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Abstract: Structural properties of resins based on epoxidized linseed oil (ELO) were investigated
in reference to varying amounts of the hardener components methyltetrahydrophthalic anhydride
(MTHPA), pyromellitic dianhydride (PMDA) and maleic acid (MA). This includes gel time and the
Shore A and D hardness. The shortest gel time of 0.9 min and the highest Shore A and D hardness of 85
and 34 were found at a nMTHPA/nPMDA/nMA molar ratio of 8/1/8. To study the effect of the ELO mass on
gel time and hardness, different masses of ELO (8, 10, 12, 14 and 16 g) were used, keeping the amount
of the hardener system (4 g) (MTHPA, PMDA and MA) constant. With increased ELO mass, gel time
increased while the Shore A and D hardness of the samples did not differ when up to 14 g ELO was
applied. Substitution of petrol-based PMDA with biogenic compounds, specifically oxalic acid and
citric acid, resulted in new bio-based epoxy resins with shorter gel times while maintaining hardness.

Keywords: epoxidized linseed oil; epoxy resin; methyltetrahydrophthalic anhydride; pyromellitic
dianhydride; maleic acid; citric acid; oxalic acid

1. Introduction

The substitution of petrol-based chemicals with compounds from sustainable resources is becoming
more and more attractive due to the price increase of fossil reserves as well as environmental and
economic advantages. Epoxy resins based on diglycidyl ether of bisphenol A (DGEBA) are an
important and broadly utilized material class. They have been used for example as structural
adhesives, in anticorrosive coating or for conductor boards because of their mechanical and electrical
properties as well as heat and chemical resistance [1,2]. However, as DGEBA is harmful to health [3,4],
the development of new bio-based polymers has come to the forefront of research [5–7].

As they are cost-effective, ecofriendly and relatively abundant, vegetable oils are a preferable
source of polymeric resins [8–11]. As an epoxidized derivative, linseed oil from flax, for example,
can be used as a good alternative due its property of being the most highly molecularly-unsaturated
(6.6 double bonds per triglyceride chain) of all plant oils. It is a valuable crop and every part of the
plant has its own specific economic importance. In the last report in 2009, Canada had the highest share
in the production of linseed (44%), followed by China (15%), Europe (12%) and the USA (9%) [12]. It is
used as an industrial and edible oil and for fiber-producing crop. There are also medical applications
due to it being rich in fat (41%), protein (20%) and dietary fiber (28%) [12]. It is mainly composed of
triglyceride molecules, which are composed of three fatty acids bound by a glycerol center through
ester linkages. The choice of the right curing agent is very important to achieve sufficient mechanical
and thermal properties of the epoxy resins. In industrial applications, amines are a typically used
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curing agent. However, due to their toxicity, alternative curing agents are necessary. For example,
Sahoo et al. [13] used cardanol-derived phenalkamine as a bio-based cross-linker.

In the literature, methyltetrahydrophthalic anhydride (MTHPA) [14,15] and pyromellitic
dianhydride (PMDA) [16] have been studied as hardeners for epoxidized linseed oil (ELO). In this
study, blends of MTHPA, PMDA and maleic acid (MA) were used as a hardener system and the gel
time with ELO was investigated (see structural formulae in Figure 1). The Shore A and D values
detected in the epoxy materials provided information about their hardness. To increase the biogenic
character of the epoxy resins, petrol-based PDMA of the hardener system was to be substituted with
bio-renewable chemicals like oxalic acid (OA), fumaric acid (FA), succinic acid (SA), malic acid (HAS),
tartaric acid (TA), itaconic acid (IA) and citric acid (CA).
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2.2. Sample Preparation 

To optimize the curing behavior of the resins and thereby maximize hardness and minimize gel 
time, the relative molar ratio of the hardener was varied (Table 1). The sample names include the 
abbreviation “PD” for pyromellitic dianhydride since other chemicals will later replace this hardener 
compound. These samples will be described with the abbreviation of the respective acid: oxalic acid 
(OA), fumaric acid (FA), succinic acid (SA), malic acid (HSA), tartaric acid (TA), itaconic acid (IA) 
and citric acid (CA). The number that follows refers to the molar ratios in integers. MTHPA is the 
only liquid component in the hardener system, the other components are powdery and poorly soluble 
within the liquid component.  

For synthesis of resin, the hardener mixtures (4 g) were grinded for 5 minutes in a porcelain 
mortar to produce a very fine dispersion. Some of the dispersions with higher amounts of MTHPA 
were opaque liquids; lower amounts would lead to pasty or even powdery mixtures. ELO (12 g) was 
added and mixed in the mortar with the hardener, until no particles were visible. The exothermic 
reaction of the hardener with ELO started immediately at room temperature. For the measurement 
of Shore A and D hardness, the mixtures were poured into small polypropylene cups. The samples 
were cured at 23 °C and at a relative humidity of 50% for one week and then removed from the mold 
before measurement. 

In order to investigate gel time, after being quickly mixed, the material was filled into a plastic 
syringe, placed into the cavities of the b-time plate and measured at 80 °C.  
  

Figure 1. Structural formulae of (a) the epoxidized linseed oil (ELO) and the compounds of the hardener
system (b) methyltetrahydrophthalic anhydride (MTHP), (c) pyromellitic dianhydride (PMDA) and
(d) maleic acid (MA).

2. Materials and Methods

2.1. Materials

Citric acid monohydrate (Roth, Karlsruhe, Germany, ≥99.5%), fumaric acid (Merck, Darmstadt,
Germany, >98%), itaconic acid (Merck, ≥99%) linseed oil epoxy (ELO, EPOL-L Traditem,
Hilden, Germany), maleic acid (TCl, Zwijndrecht, Belgium, >99%), malic acid (Merck, ≥98%),
methyltetrahydrophthalic anhydride (TCl, >80%), oxalic acid dihydrate (VWR, Darmstadt, Germany,
≥99%), pyromellitic dianhydride (TCl, >99%), succinic acid (Merck, ≥99%) and tartaric acid (Aldrich,
Steinheim, Germany, ≥99.5%) were used as received.

2.2. Sample Preparation

To optimize the curing behavior of the resins and thereby maximize hardness and minimize gel
time, the relative molar ratio of the hardener was varied (Table 1). The sample names include the
abbreviation “PD” for pyromellitic dianhydride since other chemicals will later replace this hardener
compound. These samples will be described with the abbreviation of the respective acid: oxalic acid
(OA), fumaric acid (FA), succinic acid (SA), malic acid (HSA), tartaric acid (TA), itaconic acid (IA)
and citric acid (CA). The number that follows refers to the molar ratios in integers. MTHPA is the
only liquid component in the hardener system, the other components are powdery and poorly soluble
within the liquid component.

For synthesis of resin, the hardener mixtures (4 g) were grinded for 5 minutes in a porcelain
mortar to produce a very fine dispersion. Some of the dispersions with higher amounts of MTHPA
were opaque liquids; lower amounts would lead to pasty or even powdery mixtures. ELO (12 g) was
added and mixed in the mortar with the hardener, until no particles were visible. The exothermic
reaction of the hardener with ELO started immediately at room temperature. For the measurement
of Shore A and D hardness, the mixtures were poured into small polypropylene cups. The samples
were cured at 23 ◦C and at a relative humidity of 50% for one week and then removed from the mold
before measurement.

In order to investigate gel time, after being quickly mixed, the material was filled into a plastic
syringe, placed into the cavities of the b-time plate and measured at 80 ◦C.
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Table 1. Chemical amounts of methyltetrahydrophthalic anhydride (MTHPA) nMTHPA, pyromellitic
dianhydride (PMDA) nPMDA, maleic acid (MA) nMA and mass of epoxidized linseed oil (ELO) mELO of
the precursors.

Sample
Name nMTHPA/mmol nPMDA/mmol nMA/mmol mELO/g

PD111 8.0 8.0 8.0 12
PD212 10.2 5.1 10.3 12
PD414 11.9 3.0 11.9 12
PD818 12.9 1.6 12.9 12
PD122 4.8 9.6 9.6 12
PD112 6.5 6.5 13.0 12
PD214 7.9 3.9 15.8 12
PD418 8.9 2.2 17.7 12
PD144 2.7 10.6 10.7 12
PD124 3.7 7.5 15.0 12
PD114 4.7 4.7 18.9 12
PD218 5.4 2.7 21.6 12
PD188 1.4 11.3 11.3 12
PD148 2.1 8.1 16.3 12
PD128 2.6 5.2 20.9 12
PD118 3.1 3.0 24.4 12

PD418-ELO8 8.9 2.2 17.7 8
PD418-ELO10 8.9 2.2 17.7 10
PD418-ELO14 8.9 2.2 17.7 14
PD418-ELO16 8.9 2.2 17.7 16

2.3. Characterization

Determination of gel-time occurred according to DIN EN ISO 8987:2005-12 [17]. For each mixture.
Five samples of ca. 500 mg fresh mixed liquid resin were measured. The plate was heated at 80 ◦C
and then ca. 500 mg of the resin was placed by syringe into the cavities of the plate while time
measurement was simultaneously started. The resin was stirred with a wooden stick, which was
frequently lifted to test if the resin was still producing filaments. When the resin began rubber-like
tearing, time measurement was stopped.

Shore A and D hardness was measured in cured samples. The curing took place at 23 ◦C and a
relative humidity of 50% for one week. The measurement occurred in accordance with the appropriate
test method [18].

3. Results and Discussion

3.1. Prepared Epoxy Resins with Varying Composition of the Hardener System and ELO

Curing of the epoxidized linseed oil (ELO) with a hardener depends on the nature of the hardener
as well as on the stoichiometry of the epoxy groups and reactive groups of the hardener. The epoxy
group can react with both an alcohol and a carboxylic group. The formed alcohol can further react
with a carboxylic anhydride. Due to these simultaneous reactions, a balanced reaction equation of the
curing agent with the ELO to the resin is not feasible and a structural formula of the epoxy resin is not
predictable. With a stoichiometric ratio of around 2.5 of epoxy to reactive groups, the excess epoxy was
used in accordance with Boquillon et al. [19]. The gel time test showed that when decreasing molar
ratios rPMDA/MA and rMTHPA/MA from 1.000 to 0.125, the curing time decreased from 12.9 to 0.9 min
(Figure 2). The highest decrease of gel time, from 12.9 to 5.1 min, took place by decreasing the molar
ratio rPMDA/MA from 1.000 to 0.500 while keeping a constant molar ratio rMTHPA/MA of 1.000. The curves
of the materials with molar ratio rMTHPA/MA of 0.500, 0.250 and 0.125 proceeded similarly to each other,
only shifting by circa 0.5 min and 1.0 min, respectively, along the y (gel time) axis. MTHPA remained
at room temperature in its liquid state. The other components of the curing agent were present in
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solid state. Due to the different states of matter, the mixtures of the curing agents showed different
states as well. The mixture of the curing agent of the PD418 sample was in a pasty state, while with
a lower molar ratio rMTHPA/MA of 0.250 (sample PD144), a powder was present. Compared to them,
the hardener systems with a molar ratio rMTHPA/MA higher than 0.250 were in liquid state, which were
easier to apply. The PD418 sample (rMTHPA/MA = 0.500 and rPMDA/MA = 0.125) was the most promising
sample due to its gel time of 1.6 min and its liquid state, which was easier to use and handle compared
to the pasty samples.
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Hardness of the synthesized epoxy resins was examined by Shore A and Shore D hardness
under normal climate conditions, due to the requirements for its application as a coating (Figure 3).
Epoxy resins with Shore A values up to 20 are classified as very soft, values between 20 and 40 as
medium hard, and values above 40 as very hard [20]. All samples showed Shore A values higher
than 40 meaning they exhibited a high level of hardness. Samples PD128 (rMTHPA/MA = 0.125 and
rPMDA/MA = 0.250) and PD118 (rMTHPA/MA = 0.125 and rPMDA/MA = 0.125) even showed Shore A values
higher than 80. Commercially available epoxy resins exhibited Shore D values around 80 [21]. However,
all samples exhibited Shore D values lower than 40. Therefore, the composition of the epoxy resin as
well as of the curing agents has to be improved. Kuncho et al. [15] also synthesized an epoxy material
composed of ELO and MTHPA with a Shore D hardness of 87. On the one hand, the high level of
hardness probably results from the curing for 1 h at 90 ◦C, followed by 8 h at 180 ◦C, whereby the
cross-linking is complete, and on the other hand, of the different composition of the epoxy material
and the usage of the catalyst 1,8-diazabicyclo[5.4.0]-undec-7-ene. With the decreasing molar ratio
rPMDA/MA, the Shore A and D hardness of the samples synthesized with a molar ratio rMTHPA/MA

of 1.000, 0.500 and 0.250 decreased as well. In the case of the samples prepared with a molar ratio
rMTHPA/MA of 0.125, the hardness decreased, while changing the molar ratio rPMDA/MA of 1.000 to 0.500
and rising below 0.500.
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3.2. Dependence of the Mass of ELO on the Properties of the Prepared Epoxy Resins

The PD418 sample was further investigated due to its promising results in terms of its short gel
time (1.6 min) and its liquid state. The dependence of the ELO mass on the gel time was analyzed with
different ELO masses (8, 10, 12, 14 and 16 g, Table 1). With increasing ELO mass, an increase in gel time
was observed. From 8 to 14 g, gel time increased linearly from 1.0 to 2.1 min, while from 14 to 16 g,
the increase was from 2.1 to 3.6 min. Shore A values of the samples were constant at around 80 until 12
g of ELO and decreased to 32 with higher ELO masses. A similar observation was made of the Shore D
values. At a range of 8 to 12 g ELO, the Shore D remained constant at 21. At a utilized mass of 14 g ELO,
a Shore D hardness of 13 was determined. For the sample prepared with 16 g ELO (PD418-16), Shore D
could not be measured since the value was below the detectable value of 10. The results suggest that
with increasing ELO mass, the process of cross-linking of ELO with the hardener is not completed due
to insufficient hardener mass, simultaneously increasing the gel time and decreasing hardness [22].
As mentioned above, a balanced reaction equation is not feasible with this hardener system.

3.3. Substitution of PMDA Using Biogenic Carboxylic Acids

To reduce the petrol-based chemicals in the epoxy resins, PMDA was substituted with oxalic acid
(OA), fumaric acid (FA), succinic acid (SA), malic acid (HSA), tartaric acid (TA), itaconic acid (IA)
and citric acid (CA) within the hardener system of sample PD418 (Table 2). On average, all samples
cured with hardeners containing biogenic substrates showed shorter gel times (1.1 min) than sample
PD418 (1.6 min). PMDA is a double carboxylic acid anhydride, whereby one molecule can form four
possible bindings with ELO. In contrast, most of the biogenic compounds (OA, FA, SA and IA) are
difunctional and can only form up to two bindings to ELO using the respective reactive hydrogen
atoms. The shorter gel times can be explained by the more flexible structure due to incorporation of
the biogenic compounds compared to the rigid molecule structure of PMDA. The shortest gel times
(0.9 and 1.0 min) were exhibited by the OA418 and CA418 samples, respectively (Figure 4). CA is a
tribasic acid possessing an additional alcohol functionality, whereby four protonic groups are present.
Through these four reactive hydrogen atoms and the flexibility in its structure, cross-linking with
the epoxy groups could be faster than cross-linking with hardener containing less reactive hydrogen
atoms. The OA418 sample showed the shortest gel time of 0.9 min, although OA only has two reactive
hydrogen atoms. Given the neighboring position of the carboxyl groups, the hydrogen atoms are more
reactive than in the other substances, whereby cross-linking is presumably accelerated. However,
a shorter gel time would be expected from the TA418 sample due to four reactive hydrogen atoms from
the two carboxylic acids and two alcohol groups of the TA. However, the TA418 sample showed the
same gel time as the FA418, SA418 and IA418 samples (1.1 min). The reactivity of the hydrogen atoms
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of the alcohol groups was possibly too weak compared to that of the carboxylic acids, whereby the gel
process was not accelerated.

Table 2. Chemical amounts of methyltetrahydrophthalic anhydride (MTHPA) nMTHPA, X1 nX
1 and

maleic acid (MA) nMA, and mass of epoxidized linseed oil (ELO) mELO of the precursors.

Sample Name nMTHPA/mmol nX
1/mmol nMA/mmol mELO/g

OA418 9.3 2.3 18.6 12
FA418 9.4 2.3 18.7 12
SA418 9.3 2.4 18.7 12

HSA418 9.3 2.3 18.5 12
TA418 9.2 2.3 18.4 12
IA418 9.3 2.3 18.6 12
CA418 8.9 2.2 17.8 12

X1 = OA, FA, SA, HSA, TA, IA or CA.
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linked system is probably lower than that of the cross-linked systems composed of FA, SA, HSA, TA 
and IA. Concerning the CA418 sample, through its three carboxylic groups and the alcohol group, 
CA has four reactive hydrogen atoms. By forming four possible bindings, the network is more cross-
linked compared to those formed by FA, SA, HSA TA and IA. Since OA is harmful to health, CA is a 
more promising alternative to PMDA. 

Figure 4. Gel time of epoxy resins utilizing different biogenic compounds (oxalic acid OA, fumaric
acid FA, succinic acid SA, malic acid HSA, tartaric acid TA, itaconic acid IA and citric acid CA) in the
hardener system (MA, MTHPA and X; X = biogenic compound).

Shore A and D hardness of these samples was determined. The PD418 sample had a Shore A
hardness of 77. The same hardness was also detected in samples OA418 (value of 75) and CA418
(value of 76) (Figure 5). The samples synthesized with other substrates had Shore A values around 15%
lower (value of 67). A similar observation was made in the Shore D analysis. The Shore D hardness of
the PD418 sample (value of 20) was similar to that of OA418 (value of 20) and CA418 (value of 18)
when applying PMDA. Due to its rigid structure, it was assumed that the PD418 sample would show
the highest hardness out of all samples. In the case of the OA418 sample, OA has the shortest chain
length among the applied biogenic compounds, whereby the flexibility of the cross-linked system is
probably lower than that of the cross-linked systems composed of FA, SA, HSA, TA and IA. Concerning
the CA418 sample, through its three carboxylic groups and the alcohol group, CA has four reactive
hydrogen atoms. By forming four possible bindings, the network is more cross-linked compared to
those formed by FA, SA, HSA TA and IA. Since OA is harmful to health, CA is a more promising
alternative to PMDA.
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Figure 5. Shore A (left) and Shore D (right) hardness of epoxy resins with different biogenic 
compounds (oxalic acid OA, fumaric acid FA, succinic acid SA, malic acid HSA, tartaric acid TA, 
itaconic acid IA and citric acid CA) in the hardener system (MA, MTHPA and X; X = biogenic 
compound). 

4. Conclusion 

In this work, the effect of varying amounts of MTHPA, PMDA and MA in the hardener system 
upon the gel time of ELO was studied. Gel time tests at 80 °C showed that with decreasing molar 
ratios rPMDA/MA and rMTHPA/MA from 1.000 to 0.125, curing time decreases from 12.9 to 0.9 min. The 
hardness of the synthesized epoxy materials showed Shore A hardness over 80 and is classified as 
very hard. In contrast, values of Shore D hardness, which increased with higher molar ratios rPMDA/MA, 
were all under 40. 

Curing of ELO with MTHPA, MA and biogenic multifunctional carboxylic acid compounds 
(OA, FA, SA, HSA, TA, IA or CA) resulted in novel bio-based epoxy materials showing shorter gel 
times and similar Shore A and Shore D hardness compared to an epoxy resin based on PDMA 
(referred to sample PD418). These effects were most significant in the case of epoxy resins cured with 
CA and OA, which showed the shortest gel times (1.0 min and 0.9 min, respectively) and the same 
Shore A and Shore D hardness of 76 and 20, respectively, as PD418. Therefore, citric acid is a 
promising non-toxic alternative for chemicals obtained from fossil fuels as a curing reagent. To 
synthesize epoxy materials with higher values of the Shore D hardness, the curing should take place 
at higher temperatures. Through substitution of PMDA, epoxy resins with a biogenic character of 77 
wt % in the final mixture were produced. Further substitution of MA with biogenic acids will lead to 
epoxy materials with an even higher biogenic character.  
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(oxalic acid OA, fumaric acid FA, succinic acid SA, malic acid HSA, tartaric acid TA, itaconic acid IA
and citric acid CA) in the hardener system (MA, MTHPA and X; X = biogenic compound).

4. Conclusions

In this work, the effect of varying amounts of MTHPA, PMDA and MA in the hardener system
upon the gel time of ELO was studied. Gel time tests at 80 ◦C showed that with decreasing molar ratios
rPMDA/MA and rMTHPA/MA from 1.000 to 0.125, curing time decreases from 12.9 to 0.9 min. The hardness
of the synthesized epoxy materials showed Shore A hardness over 80 and is classified as very hard.
In contrast, values of Shore D hardness, which increased with higher molar ratios rPMDA/MA, were all
under 40.

Curing of ELO with MTHPA, MA and biogenic multifunctional carboxylic acid compounds (OA,
FA, SA, HSA, TA, IA or CA) resulted in novel bio-based epoxy materials showing shorter gel times
and similar Shore A and Shore D hardness compared to an epoxy resin based on PDMA (referred to
sample PD418). These effects were most significant in the case of epoxy resins cured with CA and OA,
which showed the shortest gel times (1.0 min and 0.9 min, respectively) and the same Shore A and
Shore D hardness of 76 and 20, respectively, as PD418. Therefore, citric acid is a promising non-toxic
alternative for chemicals obtained from fossil fuels as a curing reagent. To synthesize epoxy materials
with higher values of the Shore D hardness, the curing should take place at higher temperatures.
Through substitution of PMDA, epoxy resins with a biogenic character of 77 wt % in the final mixture
were produced. Further substitution of MA with biogenic acids will lead to epoxy materials with an
even higher biogenic character.
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