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ABSTRACT

The adenosine deaminases acting on RNA (ADARs)
comprise a family of RNA editing enzymes that
selectively modify single codons within RNA primary
transcripts with often profound impact on protein
function. Little is known about the mechanisms
that regulate nuclear RNA editing activity. Editing
levels show cell-type specific and developmental
modulation that does not strictly coincide with
observed expression levels of ADARs. Here, we
provide evidence for a molecular mechanism that
might control nuclear import of specific ADARs
and, in turn, nuclear RNA editing. We identify an
in vivo ADAR3 interaction partner, importin alpha 1
(KPNA2) that specifically recognizes an arginine-
rich ADAR3 sequence motif and show that it acts
as a functional nuclear localization sequence.
Furthermore, whereas KPNA2, but not KPNA1 or
KNPA3, recognizes the ADAR3 NLS, we observe
the converse binding specificity with ADAR2.
Interestingly, alternative splicing of ADAR2 pre-
mRNA introduces an ADAR3-like NLS that alters
the interaction profile with the importins. Thus,
in vivo RNA editing might be regulated, in part,
through controlled subcellular localization of
ADARs, which in turn is governed by the coordi-
nated local expression of importin a proteins and
ADAR protein variants.

INTRODUCTION

Nuclear pre-mRNA editing has been recognized as an
important mechanism for the generation of RNA and pro-
tein diversity (1–3). In A-to-I editing, single adenosines in
primary transcripts undergo deamination mediated by
substrate-specific RNA fold-back structures and an ade-
nosine deaminase acting on RNA (ADAR) (1). Editing
can alter mRNA codons causing an amino acid substitu-
tion in the resulting protein with substantial functional
consequences (2). In addition, A-to-I editing may create

or abolish a pre-mRNA splice site (4,5) and high-level
editing in repetitive element sequences may lead to nuclear
retention of mRNAs (6,7). Furthermore, editing of
miRNA precursors has been shown to alter biogenesis
of miRNAs or the miRNA targeting profile (8).
Importantly, human disease phenotypes have been
linked to over- or under-editing of genes (9) and mouse
models of editing deficiency or misregulation displayed
profound phenotypes, such as embryonic lethality
[ADAR1 knock-out (10,11)], epilepsy [ADAR2 knock-
out (12)] and obesity [ADAR2 overexpression (13)].

It is currently not known what causes disease-related
alterations in RNA editing levels. However, there is
strong evidence that intracellular A-to-I RNA editing is
a tightly regulated process. For example, the editing of
several known substrates is subject to cell-type specific
(14,15) and developmental regulation (16,17). In addition,
it has been suggested that in some instances editing levels
may change in response to external stimuli (18), but very
little is known about the underlying regulatory mecha-
nisms involved. Intriguingly, the observed changes in
editing levels often do not correlate with the changes in
the mRNA expression of editing enzymes (14,17,19).

Whereas in flies a single ADAR is responsible for all of
the mRNA-directed A-to-I editing, in vertebrates a family
of three ADARs has been characterized (20). ADAR1 and
ADAR2 edit all currently known modification sites with
distinct but overlapping substrate specificities. In contrast,
the brain-specifically expressed ADAR3 protein has no
documented deaminase activity (20) and there is neither
an established function for the protein, nor any known
physiological RNA target.

The overlapping and ubiquitous expression pattern of
ADARs in mammalian tissues on one hand and the
observed cell-type specific and ontogenetic regulation of
editing levels on the other raise the question of how the
editing activity of ADARs is regulated intracellularly.

Most known targets for editing constitute pre-mRNA
molecules that need to encounter the ADAR protein in the
nucleus before splicing, as intronic sequences are essential
for forming the RNA fold-back structure recognized
by ADARs. All ADARs harbor putative nuclear localiza-
tion sequences (NLSs), but their function has been
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incompletely characterized. ADAR1 shuttles between
nucleus and cytoplasm, in part, due to the presence of a
nuclear export signal (21). Furthermore, ADAR1 was
recently shown to be transported in and out of the nucleus
through transportin-1 mediated binding to one of its
dsRNA binding domains (22). In addition, within the
nucleus, both ADAR1 and 2 have been shown to shuttle
between the nucleoplasma and nucleoli (23,24).

The traditional nuclear import pathway involves the
recognition of the classical nuclear localization sequence
(cNLS) of the protein cargo by importin alpha, followed
by importin beta binding, docking of the ternary complex
with the nuclear pore complex (NPC) and transport of the
complex across the nuclear membrane (25,26).

Nuclear transport of proteins is a highly regulated pro-
cess, for example, by modulation of cNLS recognition
through either post-translational modification of cNLS
sequences or masking of the cNLS by heterologous mole-
cules or alternative protein conformations. For instance,
the nuclear activity of several transcription factors is
determined through regulated nuclear import (27–29).

The nature of the individual cNLS sequence further
impacts its recognition by importin alpha proteins.
Monopartite cNLS signals are bound differently than
bipartite NLS signals (30) further increasing the complex-
ity of distinct importin alpha-cargo interactions. Importin
alpha proteins consist of a N-terminal importin beta bind-
ing domain (IBB) and a domain composed of 10 tandem
armadillo (ARM) repeats. The helical ARM repeats form
the NLS binding sites and the 10th repeat binds the expor-
tin CAS (31).

The importin alpha genes constitute a multi-gene family
of three main subfamilies; importin alpha-S (human
importin alpha 5, -6 and -7), alpha-P (human importin
alpha 1) and alpha-Q (human importin alpha 4 and -3)
(32). The importin alpha isoforms are expressed differen-
tially based on northern blotting and western blotting
studies (32–34). For example, human importin alpha 4
(KPNA3) makes up more than 1% of protein in skeletal
muscle, but is essentially absent in spleen, kidney and
heart (35). Recently, detailed in situ hybridization studies
have shown regional specific expression of individual
importin alpha subtypes in the brain (36,37). Whereas
human importin alpha 5, 7, and 3 (KPNA1, 6, 4) are
ubiquitously expressed in the brain, importin alpha 1
and 4 (KPNA 2, 3) show area-specific expression patterns.

Importin alpha proteins are believed to be involved in
tissue-specific regulatory mechanisms (31). For example,
in mouse embryonic stem cells, the switch from importin
alpha 1 to alpha 5 can elicit neural differentiation (38).
Importin-alpha-mediated nuclear import has also been
shown to be involved in transporting synaptically gener-
ated signals into the nucleus during learning-type forms
of plasticity (39). Currently, there are six importin alpha
isoforms known in human with overlapping and distinct
cNLS binding specificities (40).

In this study, we provide evidence that suggests a role
for controlled nuclear import in RNA editing regulation.
First, we screened for ADAR3 interaction partners using
the unique ADAR3 N-terminal region as a bait in a yeast
two-hybrid system. Importin alpha KPNA2 emerged as a

protein that specifically recognizes the R-domain region
within ADAR3, whereas KPNA1 and KPNA3 do not
bind. Conversely, the main splice form of ADAR2 inter-
acts with KPNA1 and KPNA3, but not KPNA2. Finally,
an ADAR2 alternative splice form, ADAR2R, recently
reported by us (41), displays an importin alpha interaction
profile identical to the ADAR3 protein indicating
that there is not only differential interaction between
ADARs and importin alpha proteins, but that alternative
splicing further modulates the nuclear import pathways
for ADAR2.

MATERIALS AND METHODS

DNA constructs

For a list of oligonucleotide primer sequences used in this
study see Supplementary Table S1.
The amino-terminal region of rat ADAR3 cDNA (42)

including the R-domain (A3 1–133; 98% identical to
human ADAR3) was generated by PCR with ADAR3
specific oligonucleotide primers and subcloned into the
yeast expression vector pAS 2-1 (Clontech; Matchmaker
Two-Hybrid System 2) which leads to expression of a
fusion protein of the ADAR3 construct and the GAL4
DNA-binding domain. Additional ADAR3 constructs
A3 1–220 (amino acids 1–220) and A3 220–390 were
also generated by PCR and cloned into pAS 2-1. Point
mutations into the R-domain of ADAR3 were introduced
by site-directed mutagenesis (Stratagene site-directed
mutagenesis kit) changing two of the Arginine residues
to Serine.
Full-length rat ADAR2 cDNA (43) was subcloned into

the yeast pAS 2-1 plasmid from a pBS II cDNA clone
(kindly provided by Dr. Peter H. Seeburg, Heidelberg)
by transferring first a Nco I/Nco I fragment (nt 1–462)
and then a Nco I/EcoR I restriction fragment (nt 463–
2140). Partial rat ADAR2 cDNA constructs (A2 1–110;
A2 153–387; A2 387–701) were generated by PCR ampli-
fication and cloning of the cDNA into pAS2-1. The
ADAR2R variant N-terminal cDNA construct A2R
1–112 was generated by PCR cloning using mouse brain
cDNA template. Human ADAR1 (44) constructs A1 119–
197 and A1 1–373 were constructed through PCR cloning
(the human ADAR1 cDNA was kindly provided by
Dr. Kazuko Nishikura, Philadelphia).
Full-length human KPNA1 (Accession BC002374) and

KPNA3 (Accession NM_002267) cDNAs were generated
by PCR using human brain random primed cDNA as a
template and cloned into the pACT-2 yeast vector; the
KPNA2 (Accession NM_002266) clone derived from
two-hybrid screening also resides in plasmid pACT-2.
All final constructs of ADAR and importin proteins

were subjected to DNA sequencing.

Two-hybrid interaction screen

The A3 1–133 ADAR3 N-terminal cDNA construct in
pAS 2-1 was introduced into the Y190 yeast strain
together with a human lung cDNA library (Clontech) sub-
cloned into the pACT2 vector (Clontech) that fuses the
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library clones to the GAL4 transcriptional activation
domain.
Selection of transformants on his–, leu–, trp– minimal

medium allows growth only of colonies that harbor both
expression plasmids and where the DNA-binding domain
and activation domain of GAL4 are brought in close
contact through an interaction between the ADAR3 pro-
tein and the library-derived protein sequence fused to the
activation domain. Only then the His-promoter becomes
activated. As a secondary test the b-galactosidase assay
was used where the reconstituted GAL4 transcription
factor activates a b-gal promoter. During selection,
15mM concentration of the competitive yeast HIS3 pro-
tein inhibitor 3-AT (3-amino-1,2,4-triazole; Sigma) was
used and the b-galactosidase assay will was performed
on filter lifts of plates grown at 308C for 2–4 days. After
replica plating of the his-auxotroph colonies the yeast cells
were permeabilized by one freeze/thaw cycle in liquid
nitrogen and the b-galactosidase substrate X-Gal was
applied in Z-buffer (Clontech). The filters were allowed
to incubate for up to 12 h at 308C.
The expression of the ADAR proteins in yeast was ver-

ified by western blot analysis using an HA-tag polyclonal
antibody (Clontech) against the fusion protein.

In vitro transcription/translation and
co-immunoprecipitation

The 35S-labeled and epitope-tagged ADAR and importin
proteins were produced using an in vitro transcription/
translation system (TNT coupled reticulocyte lysate
system, Promega). For each protein, a PCR product was
generated with the T7-RNA promoter consensus sequence
on its 50-end. The gel-purified DNA amplicons were used
for RNA transcription and translation according to man-
ufacturer’s instructions using S35 methionine. Labeled
proteins were analyzed using 10% polyacrylamide gel elec-
trophoresis and autoradiography.
For co-immunoprecipitation, Protein A beads were

washed twice with 500 ml 1� PBS, BSA was added to
1% (w/v) and preincubation of the beads at room temper-
ature proceeded for 35min. Beads were washed twice with
1� PBS, resuspended in Co-IP buffer [20mM Tris–HCl
(pH 7.5), 0.5% NP-40, 150mM NaCl, 2mM DTT], and
added to the protein mixtures of antibody and labeled
importin alpha and ADAR proteins. After incubation at
room temperature for 1 h, beads were washed five times
with Co-IP buffer, two times with 1� PBS and then resus-
pended with 20 ml SDS loading buffer. Fifty percent of
each sample was run out on a 10% acrylamide gel,
fixed, dried and exposed to autoradiography film.

Cell culture and immunofluorescence

The 14-amino-acid R-domain sequence of human
ADAR3 was fused to the green fluorescent protein
(GFP) by ligating an annealed pair of oligonucleotide pri-
mers that encode for amino acids 19–32 of ADAR3 into
the pEGFP mammalian expression vector (Clontech) in
frame to the vector encoded EGFP open reading frame.
HEK293 cells were cultured on glass coverslips under

standard conditions and co-transfected using Polyfect

transfection reagent (Gibco). After 24 h, the cells were
rinsed in phosphate-buffered saline (PBS) solution, fixed
for 30min in 4% paraformaldehyde in PBS, and air dried.
Expression of EGFP or EGFP–NLS fusion proteins
was monitored using fluorescence microscopy (Leica
DMRBE).

RESULTS

The R-domain of ADAR3 interacts with human importin
KPNA2 in vivo and in vitro

We performed a yeast two-hybrid interaction hunt (45) as
a strategy to identify proteins that interact specifically
with human ADAR3 protein, for which to date no specific
function or editing target has been identified. As a bait
for screening a human lung cDNA library, we used the
distinctive N-terminal region of ADAR3 (42), located
upstream of the first double-stranded RNA binding
domain, fused to the GAL4 DNA binding domain
(Figure 1A). This N-terminal region includes the arginine-
rich R-domain of ADAR3, which previously had been
shown to possess preferential binding affinity for single-
stranded RNA (46). However, a specific target for binding
or a functional role for ssRNA binding by ADAR3 have
not been demonstrated.

After screening a total of 3� 106 independent yeast
colonies we obtained one true positive his-auxotroph
and b-galactosidase expressing colony after eliminating
cases of self activation and other false positives.

Sequencing of the cDNA identified it as the importin a
family protein KPNA2 (47,48), a receptor for NLSs. The
isolated cDNA clone Y-7 (Figure 1B) encompasses amino
acids 251–529 and therefore includes the ankyrin repeat
motif (ARM) domains that have been shown to medi-
ate the interaction of this NLS-receptor with its targets
(49–51).

Next, we investigated if the R-domain of 11 amino
acids located within the N-terminal region of ADAR3 is
responsible for the observed interaction with KPNA2.
The R-domain is characterized by a stretch of six consec-
utive arginines and several additional basic residues
(Figure 1C). We introduced point mutations into the
R-domain sequence by site-directed mutagenesis changing
two of the arginine residues to serine (Figure 1C). The
point mutant is expressed as a stable protein and in similar
amounts as the wild-type N-terminal construct when
introduced into a mammalian expression vector and
expressed in HeLa cells according to western blot analysis
(data not shown).

In the yeast two-hybrid assay, cells transformed
with KPNA2 and this ADAR3 mutant (A3Nmut) do
not grow on his–, leu–, trp– medium. Furthermore, the
b-galactosidase reporter assay on leu–, trp– -grown colo-
nies is also negative indicating that the mutation within
the ADAR3 R-domain abolishes the interaction between
the two proteins. Thus, the R-domain is required for the
interaction of the N-terminal 133 amino acid construct
of ADAR3 with KPNA2. When this 133-amino-acid
ADAR3 construct (fused to a nonfunctional Gal4-DNA
binding domain) is co-expressed in yeast together with the
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wild-type ADAR3/Gal4-DNA binding domain fusion and
the KPNA/Gal4-activation domain fusion proteins, it
competes with the productive interaction of the two
fusion proteins as judged by a partial loss in galactosidase
activity (data not shown). This observation further argues
for a specific interaction between the 133-amino-acid
ADAR3 sequence and KPNA2.

We then evaluated the in vivo interaction observed in the
yeast two-hybrid system in an in vitro interaction assay
(Figure 2). In co-immunoprecipitation experiments,
S35-methionine labeled ADAR3 protein is specifically
co-immunoprecipitated with a KPNA2-HA tagged pro-
tein when using a HA-tag specific monoclonal antibody.
Interestingly, the observed in vitro binding between the
ADAR3 N-terminal region and KPNA2 does not
appear to be as robust as expected based on the clear-
cut results in the yeast interaction assays. These differences
may mirror distinct properties of in vitro transcribed and
translated proteins versus in vivo expressed genes and

could indicate the influence of post-translational modifica-
tions or effects of co-factors that modulate binding in vivo.

The ADAR3 R-domain represents a functional cNLS
and interacts specifically with KPNA2, but not with
KPNA1 or 3

To determine if the R-domain sequence in ADAR3 con-
stitutes a functional, classical NLS, we investigated if this
isolated sequence motif is able to direct the nuclear import
of the enhanced green fluorescent protein (EGFP) in living
cells. To this end, we fused the 14-amino-acid R-domain
sequence of human ADAR3 in frame to the EGFP cDNA.
We then co-transfected into subconfluent human embry-
onic kidney cells (HEK 293) either the EGFP-R-domain
fusion construct, the native EGFP plasmid lacking the
ADAR3 sequence, or the EGFP-R-domain fusion con-
struct with the previously described point mutation
within the R-domain sequence and analyzed the subcellu-
lar distribution of the EGFP signal by fluorescence
microscopy. As shown in Figure 3, EGFP alone is
expressed in a diffuse manner in the cytoplasm and
nucleus (Figure 3A), whereas the EGFP-R-domain
fusion protein strongly accumulates within the nucleus
(Figure 3B). Importantly, the fusion protein with a
point-mutation in the ADAR3 R-domain, which abolishes
binding to the importin alpha protein in the yeast two-
hybrid assay, also looses the ability to target EGFP to
the nucleus (Figure 3C).
We can therefore conclude that the ADAR3 R-domain

sequence acts as a functional nuclear localization signal
in vivo as it confers nuclear localization on a heterologous
cytoplasmic protein.

Figure 1. (A) The ADAR3 construct used as bait in the yeast two-hybrid
interaction hunt (amino acids 1–133) is depicted in relation to full-length
ADAR3 (amino acids 1–746) and the domain structures of ADAR1 and
ADAR2. ADAR1 refers to the human main splice form ADAR1a and
ADAR2 corresponds to the human main splice form ADAR2a (57).
dsRBD, double-stranded RNA-binding domain; deaminase, catalytic
adenosine deaminase domain; R-domain, arginine-rich sequence motif.
(B) The library clone Y-7, isolated from the two-hybrid screen as
ADAR3-binding protein is outlined in relation to the full-length human
importin a1 (KPNA2) sequence (Genbank Accession NM_002266).
(C) The point mutant ADAR3Nmut, where two arginines within the
R-domain have been replaced by serines, is shown in comparison to the
ADAR3N construct. The binding activity to KPNA2 importin alpha
according to the yeast interaction assay is indicated.

Figure 2. In vitro interaction of ADAR3N with KPNA2 but not
KPNA1. (A) Expression of in vitro transcribed importin alpha proteins
KPNA1 and KPNA2, as well as the ADAR3 protein A3N. Importin
proteins carry the HA epitope tag, the ADAR protein a myc epitope
tag. (B) Co-immunoprecipitation of importin/ADAR mixtures using a
monoclonal anti-HA-tag antibody. In addition to KPNA2 protein,
ADAR3N is co-immunoprecipitated (lane 1), but not when omitting
the HA-tag specific antibody (lane 3). KPNA1 is not able to co-pre-
cipitate ADAR3N (lane 2).
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Interestingly, when analyzing ADAR protein sequences
using the PredictNLS server (52), the R-domain of
ADAR3 is predicted with high likelihood to represent a
nuclear localization signal (98.14% of proteins with that
sequence are nuclear proteins, whereas 1.85% with such a
sequence are known non-nuclear proteins) further sup-
porting the experimental findings described above.
In human there are three subfamilies of importin alpha

proteins and there have been reports of differential recog-
nition of nuclear localization signals by the different
subfamilies. KPNA2 is a representative of the importin
alpha-P subfamily (36). In order to investigate if the
ADAR3 R-domain NLS is recognized by other importin
alpha family members, we generated yeast expression
constructs encoding human representatives from each of
the other two subfamilies; importin alpha-S and importin
alpha-Q.

Intriguingly, when we tested these in the yeast two-
hybrid assay with the ADAR3 N-terminal construct,
both KPNA1 (importin alpha-S subfamily) and KPNA3
(importin alpha-Q subfamily) did not show interaction,
while the importin alpha-P protein (KPNA2) again gave
a strongly positive signal (Figure 4A). This surprising
result lead us to test other ADAR protein constructs for
their ability to interact with these importin alpha family
members.

Differential interaction of importin alpha subfamily
members with ADAR proteins and splice forms

We tested various combinations of ADARs and the three
importin alpha proteins in the yeast two-hybrid assay. The
ADAR constructs were designed to harbor the putative or
known NLSs in ADAR1 and ADAR2. As summarized in
Figure 4B, ADAR2 full-length, as well as shorter con-
structs that include a putative cNLS, display the opposite
interaction profile as ADAR3. Whereas KPNA2 does
not show interaction, both KPNA1 and KPNA3 give a
strong positive signal in the galactosidase assay. The
ADAR2 construct that encompasses only the C-terminal
region including the catalytic domain (A2 387–701) did not
interact with any of the KNPA proteins. A2 153–387,
which includes the dsRNA binding domains of ADAR2,
but lack the putative classical NLS, displayed weak but
specific binding activity to KPNA1 and KPNA3 based
on the galactosidase assay results. In contrast, the
ADAR1-derived constructs lacked any detectable binding
activity with the three importin alpha proteins. That result

Figure 3. The R-domain of ADAR3 confers nuclear localization on
GFP protein. HEK293 cells cultured on glass coverslips and transfected
with expression plasmids EGFP (A), EGFP-NLS (B) or EGFP-
NLSmut (C) were fixed after 24 h and examined by fluorescent micro-
scopy. The native EGFP protein was preferentially observed in the
cytoplasm (A), whereas the EGFP-NLS fusion protein with the
ADAR3 R-domain sequence accumulated in the nucleus with strongest
staining in the nucleoli (B). The mutated NLS sequence prevents
nuclear accumulation of EGFP with some staining still seen in the
nucleoli (C).

Figure 4. Interaction profiles of ADARs with importin alpha proteins.
Depicted are ADAR3 (A) as well as ADAR 1, and 2 (B) expression
constructs used in yeast two-hybrid interaction assays. Asterisks indi-
cate the location of putative nuclear-localization signals; the dsRBD of
ADAR1 that mediates transportin 1 shuttling (22) is indicated by an
arrow. The binding activities of the listed constructs to KPNA1 to 3
importin alpha proteins according to a b-galactosidase assay on yeast
colonies expressing pairs of proteins are indicated. In most cases, the
results were either strongly positive (developing a blue color in less than
20min) or clearly negative (no color after 24 h at 308C). Occasionally,
a weak signal developed after 12–24 h which is designated as� in
the table. dsRBDs: double-stranded RNA-binding domains; deaminase,
catalytic adenosine deaminase domain; R-domain, arginine-rich
sequence motif.
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is not unexpected, since ADAR1 was recently shown to
employ a distinct, nuclear transport pathway mediated
by transportin-1 to shuttle between nucleus and cytoplasm,
which involves a nonclassical NLS within the third dsRBD
of ADAR1 (22).

We previously described a novel alternative splice form
for ADAR2, which changes the open reading frame of the
cDNA such that it extends the resulting protein by about
50 amino acids at its N-terminus (41). Intriguingly, we
identified a sequence motif within this extension that is
highly similar to the R-domain of ADAR3. We therefore
hypothesized that the R-domain in this ADAR2 splice
variant, termed ADAR2-R, may also constitute an NLS,
which would convey an altered interaction profile with the
importins compared to the major ADAR2 splice form
lacking the N-terminal extension.

Indeed, when we test the ADAR2-R N-terminal
sequence against the three importin alpha proteins, we
see the same pattern of interaction as the one observed
with the ADAR3 N-terminus (Figure 4B).

DISCUSSION

The ADAR3 R-domain was previously proposed to
possess single-stranded RNA-binding activity (46).
However, a functional role for such an activity has not
been demonstrated. Furthermore, the ssRNA used in
binding experiments was not a known or suspected
target of ADAR3, but a randomly chosen sequence. The
question if ssRNA binding is functionally relevant can
only be answered in the context of a physiological RNA
sequence or tertiary structure to which this ADAR would
then bind, in part, through this R domain. However, with-
out any known binding or modification target for
ADAR3, this remains purely speculative.

In this study, we show that this R-domain specifically
mediates interaction with a cellular nuclear localization
signal receptor, and as an isolated sequence motif, can
redirect GFP protein to the nucleus. The R-domain in
ADAR3 is the only candidate cNLS sequence predicted
by computational algorithms based on known classic NLS
motifs (52). However, we cannot formally rule out, that
there may be additional, nonclassical type import signals
present in ADAR3.

Interestingly, it has recently been shown that the nuclear
shuttling of the editing enzyme ADAR1 is co-regulated by
RNA (22). In that case, an entire dsRNA binding domain
(dsRBD) overlaps with the protein interaction surface
bound by transportin 1. In fact, co-regulation of
dsRBD-mediated nuclear export by dsRNA is well estab-
lished (see citation 22 and references therein). Could the
ssRNA-binding properties of the ADAR3 R-domain and
its function as NLS indicate a somewhat similar mecha-
nism? That may be unlikely. Experimentally, it would be
difficult to test in vivo, if ssRNA binding influences protein
interaction since due to the small size of the R-domain, the
RNA and protein-binding cannot be dissociated through
mutagenesis as was possible in case of the dsRBD of
ADAR1 (22). Even if the observed in vitro affinity for
ssRNA in general would be able to interfere with importin

alpha binding also in vivo, and assuming that any type of
physiologically relevant ssRNA concentrations could be
reproduced experimentally, a biological function of this
ADAR3 regulation by ssRNA binding is difficult to ima-
gine. That would be different, if there were a known phys-
iological RNA target for ADAR3 binding or/and
modification. In that case, the interaction of ADAR3
with that target, mainly via its two dsRBDs, could be
assisted and maybe enhanced through the interaction of
the R-domain with a specific area of ssRNA present
within that target. Under those circumstances, the general
in vitro ssRNA-binding activity of the ADAR3 R-domain
would indeed be relevant for editing function, but may be
less so in the context of nuclear transport.
We demonstrate differential interactions between

ADAR1-3 proteins and the importin alpha gene family.
This suggests that the interplay between the expression
patterns of ADARs and importins may determine what
kind of nuclear A-to-I RNA editing will be enabled in
a particular cell type. For example, turning on the expres-
sion of an importin alpha protein may induce nuclear
import of specific ADAR proteins or splice variants lead-
ing to an increase in nuclear RNA-editing activity.
ADAR3 has not exhibited enzymatic editing activity

to date, but has been implicated as a potential regulator
of ADAR1 and ADAR2 activity (42,46,53). Therefore,
the KPNA2-regulated nuclear import of ADAR3 could
affect the regulation of ADAR1- or ADAR2-specific
editing events. For example, the expression of KPNA1 or
KPNA3 in the same cells would first determine if ADAR2
will be imported into the nucleus. Then, additional expres-
sion of KPNA2 would allow for ADAR3 co-regulation to
modulate editing activity.
At this point, due to the paucity of either a known func-

tion for ADAR3 or any known RNA target, it is not
possible to directly assess the impact of KPNA2-mediated
specific nuclear import of ADAR3 on the function of this
putative deaminase.
There have previously been reports suggesting differen-

tial interaction and nuclear transport of cargo molecules
by members of the importin alpha family (54,55). For
example, the inducible transcription factor STAT1 is
recognized by human KPNA2, but not by KPNA1 (50).
In addition, the tissue or cell-type specific expression of

importin alpha isoforms has been shown to control impor-
tant biological processes by directing the nuclear import
efficiency for a given cargo. For example, Drosophila
importin alpha 3 (homolog to human KPNA4) specifically
transports heat-shock factor dHSF into the nucleus.
The lack of expression of importin alpha 3 during early
embryogenesis prevents nuclear entry of dHSF until
expression of importin alpha 3 is induced later in devel-
opment (56).
Several recent studies have shed light on the differential

expression patterns of importin alpha mRNAs and pro-
teins. For example, within the human brain importin
alphas are predominantly expressed in neurons, but only
to low levels in glia (36). KPNA2 mRNA was expressed
at low to moderate levels throughout the brain and spinal
cord, but more intense signals were seen in limited regions,
including the olfactory bulb and reticular system.
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In contrast, KPNA3 expression showed low or a lack of
signal in the olfactory bulb, thalamus, cerebellum and
spinal cord (36).
The expression of ADAR proteins and splice forms has

not been investigated thoroughly on the protein level, but
in situ hybridization studies, quantitative real-time PCR,
northern blotting and microarray experiments show that
ADAR1 and 2, although ubiquitously expressed across
cell types, are present to different amounts in individual
tissues and cell types and also subject to alternative splic-
ing, and in case of ADAR2, RNA editing. ADAR3
expression is restricted to the brain with regional and
cell-type-dependent expression levels (42). Overall, judging
by expression survey data, such as the Allen mouse brain
atlas (37), importin alpha and ADAR proteins show par-
tially overlapping, but distinct mRNA expression profiles.
However, the low spatial resolution of these expression
studies currently precludes a more exact and unambiguous
analysis.
Interestingly, the nuclear transport of ADAR1 seems to

be mediated through nonclassical import pathways (22),
whereas ADAR2 and ADAR3 exhibit classical NLS
sequences that are recognized by importin alpha proteins.
The alternative splicing of ADAR2 further contributes to
the modulation of ADAR2 nuclear transport as it allows
for the production of ADAR2 enzymes that differ in their
binding profile with importins. The expression level of
ADAR2R relative to the major splice form is low
(<5%), except for hippocampus where it reaches �10%
as judged by tissue-specific quantitative mRNA expression
analysis (41).
In addition to the regulation of transport into the

nucleus, it has been suggested that nuclear ADAR activity
may be regulated through shuttling of both ADAR1 and
ADAR2 between nucleolus and nucleoplasma (23,24).
Furthermore, ADAR2 appears to harbor an additional
noncanonical NLS that can confer nuclear localization
in the absence of the putative classical NLS in its
N-terminus (23).
Since RNA editing in most recoding cases is an obliga-

tory nuclear event, the control of ADAR localization may
be an important regulatory process. Eventually, only
single-cell-level analysis of importin alpha and ADAR
protein variant expression will be able to determine to
what extent the nuclear import of RNA editing enzymes
may be dynamically regulated based on interaction with
KPNA family members in vivo.
Our observation regarding the apparent differences in

the robustness of in vivo versus in vitro binding activities
could be an indication that post-translational modification
of basic residues directly within the R-domain may affect
in vivo interaction. In future studies it may be investigated
if the potential regulation of ADAR nuclear import is in
turn regulated, for example, through methylation of argi-
nine (58) residues or sumoylation of lysine residues (59)
within the R-domain.
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