of scRNA-seq data. jSRC overcomes this issue by auto-
matically select the number of cell types by learning the
intrinsic features in scRNA-seq data by imposing structure
constraint on the representation, thereby facilitating and
extending the applications of algorithms (Figure 2).

- How to interpret the patterns with biological backgrounds
is one of major concerns of machine learning algorithms
and the current algorithms fail to address this issue.
To address this problem, jSRC learns features of cells
by employing the SR strategy and imposes the sparse
constraint on the model, where each cell can be efficiently
represented by other cells (Figure 3).

- The current algorithms independently execute procedures
for scRNA-seq analysis, such as DR, cell type discovery and
feature extraction. However, the independence assump-
tion ignores the connections among these procedures.
jSRC jointly learns the features of cells, clustering of cell
types and representation, where features are extracted
under the guidance of clustering, thereby improving the
quality of features. Furthermore, feature extraction and
representation learning facilitate the clustering of cells,
thereby improving the accuracy of jSRC (Figure 5).

- The informative gene selection is the foundation for the
cell proliferation, and many current methods address this
issue without considering the interactions among genes.
In this study, we select the informative genes by inte-
grating the topological structure and expression profile of
genes, where the non-differentially expressed, but critical
genes (transcriptional factors) are identified, which pro-
vide biologists with clues for further studies.

The experimental results demonstrate that the novelty of jSRC
not only provides an efficient tool for analyzing the scRNA-seq
data but also suggests the promising directions for designing
algorithms for scRNA-seq data.

We see ample opportunities to improve on the function of
jSRC in future work. For example, rare cells are critical for tran-
sition [3]. These cells are very similar to the originated cells and
proliferated cells, where jSRC fails to identify them because SR
learning. How to extract rare cell types is promising (Supplemen-
tary Figure S2). How to incorporate prior knowledge facilitating
the discovery of rare cell types is fundamental. Furthermore,
scRNA-seq is insufficient to fully characterize the structure and
functions of complex biological systems. How to integrate omic
data to further improve the performance of algorithms is also
promising.

Key Points
• To improve the scalability, the dimension reduction is

employed as a component of algorithm. jSRC jointly
learns sparse representation clustering, where features
are selected under the guidance of sparse representa-
tion clustering of cells, thereby improving the accuracy
of clustering.

• To improve the interpretability, the sparse representa-
tion constraint is imposed on features based on the

hypothesis that cells within the same type have the
similar expression patterns on the biomarker genes.
The cell types and the number of cell types are auto-
matically determined by the learned coefficient matrix.

• We apply jSRC to 15 scRNA-seq datasets with the num-
ber of single cells varies from 49 to 110 824 from var-
ious tissues and organisms. The experimental results
demonstrate that jSRC significantly outperforms 12
state-of-the-art methods with 20.29% improvement in
adjusted Rand index on average.

• And jSRC automatically and precisely selects the num-
ber of cell types. Furthermore, it also improves the
interpretability and robustness.

• By using scRNA-seq of COVID-19, jSRC accurately iden-
tifies cell types and their dynamics associated with
disease progression.
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