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Abstract
Premise: Species distribution models (SDMs) are widely utilized to guide conservation
decisions. The complexity of available data and SDM methodologies necessitates
considerations of how data are chosen and processed for modeling to enhance model
accuracy and support biological interpretations and ecological applications.
Methods: We built SDMs for the invasive aquatic plant European frog‐bit using
aggregated and field data that span multiple scales, data sources, and data types. We
tested how model results were affected by five modeler decision points: the exclusion
of (1) missing and (2) correlated data and the (3) scale (large‐scale aggregated data or
systematic field data), (4) source (specimens or observations), and (5) type (presence‐
background or presence‐absence) of occurrence data.
Results: Decisions about the exclusion of missing and correlated data, as well as the
scale and type of occurrence data, significantly affected metrics of model performance.
The source and type of occurrence data led to differences in the importance of specific
explanatory variables as drivers of species distribution and predicted probability of
suitable habitat.
Discussion: Our findings relative to European frog‐bit illustrate how specific data
selection and processing decisions can influence the outcomes and interpretation of
SDMs. Data‐centric protocols that incorporate data exploration into model building
can help ensure models are reproducible and can be accurately interpreted in light of
biological questions.
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Ecological models provide guidance for addressing critical
conservation issues including but not limited to biodiversity
loss, accelerating environmental change, and the spread of
diseases (Schuwirth et al., 2019). Species distribution
models, for example, have been applied in the preservation
of endangered species (e.g., Belitz et al., 2019; Su et al., 2021;
Charbonnel et al., 2023), predicting range shifts resulting
from climate change (e.g., Bond et al., 2011; Borzée
et al., 2019), and mitigating the spread and impact of
invasive species (e.g., Mainali et al., 2015; Barbet‐Massin
et al., 2018; Lozano, 2021). Correlative species distribution

models (SDMs), also called habitat suitability models or
ecological niche models, connect species occurrence data
with environmental and location‐specific information
at the sites they are observed (Elith and Leathwick, 2009;
Guillera‐Arroita et al., 2015). The results of SDMs can be
used to identify the drivers of historical and current species
distribution (Elith and Franklin, 2013; Belitz et al., 2019)
and estimate the potential distribution or, more realistically,
relative probability of suitable habitat in areas within and
outside of the sampled region (Elith and Leathwick, 2009).
The SDM process is continuously evaluated and refined
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(Valavi et al., 2022; Hui, 2023) so that model results can be
effectively applied to urgent ecological problems. Model
performance is influenced by decisions made by modelers
during model building (Vignali et al., 2020; Valavi
et al., 2022); consequently, these decisions affect which
models are chosen for application and how the results are
interpreted in light of the biological questions being
addressed (Zarzo‐Arias et al., 2022). Real‐world ecological
decisions based on SDMs are entirely dependent on the
input data; if the data are inappropriate for the questions
being asked or data processing methodologies are not
optimized, then the resulting conservation actions could be
misguided. However, data selection and processing that
occurs prior to model building is not always reported in
SDM literature and could even be hidden in modeling
programs, so modelers may not recognize which of their
decisions could change model outcomes. Literature on
species distribution modeling has addressed modeling
methods (Elith et al., 2006; Jarnevich, 2017; Valavi
et al., 2022), parameter optimization (Vignali et al., 2020),
data quality and bias (Tessarolo et al., 2021; Zarzo‐Arias
et al., 2022), data management (Zuckerberg et al., 2010),
explanatory variable selection and resolution (Austin and
Van Niel, 2011), and translation of predictions to real‐world
issues (Guisan et al., 2013). In this study, we build upon this
field of SDM evaluation and refinement by exploring the
impact of five specific modeling decision points, two related
to data processing and three related to data selection, on the
performance and outcomes of SDMs for the invasive aquatic
plant European frog‐bit (Hydrocharis morsus‐ranae L.) in the
Laurentian Great Lakes region. Data‐centric modeling
practices, which we define here as identifying and controlling
for the effects of input data features on the end results of
models, can help ensure decisions at these five points are
reproducible and lead to positive statistical outcomes and
biological interpretability.

Occurrence data for European frog‐bit provide a unique
opportunity to explore the integration of data discovery
with model optimization. By applying multiple types of
European frog‐bit occurrence data to the same broader
ecological questions (What are the drivers of this species'
distribution, and what areas contain suitable habitat?), we
were able to examine how complexity in the data fed into
models could influence their relative performance and
outcomes. Invasive European frog‐bit was first introduced
to North America in 1932 when it was planted as an
ornamental in Ottawa, Ontario, Canada (Minshall, 1940).
Now, European frog‐bit is primarily concentrated in the
Laurentian Great Lakes region, where it has the potential to
degrade wetlands by crowding out native plants and
reducing light, oxygen, and nutrients in the water (Catling
et al., 2003; Zhu et al., 2018). Monitoring efforts in invaded
regions have produced occurrence data representing a range
of geographic and ecological features. In this study, we
utilized an aggregated data set of publicly accessible
occurrence records across the invaded North American
range (Monfils et al., 2021; Hansen et al., 2022a).

Heterogeneity across these data necessitated data explora-
tion during the modeling process, which allowed us to
identify the specific effects of features of the input data on
model outcomes. We selected five decision points in the
processing (1 and 2) and selection (3, 4, and 5) of input data
that captured the variation in our data and could be
applicable outside of this species and study area. We asked:
How are model results and performance affected by (1) the
method of removing missing values in explanatory data
prior to modeling? (2) the threshold for excluding
correlated explanatory variables prior to modeling? (3) the
spatial and temporal scale of occurrence data? (4) the source
of occurrence data? and (5) the type of occurrence data? At
each decision point, we tested multiple options by building
a set of models for each option and comparing model
performance when predicting onto test data. At data
selection decision points, we also compared model out-
comes, specifically the contribution of variables in the final
best model and predicted probability of suitable habitat
from the final best model. We provide all information
related to data access, data processing, model building,
model evaluation, and data visualization through the Open
Science Framework (Hansen et al., 2023; https://doi.org/10.
17605/OSF.IO/Y6MEQ) to make this study fully reproduc-
ible using R Statistical Software (v4.3.0; R Core Team, 2023).

Decision Point 1: The first decision point we assessed was
the method of handling missing data prior to modeling.
When preparing data for SDMs, occurrence data are joined to
explanatory variables, which are often continuous or near‐
continuous raster layers (Elith et al., 2006; Valavi et al., 2022).
If the raster layers do not perfectly cover the study region of
interest, then missing values will be introduced for those
variables for some occurrence locations. Because SDMs
cannot be built when any data are missing, many modeling
algorithms can deal with this problem internally by
automatically removing missing observations (rows), imput-
ing missing values, or including default values (Chen and
Guestrin, 2016; Tang and Ishwaran, 2017; Wood, 2023).
However, if data are modified within the model in this way,
the modeler may not be aware of them and will not be able to
accurately interpret the final results (e.g., they could infer
biological significance for a variable that largely consisted of
imputed data that do not represent actual environmental
associations). At this decision point, we removed missing data
either by observation or by variable prior to modeling to avoid
the automatic decision made by each modeling algorithm.

Decision Point 2: The second decision point we
assessed was the threshold for excluding correlated
explanatory variables. When many spatial explanatory
variables are aggregated for SDMs, they are likely to have
some correlation with each other due to the influence
of geography and topography; including all correlated
variables could increase model bias and uncertainty
(Dormann et al., 2012; De Marco and Nóbrega, 2018).
One way modelers can avoid this problem is by setting
a correlation threshold and excluding one of any variable
pair with a correlation coefficient above that value
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(De Marco and Nóbrega, 2018). At this decision point, we
tested two correlation thresholds, 0.7 or 0.5 (out of 1),
which we chose based on their prevalence in SDM and other
applications and recognition as indicators of “strong” and
“moderate” correlation, respectively (Meier et al., 2010;
Mukaka, 2012; Zhu and Peterson, 2017; Akoglu, 2018; Ajene
et al., 2020; Tepa‐Yotto et al., 2021).

Decision Point 3: The third decision point we assessed
was the scale of occurrence data, which came about because of
the differences between the aggregated and field data available
to us. The scale of occurrence data as we define it here is the
temporal range of occurrences and the size and location of the
sampled area. At this decision point, we sought to compare a
larger scale based on aggregated public data (Hansen
et al., 2022a) with a smaller scale based on field data (Saginaw
Bay; Monfils et al., 2021). By comparing these two occurrence
data sets, we were also testing different methodologies for data
sampling, one that was largely opportunistic (large scale) and
one that was more systematic and generated for a specific
research project (Saginaw Bay). The first part of this decision
(Decision Point 3a) was defining the larger scale to be used,
either the invaded range of North America or the state of
Michigan, USA. The second part of this decision (Decision
Point 3b) was comparing the selected larger scale to the
smaller scale of Saginaw Bay.

Decision Point 4: The fourth decision point we assessed
was the source of occurrence data, which came about because
of the integration of European frog‐bit data across data
providers (e.g., natural history collections, targeted research
data, observations; Hansen et al., 2022a) in the aggregated data
set. At this decision point, we compared models trained on
specimen data to models trained on observation data.

Decision Point 5: The fifth decision point we assessed
was the type of occurrence data, which came about because of
the availability of true absences (or non‐detections) in our
Saginaw Bay field data. As defined in this study, the type of
occurrence data is what species absence points represent.
Most SDM algorithms utilize species presences and absences
or pseudo‐absences, which are drawn from the background of
the study region where the actual occurrence of the species is
not known (Valavi et al., 2022). At this decision point, we
compared models trained on presence‐absence data to models
trained on presence‐background data.

Although we identified these five decision points based
on features of the European frog‐bit occurrence data
available to us, these decisions are not specific to this
species or study; the explosion of publicly accessible data
makes these questions more relevant as data complexity
continues to increase. Scientists building SDMs use species
occurrence data from publicly accessible sources (Anderson
et al., 2016; Feldman et al., 2021), which include natural
history collections, community science platforms (e.g.,
iNaturalist; https://www.inaturalist.org/), regional projects
(e.g., the Midwest Invasive Species Information Network
[MISIN]; https://www.misin.msu.edu/), published research
databases (e.g., made available as supplemental data with a
scientific paper), and literature (e.g., records extracted from

older papers). Environmental variables can be obtained
from continuous or near‐continuous raster layers derived
from meteorological stations (e.g., WorldClim; Fick and
Hijmans, 2017), environmental models (e.g., SoilGrids;
Poggio et al., 2021), federal projects (e.g., National Land
Cover Database; Dewitz and USGS, 2021), and feature
locations for specific regions (e.g., boat launch sites in
Michigan; MDNR, 2023). Access to each of these data
sources opens up tremendous potential for ecological
applications; however, employing data sources with such
variability, both in terms of the data themselves and the
methods used to collect them (e.g., protocols, instruments,
timing, accuracy), can create greater variability in model
results and result in potential errors if features of the data
and the species they represent are not well understood and
accounted for (Moudrý and Devillers, 2020; Tessarolo
et al., 2021; Marcer et al., 2022; Zarzo‐Arias et al., 2022).
Our data‐centric modeling protocol embeds data discovery
within model building to account for this variability.

METHODS

Study regions and distribution data set

In 2021, we aggregated European frog‐bit occurrence data
from public and private sources across the invaded range of
North America in order to understand the historical
distribution of this species and its pattern of spread (Hansen
et al., 2022a). Data sources included opportunistic data
collected by community scientists, specimens in natural
history collections, and observations from targeted field
surveys by researchers and natural resource managers. The
resulting data set provides an ecologically relevant exemplar of
complex data well suited to the questions addressed in the
present study. Given the large geographic area represented by
this data set, we focused on three specific regions: the invaded
range of North America; the state of Michigan, USA; and
Saginaw Bay, Michigan. North American data span two
Canadian provinces and 10 U.S. states, primarily concentrated
around the Laurentian Great Lakes, and represent the
historical spread of European frog‐bit since 1932 (Hansen
et al., 2022a). Michigan was included as a study region because
of our knowledge of and involvement in European frog‐bit
research and monitoring across the state (Cahill and
Monfils, 2021). Michigan is located in the formerly glaciated
(last covered 9000–10,000 years ago; Krist and Lusch, 2004)
upper Midwestern United States between 41°41′N and 48°18′
N and 82°7′W and 90°25′W. The climate is temperate and
highly seasonal (Köppen climate classification humid conti-
nental; Peel et al., 2007), with some areas protected from
extremes by the Laurentian Great Lakes (Albert, 1995).
Saginaw Bay, which is a bay of Lake Huron in eastern
Michigan, was included as a study region because it is an Area
of Concern (EPA, 2023) with documented European frog‐bit
invasion and intensive field sampling efforts (Monfils
et al., 2021; Hansen et al., 2022a).
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Occurrence data gathering

Our response variable was European frog‐bit distribution, as
occurrence records in the aggregated data set. For the North
American study region, we used the entire aggregated data set,
excluding records with uncertainty above 1 km and a small
proportion of outliers so that large unsampled regions would
not be included in our analysis. For the Michigan study
region, we did the same for records within the state. For the
Saginaw Bay study region, we extracted field data of European
frog‐bit presences and absences collected by the authors along
50‐m segments during a targeted project in 2020 (Monfils
et al., 2021). These specific field data were excluded from the
Michigan study region. Each study region was defined as a
concave hull around occurrences, buffered by 1 km and
clipped to 1 km around the land. Study regions were used for
model training, testing, and predictions.

Explanatory data gathering

Thirteen explanatory variables were obtained from seven
public sources directly through R and consisted of climate,
soil, topographic, and anthropogenic factors with demon-
strated or suspected relevance to European frog‐bit based
on literature on this species and other aquatic plants
(Table 1).

Data processing

Occurrence data

Aggregated data in the North America and Michigan study
regions were split into three data sets based on data source:
specimens and observations combined (“all”), specimens only,
and observations only. For each data set in the three study
regions, we used the function gridSample in the dismo package
(Hijmans et al., 2023) to randomly sample one occurrence per
1 km× 1 km grid cell to reduce duplication and potential
sampling bias occurring from a higher density of observations
in some areas (Rodríguez‐Castañeda et al., 2012).

Background point sampling

The machine learning and regression models employed in
this study (Table 2) accept presence‐absence occurrence
data, which may be substituted for presence‐background
data with background points acting as absences. We
randomly sampled background points for each data set
(no more than one per grid cell) equal in number to the
number of presence points to achieve a prevalence of 0.5
and avoid biasing metrics of model performance
(Rodríguez‐Rey et al., 2019). This prevalence has demon-
strated positive outcomes for many modeling applications
(e.g., Barbet‐Massin et al., 2012; Grimmett et al., 2020;

Casas et al., 2022). Random sampling of the Saginaw Bay
presence‐absence data set using gridSample returned uneven
numbers of presences and absences; we sampled from the
more prevalent class to achieve an equal ratio.

Explanatory data

Explanatory variable raster layers were calculated for or
cropped to each study region extent. Most layers were available
at a resolution of 30 seconds of a degree, or approximately
1 km× 1 km. Phosphorus fertilizer application was available at
a resolution of 30minutes, which we resampled to 30 seconds
using bilinear interpolation (Soultan and Safi, 2017). Land
cover was available at a resolution of approximately 1 second
(30m× 30m), which we resampled to 30 seconds using
majority rule (Guisan et al., 2007). Data that represented
monthly averages (solar radiation, wind speed, and water vapor
pressure) were averaged over the year. Across each study
region, we checked for correlation among the explanatory
variables and excluded variables above each of the two
thresholds we tested (0.7 and 0.5). To determine which
variables to exclude, we used the function findCorrelation in the
caret package (Kuhn, 2008), which identifies any pairwise
correlations between variables above the given threshold and
returns the variable to be excluded based on its mean
correlation across all variables. We extracted values for each
set of uncorrelated variables at occurrence locations and
performed statistical standardization to coerce their means to 0
and their standard deviations to 1 (see Hansen et al., 2023).

We chose to actively handle missing values, either by
observation or by variable, for explanatory variables that
were introduced when joining explanatory and occurrence
data. The observation removal method involved excluding
all observations (rows) that had a missing value for any
explanatory variable. The variable removal method involved
excluding all explanatory variables (columns) that had at
least one missing value in the given data set.

Model building

For each data set, we built 12 types of models representative of
three classes: machine learning, regression, and envelope (see
Table 2 for model types). We classified MaxEnt and MaxNet
models in the regression class due to their similarity to Poisson
point‐process regression models (Renner and Warton, 2013).
Reviews of SDM methods (e.g., Elith et al., 2006; Valavi
et al., 2022) have discussed how different modeling algorithms
perform relative to each other on the same input data. Our goal
was to explore how a subset of modeling algorithms was
differentially affected by the five decision points in this study.
We split each input data set into four groups and ran four
iterations of each model, using three groups for model training
and one for model testing in each run of the model so we
could later compare mean performance metrics (k‐fold cross
validation, k= 4; Fielding and Bell, 1997; Hijmans, 2012).
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We built a set of models for all possible combinations of
decisions, keeping modeling parameters the same across data
sets so we could directly compare outcomes for each specific
decision point. For one data set (Saginaw Bay presence‐
absence), GAM and BRT required adjustments only for the
purpose of allowing these models to be built (see Hansen
et al., 2023).

Model assessment

To compare the performance of each model, we generated
predicted habitat suitability (between 0 and 1) from each trained
model and compared it against the actual occurrence value
(0 for absence/background or 1 for presence) in the
corresponding test data. We generated three metrics to compare

TABLE 1 Explanatory variables for species distribution modeling and their significance to the species of interest, European frog‐bit (Hydrocharis
morsus‐ranae).

Variable type Variable Source Significance to European frog‐bit

Climate Mean temperature of
warmest quarter (BIO10)

WorldClim (Fick and
Hijmans, 2017)

Turion development and seed germination are
dependent on higher water temperature (Richards
and Blakemore, 1975; Cook and Lüönd, 1982;
Burnham, 1998).

Mean temperature of coldest
quarter (BIO11)

Turions may not germinate when exposed to low
temperatures while overwintering (Burnham, 1998;
Adamec and Kučerová, 2013).

Minimum temperature of
coldest month (BIO6)

Exposure to frost is likely relevant for floating aquatic
plants (Lozano, 2021).

Precipitation of warmest
quarter (BIO18)

Drying out of waterbodies during the growing season
may inhibit growth (Catling et al., 2003;
Lozano 2021).

Solar radiation Rosettes grow faster in full sun (Halpern, 2017), and
shading has been shown to be an effective control
mechanism (Zhu et al., 2014).

Wind speed Wind and waves may facilitate dispersal (Halpern, 2017),
but EFB may also inhabit areas protected from wind
and wave action (Cook and Lüönd, 1982; Catling
et al., 2003).

Water vapor pressure Vapor pressure influences surface water evaporation and
plant transpiration in wetlands, which could both
affect and be affected by aquatic plant growth
(Gale, 2004; Kirzhner and Zimmels, 2006).

Soil nutrients Total nitrogen at surface
of soil

SoilGrids (Poggio et al., 2021) Floating aquatic plants are often limited by nutrients in
water; excess nutrients in the soil and subsequently
water could contribute to dominance of EFB and
other floating plants (Scheffer et al., 2003).
Mesotrophic or eutrophic conditions may support
EFB populations (Cook and Lüönd, 1982; Catling
et al., 2003).

Phosphorus fertilizer
application

Global Gridded Soil
Phosphorus (Yang
et al., 2014)

Topography Land cover National Land Cover Database
2019 (Dewitz and
USGS, 2021)

European frog‐bit is often found within and along
wetlands (Cook and Lüönd, 1982; Catling
et al., 2003).

Elevation Shuttle Radar Topographic
Mission Digital Elevation
Database (Jarvis
et al., 2018)

Elevation affects factors related to plant growth
(Gale, 2004) and has been significant in other plant
species SDMs (Jarnevich and Reynolds, 2011; Koncki
and Aronson, 2015).

Anthropogenic Population density (estimate) Gridded Population of the
World (CIESIN, 2018)

If human‐mediated spread is important for EFB's
distribution, then it may establish more frequently in
areas of higher population density (Rodríguez‐Rey
et al., 2019).

Distance from nearest boat
launch

Calculated from Michigan
Public Boating Access Sites
(MDNR, 2023)

Aquatic plants are likely to spread between waterbodies
on boats and equipment (Catling et al., 2003;
Rodríguez‐Rey et al., 2019).

Note: EFB = European frog‐bit; SDM = species distribution model.
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across models: mean absolute error, sensitivity, and specificity
(for presence‐absence and presence‐background models). Mean
absolute error (MAE) is a threshold‐independent measure of the
mean difference between predicted and actual values (Willmott
and Matsuura, 2005). Sensitivity is a threshold‐dependent
measure of the ability of a model to detect true positives
(i.e., predict presence where there is a presence). When
sensitivity is high, the true positive rate is high and the false
negative rate is low. Specificity is a threshold‐dependent
measure of the ability of a model to detect true negatives (i.e.,
predict absence where there is an absence [or background
point]). When specificity is high, the true negative rate is high
and the false positive rate is low (Yerushalmy, 1947). We used a
threshold of 0.5 for calculating sensitivity and specificity, which
provides an intuitive, commonly used null threshold represent-
ing equal chance of presence and absence (Wilkinson et al.,
2021). We did not include any area under the curve (AUC)
metrics in our analysis, as they are known to be strongly
influenced by the size of the study region and thus would not be
appropriate for comparing across study regions and would
double‐count sensitivity and specificity with lower interpretabil-
ity (Lobo et al., 2008; Jiménez and Soberón, 2020). We include
optional code in our protocol for running all hypothesis tests for
the area under the receiver operating characteristic curve (AUC
ROC; see Hansen et al., 2023). We used Wilcoxon rank‐sum
(also known as Mann–Whitney U) tests to assess differences in
model evaluation metrics between groups for our five decision
points. Models sometimes failed to build or fully converge. If
more than one model failed in a given group of four, we
excluded that group. As each decision was assessed, we
controlled for the remaining four by grouping or filtering our
results data appropriately.

To compare the outcomes of each model based on the
three data selection decisions (scale, data source, and data type),
we generated one high‐performing model (XGBoost) from the
entirety of each data set. We compared the relative contribution
of each explanatory variable and predicted probability of
suitable habitat across models for each study region.

Comparison of North America and Michigan
study regions

Occurrence data within the North America and Michigan
study regions were not independent, due to the inclusion of
Michigan in both. Our goal was to select just one of these
regions (Decision Point 3a) to move forward with assessment
of the remaining decision points. Given evidence of both
positive and negative effects of geographic partitioning of
occurrence data (Osborne and Suárez‐Seoane, 2002; Gonzalez
et al., 2011; Qiao et al., 2019) and considerations for modeling
species occurrences over long time periods (Barve et al., 2011),
we wanted to directly compare the two large‐scale study
regions to make an informed decision about which one was
most appropriate for further analysis. We built models using
North America and Michigan occurrence data as outlined
above, excluding the explanatory variables distance from the
nearest boat launch and land cover, which were available at the
state and country level, respectively.

We found significant differences in MAE for all models,
sensitivity for nine out of 12 models, and specificity for four out
of 10 models, with higher performance observed for the
Michigan training region (Appendices S1, S2). These findings
are similar to those of El‐Gabbas and Dormann (2018), who

TABLE 2 Species distribution model algorithms used in this study. Machine learning and regression models were built using presence‐background data
at the Michigan scale and presence‐background and presence‐absence data at the Saginaw Bay scale. Envelope models were built using presences only. Refer
to these abbreviations for all following tables and figures.

Model class Model name Abbreviation References

Machine learning Artificial neural network ANN Pearson et al. (2002)

Boosted regression trees (or gradient boosting
machine)

BRT Elith et al. (2008); Yu et al. (2020)

Conditional inference forest Cforest Copenhaver‐Parry et al. (2016)

Random forest RF Valavi et al. (2021, 2022)

eXtreme gradient boosting machine XGBoost Chen and Guestrin (2016); Muñoz‐Mas et al. (2019);
Valavi et al. (2022)

Regression Generalized additive model GAM Guisan et al. (2002)

Generalized linear model GLM Guisan et al. (2002)

Multivariate adaptive regression splines MARS Leathwick et al. (2006)

Maximum entropy MaxEnt Phillips et al. (2006, 2017)

Maximum entropy using glmnet MaxNet Phillips et al. (2017)

Envelope BIOCLIM BIOCLIM Busby (1991); Hijmans and Graham (2006); Hijmans
et al. (2023)

DOMAIN DOMAIN Carpenter et al. (1993); Hijmans and Graham (2006)
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found that range‐wide data did not improve models built using
regional data. Reasons for the lower predictive performance of
North America models may be the geographic heterogeneity
and dispersal barriers (e.g., Lake Huron and Lake Erie) of the
North American invaded region compared with Michigan
(Barve et al., 2011) and background points that were less likely
to represent true absences than the Michigan background
points, which we were more confident about given our
involvement in targeted European frog‐bit monitoring in
Michigan specifically.

We mapped predicted probability from final XGBoost
models trained with North America or Michigan occur-
rences onto the Michigan study region. The North America
models predicted marginally higher probability of suitable
habitat on average (5.5%). The median difference in
predictions was <0.1%, due to the fact each model predicted
higher probability of suitable habitat in some parts of the
Michigan study region (Appendices S3, S4). Because neither
model predicted consistently higher values across the entire
study region, and prediction values were similar overall
(Wilcoxon effect size = 0.214), we concluded that neither
model was under‐ or overestimating probability of suitable
habitat by a large enough margin to realistically influence
model interpretation and application. We note that for
other species and study regions, differences based on the
training region will likely not be the same as what we
observed in this study. Data‐centric criteria for delineating a
study region may include relative data availability across a
species' range, bias in either presence or absence data, and
relative performance and outcomes as we assessed here.

Given these findings, Michigan was selected as the final
large‐scale study region representing observations over a long
time period (1996–2021) with a large area of interest
(approximately 15,000 km2) and high variation in environ-
mental gradients (Hansen et al., 2022a). The Saginaw Bay study
region represented a single year (2020) of a field research study
covering an area of approximately 250 km2 of documented
European frog‐bit occurrence resulting in less variation in
environmental gradients (Monfils et al., 2021; Appendix S5).
Further analyses at the Michigan and Saginaw Bay scales
(Decision Points 1, 2, 3b, 4, and 5) were based on models built
from all available occurrence data and explanatory variables.
Sample sizes for Michigan “all,” specimen, and observation data
were 922, 68, and 912, respectively (Appendix S6). Sample sizes
for Saginaw Bay presence‐absence and presence‐background
data were 100 and 200, respectively.

RESULTS

Model performance: Data processing decisions

Decision Point 1: Method of removing missing values in
explanatory data prior to modeling

We assessed how the method of removing missing values
in explanatory data, either by observation or by variable, prior
to modeling influenced model performance. All data sets had

missing values for at least one explanatory variable. We found
that the method of removing missing values led to significant
differences in MAE in 42 of 89 comparisons (47%),
controlling for explanatory variable threshold, scale, data
source, and data type. The observation removal method was
favored more often than the variable removal method
(Table 3, Appendix S7). Significant differences in MAE were
not restricted to any particular model class. Envelope models
favored the variable removal method, while machine learning
and regression models typically favored the observation
removal method. We controlled for the method of removing
missing values by retaining only the better‐performing group
in each case, regardless of statistical significance.

Decision Point 2: Threshold for excluding correlated
explanatory variables

We assessed how the threshold for excluding correlated
explanatory variables influenced model performance, testing
the cutoff values of 0.7 and 0.5. At the Saginaw Bay scale, the
same variables were retained at both thresholds. At the
Michigan scale, we found that the threshold led to significant
differences in MAE for presence‐only envelope models
(Table 4, Appendix S8). We controlled for the correlation
threshold by retaining only the better‐performing group in
each case, regardless of statistical significance.

Model performance: Model type and class

After controlling for the method of removing missing values
and threshold for excluding correlated variables, we tested the
relative performance of each model type and class. The
machine learning and regression classes performed signifi-
cantly better than the envelope class (P < 0.001). We did not
observe a significant difference in MAE between the machine
learning and regression classes (P = 0.117 after Bonferroni
correction for multiple comparisons; see Hansen et al., 2023).
Pairwise comparisons between machine learning models were
significant in two out of 10 cases; pairwise comparisons
between regression models were significant in six out of 10
cases (Figure 1). The regression model GAM performed
similarly to four out of five machine learning models, likely
explaining the absence of a significant difference in MAE
between these classes. The machine learning and regression
model classes were not significantly different in terms of
sensitivity or specificity (Figure 2).

Model performance: Data selection decisions

Decision Point 3a: Selection of large‐scale study region
Occurrence data within the North America and Michigan

study regions were not independent, so only one of these
regions could be included in analyses of Decision Points 1, 2,
3b, 4, and 5. We selected Michigan as our large‐scale study
region after observing that Michigan models outperformed
North America models (Appendices S1, S2).
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Decision Point 3b: Scale of occurrence data
We assessed how the scale of occurrence data, either

Michigan or Saginaw Bay, influenced model performance.
We used all available data at each scale and included only
presence‐background or presence‐only models in our
analysis, which controlled for data source and data type.
We found significant differences in MAE for 11 out of
12 models, sensitivity for two out of 12 models, and
specificity for all models, with higher performance observed
at the Michigan scale (Figure 3, Appendix S9).

Decision Point 4: Source of occurrence data (Michigan
scale only)

We assessed how the source of occurrence data,
either specimens or observations, influenced model
performance. These analyses could only be carried out
for the Michigan scale using presence‐background or
presence‐only data, which controlled for scale and data
type. We found significant differences in MAE for seven
out of 12 models, sensitivity for three out of 12 models,
and sensitivity for two out of 10 models, with higher
performance observed for observation‐based data
(Figure 4, Appendix S10).

Decision Point 5: Type of occurrence data (Saginaw Bay
scale only)

We assessed how the type of occurrence data, either
presence‐background or presence‐absence, influenced
model performance. These analyses could only be carried
out for the Saginaw Bay scale, which controlled for scale
and data source. We found significant differences for MAE
for four out of 10 models, sensitivity for three out of 10
models, and specificity for two out of 10 models, with
higher performance observed for presence‐background
data (Figure 5, Appendix S11).

Model outcomes: Data selection decisions

Contribution of each variable to the final model

We assessed how the relative contribution of each
explanatory variable was affected by scale, data source,
and data type in one high‐performing model, XGBoost.
Distance from the nearest boat launch contributed greater
than 5% across all models. Elevation and phosphorus
fertilizer application contributed greater than 41% and 9%,

TABLE 3 Comparisons of the method of removing missing data prior to modeling (by observation or by variable), grouped by the threshold for excluding
correlated explanatory variables and scale, data source, and data type. Saginaw Bay data sets were equivalent at the 0.7 and 0.5 correlation thresholds. The method
with the lower mean absolute error is given for each group; shaded values are statistically significant (P < 0.05). Refer to Table 2 for model abbreviations.

Presence‐absence or presence‐background models

Model class Model type

Michigan Saginaw Bay

0.7 Correlation threshold 0.5 Correlation threshold Both correlation thresholds

Presence‐background Presence‐background All data (observations)

All data Specimen Observation All data Specimen Observation
Presence‐
background

Presence‐
absence

Machine learning ANN NA Var Obs Obs Var NA NA Obs

BRT Obs Obs Obs Obs NA Obs Obs NA

Cforest Obs Obs Obs Obs Obs Obs Obs Var

RF Obs Var Obs Obs Var Obs Obs Var

XGBoost Obs Var Obs Obs Var Obs Obs Var

Regression GAM Obs NA Obs Obs Var Obs Var NA

GLM Obs Var Obs Obs Var Obs Obs Var

MARS Obs Var Obs Obs Obs Obs Obs Obs

MaxEnt Obs Var Obs Obs Var Obs Obs Var

MaxNet Obs Var Obs Obs Var Obs Obs Obs

Presence‐only models
Michigan Saginaw Bay
0.7 Correlation threshold 0.5 Correlation threshold Both correlation thresholds

Model class Model type All data Specimen Observation All data Specimen Observation All data (observations)

Envelope BIOCLIM Var Obs Var Var Var Var Var

DOMAIN Var Obs Var Var Var Var Var

Note: Var = exclusion of explanatory variables (columns) with any missing values; Obs = exclusion of observation (rows) with any missing values; NA = fewer than three models
(out of four) could be built in a given group and a comparison could not be made.
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respectively, in all Michigan models. Population density and
WorldClim BIO10 (mean temperature of warmest quarter)
contributed greater than 24% and 8%, respectively, in both
Saginaw Bay models (Figure 6).

Predictive mapping of probability of suitable
habitat

We mapped predicted probability of suitable habitat from
each Michigan and Saginaw Bay XGBoost model across
their respective study regions (Appendices S12–S15). We
found average differences between 2% and 12% when
comparing between data sources (specimens, observations,
or both) at the Michigan scale and an average difference of
25% when comparing between data types (presence‐absence
or presence‐background) at the Saginaw Bay scale.

DISCUSSION

Data processing decisions

Decision Point 1: Removing missing values before modeling
retained interpretability

Significant differences in MAE based on the method for
removing missing values were found most often for the

largest data sets (Michigan all data, n = 922; Michigan
observation data, n = 912) and usually favored the observa-
tion removal method. This is likely explained by the general
principle that models with more variables have greater fit to
the input data; however, with greater dependence on the
input data, these models may be less accurate outside the
input data set (Coelho et al., 2019). Another possible
explanation is the distribution of non‐missing explanatory
variables for observations with missing values. For example,
the land cover class “Open Water” was more prevalent
among observations with missing values. Because open
water does not represent “ideal” habitat for European frog‐
bit (Cook and Lüönd, 1982; Catling et al., 2003), models
including those observations could be less biologically
relevant. While land cover in our models was resampled
to a coarser resolution, thus losing some of its heterogene-
ity, the presence of land cover as a significant contributor in
the Saginaw Bay presence‐background model suggests this
variable was still meaningful.

Identifying missing values and deciding how to handle
them before modeling gives the modeler explicit control over
which data are retained and allows them to interpret model
results without losing meaning when model algorithms delete
or impute data automatically. Considerations when choosing
how to address missing values may include retaining a
minimum sample size and minimum ratio of observations to
explanatory variables, the distribution of variables with and
without missing values relative to each other, and the
biological significance of each variable if this is known.

Decision Point 2: Both exclusionary thresholds retained
biologically significant variables

Significant differences in MAE based on the threshold
for excluding correlated variables at the Michigan scale were
found for envelope models but not machine learning or
regression models. Variables excluded at the stricter
threshold were solar radiation, WorldClim BIO18, and
wind speed. None of these variables contributed signifi-
cantly to final Michigan XGBoost models trained on all data
or observation data, which likely explains the similar
performance at each threshold. While these variables did
contribute to the final Michigan specimen XGBoost models,
their collective contribution was approximately 36%, which
may not have been high enough to significantly alter model
performance in their absence.

It is likely given these findings that the subset of variables
that are actually the greatest contributors to European frog‐bit
occurrence were retained for both correlation thresholds,
leading to similar results; however, this will not be the case for
all species and SDM applications. The choice of correlation
threshold is up to the modeler and their goals. In some cases,
such as when SDM predictions will be extrapolated outside of
the training region, a stricter threshold may be preferable for
producing more parsimonious models more likely to retain
predictive power outside the training data (Daganzo et al., 2012;
Petitpierre et al., 2017; Gori et al., 2024). Another important
consideration when excluding or combining explanatory

TABLE 4 Comparison of each threshold (0.5 or 0.7) for excluding
correlated explanatory variables prior to modeling, grouped by data
source. Saginaw Bay data sets were equivalent at each threshold; table
refers to Michigan scale only. Machine learning and regression models
utilized presence‐background data and envelope models utilized presence‐
only data. The threshold with the lower mean absolute error is given for
each group; shaded values are statistically significant (P < 0.05).
Explanatory variables with correlations above each threshold were
excluded prior to modeling using caret::findCorrelation (Kuhn, 2008).
Refer to Table 2 for model abbreviations.

Model class Model type All data Specimen Observation

Machine
learning

ANN 0.5 0.5 0.5

BRT 0.7 0.7 0.7

Cforest 0.5 0.5 0.5

RF 0.7 0.5 0.7

XGBoost 0.7 0.7 0.7

Regression GAM 0.7 NA 0.7

GLM 0.7 0.7 0.5

MARS 0.7 0.7 0.7

MaxEnt 0.7 0.7 0.7

MaxNet 0.7 0.7 0.7

Envelope BIOCLIM 0.5 0.5 0.5

DOMAIN 0.5 0.5 0.5

Note: NA = fewer than three models (out of four) could be built in a given group and
a comparison could not be made.

DATA‐CENTRIC SPECIES DISTRIBUTION MODELING | 9 of 20



variables is their biological significance to the species being
studied. Statistical selection of variables may be complemented
by reviews of literature and expert opinion about the species'
biology (Zarzo‐Arias et al., 2022).

Data selection decisions

Decision Point 3a: Regional models demonstrated high
predictive performance

Possible explanations for the lower predictive performance
of range‐wide North America models compared with regional
Michigan models are geographic heterogeneity, dispersal
barriers, and background points that may not represent true

absences in the North American invaded region. A data‐centric
method for selecting training regions that incorporates
geography across a species' known range, data availability, data
bias, and model outcomes can help ensure the chosen region is
appropriate for the species being studied.

Decision Point 3b: Scale is more meaningful when selected
based on the biological question

Significant differences in model performance metrics based
on the scale of occurrence data indicated higher performance
for Michigan models compared with Saginaw Bay models. This
finding is most likely explained by the larger geographic area of
the Michigan study region, which created greater geographic
separation between presence and background points and

F IGURE 1 Comparison of mean absolute error (MAE) by model type and class, across all scales, data sources, and data types. (A) Mean and median
MAE for each model type. (B) Pairwise comparisons of MAE for each model type. In each boxplot, the vertical line indicates the median and the dot
indicates the mean; the dashed vertical gray line indicates mean MAE across all models. Refer to Table 2 for model abbreviations.
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greater variation in explanatory variables than in the Saginaw
Bay study region. This explanation is supported by the equal
performance of Michigan and Saginaw Bay models across most
model types and metrics when the Michigan study region was
redefined to be the same as the Saginaw Bay study region (see
Hansen et al., 2023).

Biologically informed SDM building would base the
selected scale on the goals of the model, the questions being
asked, and the study species. Large‐scale opportunistic data
outperformed small‐scale field data only when the size of
the study region also differed, giving the large‐scale models
an advantage in separating presence and background points.
Both opportunistic aggregated data and systematic field data
have the ability to build high‐performing models, so it is up
to the modeler to make an active choice in defining the scale
and nature of data to be applied to avoid overinterpretation.

Decision Point 4: Multiple sources of publicly accessible data
built strong models

Significant differences in model performance metrics based
on the source of species occurrence data at the Michigan scale
indicated higher performance for models built with observation

data compared with specimen data. However, many models
were not affected by the source of occurrence data. Out of the
high‐performing models ANN, GAM, and XGBoost, none
differed in sensitivity and specificity based on data source and
only XGBoost differed in MAE. The success of these models
when trained on only specimen data despite a much smaller
sample size than observation data (n= 68 and n= 912,
respectively) is most likely explained by the strength of these
modeling algorithms and attributes of the specific specimen
data utilized. Based on their geographic distribution, they can
be considered a representative sample of observations (Appen-
dix S6). The largest contributor of specimen data is a known
expert in the field who was actively monitoring several areas of
the state and creating specimens at regular intervals (Hansen
et al., 2022a), so their specimens are likely accurate representa-
tions of European frog‐bit occurrence in recent years.

In our final XGBoost models for the Michigan scale, the
average predicted probability of suitable habitat was 12%
higher in specimen‐only models than in observation‐only
models. Although the difference in predicted values varied
across the study region, specimen‐only models tended to
predict higher probabilities inland (Appendices S12, S13),

F IGURE 2 Sensitivity (true positive rate) and specificity (true negative rate) for each machine learning and regression model across all scales, data
sources, and data types. Refer to Table 2 for model abbreviations.
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F IGURE 3 Mean values by model type for the inverse of mean absolute error, sensitivity, and specificity at the Michigan and Saginaw Bay scales, using
all available presence‐background or presence‐only data. Statistical significance (P < 0.05) is indicated by asterisks. Refer to Table 2 for model abbreviations.

F IGURE 4 Mean values by model type for the inverse of mean absolute error, sensitivity, and specificity using observation‐based and specimen‐based
data at the Michigan scale. Statistical significance (P < 0.05) is indicated by asterisks. Refer to Table 2 for model abbreviations.
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which would likely influence decisions made based on the
prediction maps. Specimen‐only models also returned more
explanatory variables contributing more than 5% (Figure 6).

In our study, specimens from natural history collections
performed as well as publicly accessible observation records
for several model types, including high‐performing models.
This may be true for other species and study regions, as long
as attributes of the specimens (e.g., collectors, temporal
range, spatial range) are well understood and compatible
with the goals of the SDM. Regional collections in particular
may prove valuable given the expertise of collectors
contributing to them (Monfils et al., 2020). However, we
note that different data sources will lead to different model
predictions in some parts of the study region and
subsequent conservation decisions. Considering both the
availability and appropriateness of each data source prior to
modeling will allow for clearer interpretations of models.

Decision Point 5: Presence‐background models performed well
when background points were drawn from likely absences

Significant differences in model performance metrics
based on the type of occurrence data at the Saginaw Bay
scale indicated higher performance for models built with
presence‐background data compared with presence‐absence
data. This finding could be explained by the larger
geographic range of background points compared with
absence points, creating clearer separation and greater
variability in explanatory variables in the presence‐
background models than the presence‐absence models,
which included only points surveyed at or near the coast.

In our final XGBoost models for the Saginaw Bay scale,
the average predicted probability of suitable habitat was 25%

greater in the presence‐absence model than the presence‐
background model, with consistently higher predictions in
many parts of the study region by the presence‐absence
model (Appendices S14, S15). The presence‐background
model indicated more variables contributing greater than
5% (Figure 6), likely because of the expanded range of
background points compared with absence points.

In our study, we had access to presence‐absence data
and were able to derive background data to compare true
absences and pseudo‐absences, and we found that presence‐
absence data never performed better than presence‐
background data. Many SDM studies have pointed out that
background points are imperfect substitutes for absences
(Barbet‐Massin et al., 2012; Guillera‐Arroita et al., 2015).
However, background points in this study were drawn from
areas where European frog‐bit was likely absent, based on
expert opinion. If this is the case, then using background
points allows modelers to extend the range of “true”
absences in their models, likely leading to stronger models.
When appropriate, the use of background points can also
decrease research costs by not requiring sampling to
confirm the absence of the species being modeled.

Performance based on model class and type

Our assessment of model performance based on model class
and type aligned with findings in similar studies (Elith
et al., 2006; Konowalik and Nosol, 2021), with machine
learning and regression models outperforming presence‐only
envelope models. Top performers included the regression
model GAM and the machine learning models ANN and

F IGURE 5 Mean values by model type for the inverse of mean absolute error, sensitivity, and specificity using presence‐background and presence‐
absence data at the Saginaw Bay scale. Statistical significance (P < 0.05) is indicated by asterisks. Refer to Table 2 for model abbreviations.

DATA‐CENTRIC SPECIES DISTRIBUTION MODELING | 13 of 20



XGBoost. The effects of model tuning have been addressed in
previous studies (e.g., Phillips and Dudík, 2008; Radosavljevic
and Anderson, 2014; Vignali et al., 2020) and were outside the
scope of this work, which was focused on relative performance

of input data given equal modeling parameters. We found that
different modeling algorithms were more or less affected by
our five decision points, but even high‐performing models
differed in their performance based on some data attributes.

F IGURE 6 Contribution of each explanatory variable (as a percentage) in the final eXtreme gradient boosting machine (XGBoost) models for each scale, data
source (Michigan), and data type (Saginaw Bay). Variables that contributed less than 5% in a given model are grouped into the “All others” category.
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In our study, machine learning models were among the
best‐performing algorithms. However, we note that many
machine learning models will perform well regardless of the
input data, and biological meaning cannot be inferred from
data selected without a strong biological basis. Data‐centric
criteria for selecting a model type include how likely it is to
be affected by modeling decisions and whether it is possible
to optimize the model based on a particular data selection
or processing decision.

Limitations of invasive species distribution
modeling

Critical evaluations of invasive species distribution modeling
have noted limitations that arise from non‐equilibrium and
range shifts when species move into an area they are not native
to, which leads to a smaller realized distribution compared
to the species' potential distribution (Václavík and
Meentemeyer, 2012; Pili et al., 2020; Cho et al., 2022). These
limitations may be more relevant for but are not exclusive to
invasive species, nor do they necessarily reduce the performance
capacity of invasive species models compared to native species
models (Menuz et al., 2015). Given the potential for invasive
species to significantly harm ecosystems, SDMs are still a useful,
widely accepted tool for assessing current distributions (Dutra
Silva et al., 2021; Cho et al., 2022). We were interested in
assessing relative, not absolute, model performance and
outcomes based on how data are selected and processed, which
is not unique to any one species. Because of its ecological
significance and the heterogeneity of available occurrence data,
European frog‐bit provided a useful case study that represents
the real‐world use of SDMs and the influence of data
complexity on model results. If high‐priority invasive species
lead to more data being generated (e.g., from targeted
monitoring efforts and community science projects), then there
is an even greater need for special attention to their data
characteristics during modeling. We aimed to reduce uncer-
tainty and improve the accuracy of our models by following
guidance from other modelers given known strengths and
limitations of invasive SDMs. Václavík and Meentemeyer
(2012) note extrapolation outside of the training region as a
particular concern for invasive species models. We addressed
this by avoiding extrapolation and focused on training, testing,
and predicting onto the same study region. The predictive
capacity of invasive SDMs can be improved by using
anthropogenic explanatory variables in addition to climate
variables (Beans et al., 2012; Rodríguez‐Rey et al., 2019) and
incorporatingmeasures of dispersal pressure (Menuz et al., 2015).
Population density and distance from the nearest boat launch
fulfilled these roles in our models.

Conclusions

We demonstrated that conscious choices made by modelers
have the power to significantly change the performance and

outcomes of SDMs. Our findings provide support for the
importance of applying data‐centric modeling protocols
that include data discovery to improve model fit, interpre-
tation of results, and the conservation decisions based on
them. The results of our European frog‐bit models in the
Laurentian Great Lakes region serve as a case study of the
interaction of data complexity with model results, which is
relevant for any modeling application utilizing heteroge-
neous data (e.g., from multiple data sources, collected using
multiple methodologies, available at multiple scales). We
found that features of input data and how they are
processed, including the spatial and temporal scale of
occurrence data, source of occurrence data, type of
occurrence data, method of handling missing values, and
threshold for excluding correlated variables are just as
important (or more) than how data are fit into a model.
Even high‐performing modeling algorithms differed in their
performance based on these data attributes. Integrating data
discovery into the modeling process can help modelers
understand what attributes are present in their data that
could influence model outcomes and how these attributes
can be adjusted and accounted for to optimize model
performance and biological relevance. Additionally, report-
ing these decisions along with SDM results can increase the
transparency and reproducibility of their models.

The general principle that decisions made by modelers
influence how models are interpreted and applied reaches
beyond SDMs. An advantage of SDMs is the ability to
integrate data collected at different time points using
different sampling methodologies, but other ecological
questions require data collected at the time a species is
observed. Emerging data resources such as (Digital)
Extended Specimens, which capture a snapshot of an
organism's ecological context through linkages with other
data types, will likely prove useful for this reason
(Webster, 2017; Lendemer et al., 2020; Hardisty et al., 2022).
By acting as digital proxies for physical specimens, they can
also be augmented with new information as the specimens
are resampled (Pyke and Ehrlich, 2010). Aggregated
occurrence data, Digital Extended Specimens, and data
resources that have yet to emerge will undoubtedly make
data availability less of a constraint while introducing
further complexity into the process of ecological modeling.
Data‐centric ecological modelers will welcome new sources
of biodiversity data as they become available, while
recognizing and harnessing variation in these data to
answer new biological questions. Modeling endeavors will
be enriched by careful attention to the strengths, limitations,
and potentially confounding features of these data and a
commitment to a continual revision of our methodologies.
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SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Appendix S1. Mean values by model type for the inverse of
mean absolute error, sensitivity, and specificity for the
North America and Michigan models.

Appendix S2. Results of Wilcoxon rank‐sum tests compar-
ing the delineation of the large‐scale training region, as
either North America or Michigan.

Appendix S3. Predicted probability of suitable habitat in the
Michigan study region given by the final eXtreme gradient
boosting machine (XGBoost) models built with North
America and Michigan occurrences.
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Appendix S4. Differences based on training region in
predicted probability of suitable habitat given by the final
eXtreme gradient boosting machine (XGBoost) models in
the Michigan study region.

Appendix S5. The Michigan and Saginaw Bay study regions
based on European frog‐bit observations.

Appendix S6. Distribution of specimen and observation
response data for the Michigan scale. Green points
represent original European frog‐bit presences before
occurrence thinning.

Appendix S7. Results of Wilcoxon rank‐sum tests compar-
ing the method of removing missing data prior to modeling,
by either variable or observation, grouped by the threshold
for excluding correlated variables and scale, data source, and
data type.

Appendix S8. Results of Wilcoxon rank‐sum tests
comparing the threshold for excluding correlated vari-
ables for the Michigan scale, grouped by data source and
data type.

Appendix S9. Results of Wilcoxon rank‐sum tests comparing
the scale of response data, either Michigan or Saginaw Bay.

Appendix S10. Results of Wilcoxon rank‐sum tests
comparing the source of response data for the Michigan
scale, either specimens or observations.

Appendix S11. Results of Wilcoxon rank‐sum
tests comparing the type of response data for the

Saginaw Bay scale, either presence‐absence or presence‐
background.

Appendix S12. Predicted probability of suitable habitat
given by the final eXtreme gradient boosting machine
(XGBoost) models in Michigan, using specimen‐based and
observation‐based response data combined (“all data”),
specimens only, and observations only.

Appendix S13. Differences based on data source in predicted
probability of suitable habitat given by the final eXtreme
gradient boosting machine (XGBoost) models in Michigan.

Appendix S14. Predicted probability of suitable habitat
given by the final eXtreme gradient boosting machine
(XGBoost) models in Saginaw Bay, using presence‐
background and presence‐absence response data.

Appendix S15. Differences based on data type in predicted
probability of suitable habitat given by the final eXtreme
gradient boosting machine (XGBoost) models in Saginaw Bay.
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