
Published online 5 May 2007 Nucleic Acids Research, 2007, Vol. 35, No. 11 3519–3524
doi:10.1093/nar/gkm071

Human RNase P: a tRNA-processing enzyme
and transcription factor
Nayef Jarrous* and Robert Reiner

Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel

Received January 11, 2007; Revised January 24, 2007; Accepted January 24, 2007

ABSTRACT

Ribonuclease P (RNase P) has been hitherto well
known as a catalytic ribonucleoprotein that pro-
cesses the 50 leader sequence of precursor tRNA.
Recent studies, however, reveal a new role for
nuclear forms of RNase P in the transcription of
tRNA genes by RNA polymerase (pol) III, thus linking
transcription with processing in the regulation of
tRNA gene expression. However, RNase P is also
essential for the transcription of other small non-
coding RNA genes, whose precursor transcripts are
not recognized as substrates for this holoenzyme.
Accordingly, RNase P can act solely as a transcrip-
tion factor for pol III, a role that seems to be
conserved in eukarya.

NUCLEAR RNase P: AN ENSEMBLE OF RNA
WITH HIGHLY CONSERVED PROTEINS

Ribonuclease P (RNase P) was originally described as an
endoribonuclease that processes the 50 leader sequence of
precursor tRNA (1). In bacteria, RNase P is a small
ribonucleoprotein complex (2), consisting of a catalytic
RNA and a protein cofactor (3,4). The crystal structures
of bacterial RNase P RNAs have recently been resolved,
revealing the locations of the substrate-binding domains
and the active sites in these RNA enzymes (5–7). By
contrast, when compared with their bacterial counter-
parts, nuclear forms of eukaryal RNase P are large
ribonucleoprotein complexes (8–10). Biochemical purifica-
tion analyses have shown that a highly purified nuclear
RNase P from HeLa cells has at least 10 distinct protein
subunits associated with a single RNA species, H1 RNA
(8,10). These protein subunits are termed Rpp14, Rpp20,
Rpp21, Rpp25, Rpp29, Rpp30, Rpp38, Rpp40, hPop1
and hPop5 (Table 1) (8,10–13). Since this purified HeLa
RNase P has been enzymatically defined by virtue of its
ability to cleave precursor tRNA in vitro (8,10), the
potential existence of other forms of RNase P complexes
with different subunit compositions is not excluded.

Similarly, Saccharomyces cerevisiae nuclear RNase P
possesses nine protein subunits, designated Pop1p,
Pop3p, Pop4p, Pop5p, Pop6p, Pop7p/Rpp2p, Pop8p,
Rpp1p and Rpr2p (14), most of which are homologous
to protein subunits of human RNase P (Table 1) (14,15).
In addition, these protein subunits are shared with RNase
MRP (14–17), a mitochondrial and ribosomal RNA-
processing ribonucleoprotein (18). However, it is not
known if these protein subunits are shared with the
mitochondrial form of human RNase P, a ribonucleopro-
tein particle shown to have an RNA moiety that is
identical to H1 RNA (19).
Rpp21, Rpp29, Rpp30, Rpp38 and hPop5 are highly

conserved proteins that have homologs in Archaea
(Table 1) (20–23). Rpp21, Rpp29 and H1 RNA are
sufficient for reconstitution of RNase P activity in tRNA
processing in vitro (24). The archaeal Rpp21, Rpp29,
Pop5, Rpp30 and Rpp38 proteins are required for efficient
reconstitution of thermostable RNase P ribonucleoprotein
(23,25–27). Nonetheless, recent findings reveal that
protein subunits of Pyrococcus horikoshii OT3 RNase P
are individually dispensable for enzyme activity
in vitro (26). In the case of the P. furiosus RNase P,
it has been shown that pairs of its protein subunits are
sufficient for reconstitution of enzyme activity (27). Thus,
archaeal Rpp21 with Rpp29 or Pop5 with Rpp30 are
sufficient for RNase P RNA-based catalysis (27). These
pairs of archaeal proteins interact with each other in two-
hybrid system (28). The reconstitution studies described
above underline the conserved role of archaeal and
eukaryal RNase P RNAs in substrate recognition and
cleavage. Recent progress in modeling the tertiary folding
of eukaryal RNase P RNA uncovers that it has a
conserved core structure similar to that of its bacterial
counterpart (29). Mutations that disrupt the predicted
tertiary folding of H1 RNA abolish catalysis in vitro (24).
Remarkably, Kikovska et al., has shown that H1 RNA is
active in tRNA processing in vitro in the absence of any
protein (30), a finding that is consistent with previous
observation that H1 RNA alone binds to precursor
tRNAs in vitro and has a conserved catalytic core (24,29).
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Since most of the protein subunits of nuclear RNase P
are shared with RNase MRP, including those responsible
for reconstitution of RNase P activity in vitro, it seems
that the RNA subunits alone may be sufficient
for diversification of function of these catalytic ribonu-
cleoproteins as tRNA and rRNA endoribonucleases
(24,29–31). Hence, the precise role of the protein subunits
of RNase P and RNase MRP in hydrolyzing the
phosphodiester bond in different RNA substrates remains
unknown. Apparently, protein subunits may allow sub-
strate recognition and catalysis by facilitating the proper
folding of the RNA subunits of RNase P and RNase
MRP. Protein subunits may also define some structural
properties of RNase P and RNase MRP. For instance,
Rpp20 and Rpp25 transiently associate with 12S mono-
particles of RNase MRP, but these subunits dissociate
from subsets of RNase MRP bound to 60–80S pre-
ribosomal complexes (32). Additionally, protein subunits
may permit the recognition of yet unknown RNA
substrates for RNase P and RNase MRP or implicate
these complexes in other biological settings, such as
chromatin binding and transcription (33; see below), cell
cycle progression (34) and RNA metabolism (35).
Accordingly, studying the protein subunits of RNase P
and RNase MRP could be useful in elucidating the
diversification of functions of these two evolution-related
ribonucleoprotein complexes (36).

SUBUNITS OF HUMAN RNase P DIFFERENTIALLY
LOCALIZE IN INTRANUCLEAR COMPARTMENTS
ASSOCIATED WITH GENE TRANSCRIPTION

Studies in cell biology reveal that H1 RNA and protein
subunits of human RNase P are differentially concen-
trated in distinct intracellular compartments, including the
nucleoplasm, nucleolus, Cajal bodies, perinucleolar com-
partment and cytoplasm (17,37–42). Rpp21 and Rpp29,
two protein subunits that are sufficient for reconstitution
of RNase P activity (24), localize mainly in the nucleo-
plasm and nucleolus, though the latter subunit rapidly
shuttles between these compartments (43). Cajal bodies
are sites of assembly of transcription and processing
machines (44,45), while the nucleolus specializes in
transcription and processing of rRNA and ribosome
biogenesis (46). The nucleoplasm, which defines the
interchromatin compartment, hosts transcription factories
for pol II and pol III (47–49). The lack of a specific
locale for the H1 RNA and protein subunits of human
RNase P and the differential distribution of these sub-
units in intranuclear compartments specialized in
gene transcription suggested the possibility that the
assembly of RNase P is dynamic and linked to active
gene transcription (50).

A NOVEL ROLE FOR HUMAN RNase P IN
POL III TRANSCRIPTION

A recent study has shown that human nuclear RNase P is
required for transcription of tRNA and other small
noncoding RNA genes by pol III in whole HeLa cells
and cell extracts (33). RNase P exerts its role on
transcription through association with chromatin of
tRNA and 5S rRNA genes as determined by chromatin
immunoprecipitation analysis (33). All the protein sub-
units of RNase P tested so far, i.e. Rpp14, Rpp20, Rpp21,
Rpp29, Rpp30, Rpp38 and Rpp40, can be found
associated with chromatin of tRNA and 5S rRNA genes
in rapidly dividing cells (Figure 1) (33; also unpublished
data), an indication that a multi-protein RNase P complex
binds to the chromatin of these genes. Rpp25 has also
been noted to be associated with nucleosomes (13).
Binding of these protein subunits to chromatin is dynamic,
in the sense that they associate with tRNA and 5S rRNA
genes in dividing HeLa cells and dissociate from
these genes when cells cease proliferating. Furthermore,
chromatin occupancy by RNase P associates with active
gene transcription in extracts and in cells, and coincides
with that of pol III, which could be brought down with
active RNase P ribonucleoprotein in coimmunoprecipita-
tion experiments (33).

Knockdown of the essential protein Rpp29 of human
RNase P by RNA interference did not affect the binding
of RPB8 (a core component of pol III) to tRNA and
5S rRNA genes, even though this knockdown results
in severe inhibition of RNase P activity and pol III
transcription (33). Additionally, Rpp29 disengaged from
target genes independently of RPB8 in cells that ceased
proliferating (33). Hence, the possibility exits that

Table 1. Subunits of human RNase P, functions and evolutionary

conservation

Subunita Function/interaction
(in tRNA processing)

Chromatin
bindingb/pol
III transcriptionc

Homolog
yeastd/archaeae

Rpp14 RNA binding þ/þ Pop8pf

Rpp20 ATPase,
helicase/Hsp27,
SMN, Rpp25

þ/þ Pop7p, Rpp2p

Rpp21 RNA binding,
activityg/Rpp29

þ/þ Rpr2p/aRpp21

Rpp25 RNA binding/Rpp20 þ
h/ND Pop6pf

Rpp29 tRNA binding,
activity/Rpp21

þ/þ Pop4p/aRpp29

Rpp30 RNA binding,
activity/Pop5

þ/þ Rpp1p/aRpp30

Rpp38 RNA binding,
activity

þ/þ Pop3p/aRpp38

Rpp40 þ/þ
hPop1 ND/ND Pop1p
hPop5 RNA binding,

activity/Rpp30
ND/þ Pop5p/aPop5

H1 RNA Activity/Rpp21,
Rpp29, Rpp30, Rpp38

ND/þ Rpr1/RPR RNA

aJarrous and Altman (8).
bBinding to chromatin of tRNA and 5S rRNA genes (33).
cRequired for pol III transcription in whole HeLa extracts and/or in
cells (33).
dWalker and Engelke (14).
eHall and Brown (20).
fRosenblad et al. (15).
gEnzyme activity of reconstituted RNase P (24,30).
hGuerrier-Takada et al. (13).
ND, not determined.
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recruitment of pol III to tRNA and 5S rRNA genes is
independent of that of RNase P (or at least Rpp29).

The association of RNase P with chromatin of tRNA
genes could be explained in terms of coordination of
tRNA gene expression at transcription and processing
steps. However, RNase P is also critical for transcription
of 5S rRNA, 7SL RNA and U6 snRNA genes (33),
whose precursor transcripts are not recognized as sub-
strates for RNase P. Hence, RNase P acts solely as a
transcription factor for pol III in transcribing these latter
small RNA genes.

ROLE OF RNase P IN TRANSCRIPTION
IS CONSERVED IN YEAST

Screening of a genomic library identified RPR1 RNA, the
RNA subunit of S. cerevisiae RNase P, as the specific
overexpression suppressor of very slow growth at 378C

due to a small deletion of Bdp1, a subunit of the transcrip-
tion factor TFIIIB complex (53). Processing of the 50

leader sequence of precursor tRNAIle is defective in cells
producing this mutant Bdp1p, called Bdp1�253–269.
Transcription of the RPR1 RNA gene is selectively
diminished when recombinant Bdp1�253–269 replaced
wild-type Bdp1p in an in vitro pol III transcription system.
The physical interaction of RNase P with Bdp1p was
demonstrated by coimmunoprecipitation and pull-down
assays, implying a role for TFIIIB in 50 end processing of
precursor tRNA (53).
In S. cerevisiae, early processing of precursor

tRNAs occurs in the nucleolus, which is enriched with
RNase P RNA (54). Additionally, tRNA gene families,
which are dispersed in various chromosomes, colocalize
with 5S rDNA genes at the nucleolus (55,56). This
nucleolar clustering of yeast tRNA genes depends on
transcription-complex formation and the existence of
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tRNA gene
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Rpp25
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Figure 1. RNase P subunits bind to chromatin of active tRNA genes. Many protein subunits of human RNase P associate with chromatin of tRNA
genes, as determined by chromatin immunoprecipitation (33). Subunits that their binding to chromatin was not verified are shown with a question
mark. Rpp25 has also been reported to be associated with nucleosomes (13). Based on knockdown analysis (33), RNase P subunits seem not to be
required for the recruitment of pol III subunits and hence its transcription factors TFIIIB and TFIIIC (51,52) to the tRNA gene.
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proficient promoters. Clustering of tRNA and 5S rRNA
genes in the nucleolus forms pol III transcription sites
containing concentrations of pol III and its general
transcription factors, TFIIIB, TFIIIC and TFIIIA. Such
nucleolar sites may also initiate nucleolar organization
of the tRNA-processing pathway that includes 50 end
processing by RNase P (55,56). It should be noted that in
contrast to the localization of pol III and RNase P in the
nucleolus in S. cerevisiae, confocal immunofluorescence
microscopy analyses of HeLa cells reveal that specific
protein subunits of human pol III and RNase P primarily
colocalize in the nucleoplasm, even though fluorescent
signals are also visible in defined spots in large nucleoli
(R.R. and J.N., unpublished data).

RECRUITMENT OF RNase P TO TARGET GENES

How human RNase P is recruited to tRNA and 5S rRNA
genes? One possibility could be that RNase P as a whole
particle is recruited to these target genes. Nonetheless,
protein subunits of human RNase P have been shown to
exhibit differential patterns of binding to chromatin of
tRNA and 5S rRNA genes (33). Moreover, siRNA
knockdown of Rpp29, a key core component for the
assembly of active RNase P, does not affect chromatin
binding by other subunits, including Rpp20 and Rpp21
(33; R.R. and N.J., unpublished data). Hence, chromatin
occupancy by Rpp29 is not a prerequisite for binding by
other subunits. Stepwise assembly of catalytic ribonucleo-
proteins, including the spliceosome and H/ACA small
nucleolar ribonucleoprotein, at transcriptionally active
genes has been proposed (45,57–59).

PROSPECTS

Archaeal and eukaryal RNase P are ensembles of
structurally and functionally related RNAs with highly
conserved protein subunits (8–10,14,17,20,50).
Reconstitution experiments of archaeal and eukaryal
RNase P activities reveal that two protein subunits, e.g.
Rpp21 and Rpp29, with their corresponding RNA
moieties are sufficient for having endonucleolytic cleavage
of tRNA substrates neutral pH7 and 5-30 mM divalent
ion (24,27). Notably, Rpp29 but not Rpp21 can activate a
bacterial RNase P RNA (24,60). In addition, P. furiosus
Pop5 has an a–b sandwich structure that bears structural
similarity to the bacterial RNase P protein (25). Since
archaeal and eucaryal RNase P RNAs are active under
unphysiological conditions of high ion concentrations
(30,61), it would be interesting to check if a single protein
cofactor (Rpp29, Pop5 or other) can reconstitute some
activity under physiological reaction conditions.
Previous studies which revealed ambiguous properties

related to RNase P or its subunits that were not consistent
with its activity as a tRNA-processing enzyme could be
reexamined from the perspective of its transcriptional
activity. For instance, Rpp20 that exhibits ATPase
activity (62) and chromatin-binding capability (33) may
enable RNase P (and/or RNase MRP) to use ATP as a
cofactor for binding and modulating chromatin structure

and function. Rpp20, as well as Rpp25, belong to the Alba
superfamily of proteins which seem to have originated as
RNA-binding proteins, attaching to a variety of ribonu-
cleoprotein complexes, including RNase P and RNase
MRP (13,17) and then being recruited as chromatin-
binding proteins (63). A dual role for Rpm2p, a
component of yeast mitochondrial RNase P, in tRNA
processing and transcription has also been described (64).

The molecular mechanisms by which human RNase P
binds to chromatin of noncoding RNA genes and controls
transcription by pol III are not known. Future work will
reveal if RNase P acts at initiation, elongation and/or
termination of transcription. In addition, the physical and
functional links between pol III and RNase P during the
cell cycle remains to be studied. Future studies will also
unveil the significance of the effect of binding of RNase P
(or its subunits) to hundreds of small noncoding RNA
genes and others (R.R. and N.J., unpublished data) on
chromatin structure, organization and function of the
human genome. Whatever the outcome of these studies,
the discovery that human RNase P is a chromatin-binding
complex which is critical for normal gene transcription
(33) expands the definition of this entity as an enzyme that
hydrolyzes a phosphodiester bond in precursor tRNA.
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