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Nitric oxide synthases and atrial fibrillation
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Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are
multiple systems in the myocardium which contribute to redox homeostasis, and loss of
homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide
synthases (NOS), which normally produce nitric oxide in the heart. Two NOS isoforms (1
and 3) are normally expressed in the heart. During pathologies such as heart failure, there
is induction of NOS 2 in multiple cell types in the myocardium. In certain conditions, the
NOS enzymes may become uncoupled, shifting from production of nitric oxide to super-
oxide anion, a potent free radical and oxidant. Multiple lines of evidence suggest a role
for NOS in the pathogenesis of atrial fibrillation. Therapeutic approaches to reduce atrial
fibrillation by modulation of NOS activity may be beneficial, although further investigation
of this strategy is needed.
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INTRODUCTION
Atrial fibrillation is the manifestation of multiple forms of patho-
logic processes. There are multiple known antecedents to atrial
fibrillation including valve disease, increasing age, diabetes, and
heart failure. It is notable that these antecedents are all associated
with the development of oxidative stress (Van Wagoner, 2008).
While many antecedents of atrial fibrillation are associated with
oxidative stress, atrial fibrillation itself may also result in oxidative
stress. Collectively, these data suggest a role for oxidative stress in
the initiation and possibly sustenance of atrial fibrillation.

Current pharmacologic therapies for atrial fibrillation are drugs
which modulate ion channel function. Unfortunately, current
therapeutic approaches are sub-optimal due to lack of efficacy as
well as adverse events, including proarrhythmia (Dobrev and Nat-
tel, 2011; Schotten et al., 2011). An alternative approach,“upstream
therapy”has been suggested to mitigate the signaling events result-
ing in pathologic alterations favoring the development of AF
(Komatsu et al., 2009, 2011; Savelieva et al., 2011). Upstream ther-
apy has been proposed as a means to provide a safer, more effective
approach to prevent and/or treat atrial fibrillation. An example of
an upstream approach is targeting oxidative stress and the con-
sequent effects of reactive species on ion channels, ion currents,
structural remodeling, and/or contractile function.

REDOX BALANCE AND OXIDATIVE STRESS
Reactive oxygen species (ROS) and reactive nitrogen species (RNS)
are normal products of cellular metabolism, and there are multi-
ple sources of ROS and RNS in the myocardium (Figure 1). When
the oxidizing species exceed the reducing capacity of the cell, there
is a loss of redox homeostasis. Excess ROS results in oxidative
stress, while excess RNS results in nitrosative stress. There are

multiple potential sources of reactive species in the myocardium
including the mitochondrial electron transport chain, xanthine
oxidase, NADPH oxidases, and uncoupled nitric oxide synthases
(NOS), while the antioxidant (reducing) defenses include glu-
tathione, superoxide dismutase, and thioredoxin. In addition to
oxidative stress, it has recently been suggested that excess reducing
equivalents may result in “reductive stress” (Rajasekaran et al.,
2008; Zhang et al., 2010, 2012). A role for reductive stress in
cardiomyopathic alterations has been suggested by these reports,
but the contribution to arrhythmogenesis is undefined at the
present time, and is beyond the scope of this review. This review
is focused on the role of NOS as a source of ROS and RNS,
and the evidence linking NOS to the pathogenesis of atrial
fibrillation.

NITRIC OXIDE SYNTHASE
There are three isoforms of nitric oxide (NO) synthase: NOS1,
neuronal NOS (nNOS); NOS2, inducible NOS (iNOS); and
NOS3, endothelial NOS (eNOS); the isoform names are based
on the tissues in which they were first described. The heart
normally expresses the constitutive enzymes NOS1 and NOS3.
NOS2 is inducible and only expressed only during inflamma-
tory and/or pathologic states such as hypertrophy or heart failure
(Haywood et al., 1996; Vejlstrup et al., 1998; Nishijima et al.,
2011). There are postulated intracellular compartments in cardiac
myocytes for NOS1 (sarcoplasmic reticulum) and NOS3 (cave-
olae), while NOS2 is ubiquitously distributed in the cytosol of
cardiac myocytes (Barouch et al., 2002; Ziolo and Bers, 2003).
Under normal conditions, NOS can mediate effects through stim-
ulatory effects of NO on guanalyte cyclase, or through nitration of
tyrosine or nitrosylation of cysteine residues.
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FIGURE 1 | Redox homeostasis is maintained by balanced interactions

of reducing (left side) and oxidizing pathways (right side). Oxidative
stress results from an imbalance in which oxidizing species exceed the
reducing capacity of the cell.

NO is a diffusible and highly reactive radical, and the half-life
is therefore very short (∼5 s). The substrate for NOS is l-arginine,
which is converted to citrulline with the concomitant produc-
tion of nitric oxide. Substrate level regulation of NOS isoforms
can occur via competitive inhibition by the endogenous methy-
larginines. Dimethylarginines are endogenous analogs of arginine.
Asymmetric dimethylarginine (ADMA) is an inhibitor of NO
synthase enzymatic activity and under conditions of NOS sub-
strate (arginine) depletion ADMA can result in “uncoupling” of
NOS. NOS uncoupling results in a shift of enzymatic activity such
that NOS electron transfer is shifted from l-arginine to molec-
ular oxygen yielding superoxide anion (O•−

2 ), a potent oxidant.
Tetrahydrobiopterin (BH4) is a cofactor for NOS activity, and
when depleted, or oxidized to BH2 may also initiate NOS oxidase
activity (see Figure 2). Recently an additional pathway for shift-
ing NOS activity (specifically eNOS) from NO to O•−

2 production
has been described, S-glutathionylation (Chen et al., 2010; Zweier
et al., 2011). S-glutathionylation of eNOS is reversible and occurs
when glutathione is bound to a protein thiol. This provides an
alternative means for uncoupling of NOS activity, and the impli-
cations for modulation of other NOS isoforms are not clear at the
present time.

ELECTROPHYSIOLOGIC EFFECTS OF NO
The electrophysiologic effects of nitric oxide have been assessed
using various NO donors, and there are multiple NO donors
and scavengers which can be used to study the effects of NO
signaling. The use of donors is necessary due to the high reac-
tivity and short half-life of NO. An important consideration in
the use of NO donors is the rate of release and the production

FIGURE 2 | Nitric oxide synthase (NOS) as a source of oxidants.

l-arginine is the substrate for NOS and in the presence of the NOS cofactor,
tetrahydrobiopterin (BH4), NOS produces nitric oxide (NO). When l-arginine
and/or BH4 is/are depleted, NOS becomes uncoupled (dashed arrow) and
NOS produces superoxide anion O•−

2 at the expense of NO. Note that
asymmetric dimethyl arginine (ADMA) can inhibit NOS activity. NO and O•−

2

combine to form peroxynitrite (OONO−) which is highly reactive, and
nitrates tyrosine residues (to form 3-nitrotyrosine). Other abbreviations:
SOD, superoxide dismutase; H2O2, hydrogen peroxide. Other non-NOS
sources of O•−

2 are noted as well.

of by-products, which may exert their own biological effects. A
recent review (Tamargo et al., 2010) describes the NO modula-
tion of cardiac ion channels and currents. The effects of NO on
cardiac ion currents are species-dependent and can be highly vari-
able, e.g., I Ca-L. See Table 1 for a summary of effects on cardiac
ion currents.

ELECTROPHYSIOLOGIC EFFECTS OF PEROXYNITRITE
SIN-1 (3-morpholinosydnonimine) is often described as a per-
oxynitrite donor, as it releases both NO and superoxide anion,
which reacts at a diffusion limited rate to form the highly reac-
tive peroxynitrite (OONO−). Peroxynitrite is highly diffusible
and rapidly modifies tyrosine residues via nitration (resulting
in 3-nitrotyrosine, 3-NT), and forms the highly stable modified
amino acid, 3-NT. SIN-1 may also act as an NO donor, rather
than a peroxynitrite donor in certain conditions. Similar to the
effects of NO on cardiac ion currents, the effects of SIN-1 may be
chamber and species-dependent. Table 2 provides an overview of
electrophysiologic effects of SIN-1.

Evidence for SIN-1 as a mediator of atrial myocyte calcium
handling is provided by a recent paper in a sheep model of
atrial tachycardia (4 h of rapid atrial pacing; Lenaerts et al.,
2011). Infusion of molsidomine (SIN-1 prodrug) prevented the
tachypacing-induced reduction of atrial ERP. This was attrib-
utable to direct electrophysiologic effects of the drug as it
resulted in monophasic action potential prolongation in the
right atrium of control sheep in sinus rhythm. Complemen-
tary experiments in isolated sheep atrial myocytes with SIN-
1 found increases in I Ca-L and the amplitude of the calcium
transient.

The relevance of peroxynitrite to human atrial fibrilla-
tion has been examined, and 3-nitrotyrosine, a biomarker
for OONO− formation, is indeed increased in atrial tissues
from patients with persistent AF (Mihm et al., 2001). Fur-
thermore, there was evidence that nitration contributed to the
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Table 1 | Electrophysiologic effects of NO.

Ion channel or

current

Species or cell type/chamber Effect of NO/NO

donors

Comments/mechanism Reference

INa Guinea-pig, mouse/ventricle Dose-related

inhibition of peak

current without

altered kinetics

cGMP- and cAMP-mediated; Irreversible

after DTT suggesting non-nitrosylation

mechanisms, partially reversible on

washout of NO/NO donor.

Ahmmed et al. (2001)

INa Rat/ventricle Induction of late

current

cGMP independent, direct NOS mediated

nitrosylation of protein thiol, DTT reverses

the NO-induced potentiation.

Ahern et al. (2000)

ICa-L Guinea-pig/ventricle Inhibition NOS scavenger and cGMP inhibition

produced increase in ICa-L.

Gallo et al. (2001),

Campbell et al. (1996)

Ferret/ventricle Stimulation NO donors augment, while cGMP analogs

inhibit peak ICa-L.

I to (Kv4.2/Kv4.3) Mouse/ventricle, human/atria, CHO

cells

Inhibition NO Donors produce cGMP, cAMP and

PP2A mediated decreases; effects

potentially additive.

Gomez et al. (2008)

IKur (Kv1.5) Ltk cells (Kv1.5 overexpression),

mouse/ventricle

Inhibition NO donor mediates cGMP-dependent

nitrosylation on cysteines (S2 segment).

Nunez et al. (2006)

IKr/hERG Xenopus oocytes Inhibition NO donors mediate current decreases,

L-NAME increases current, cGMP

independent

Taglialatela et al. (1999)

IKs HEK-293, guinea-pig/ventricle Stimulation Nitrosylation of KCNQ1 without effect on

KCNE1, Calmodulin – mediated.

Asada et al. (2009)

IK1 CHO cells, human/atrial Stimulation Nitrosylation of Cys-76 in CHO cells

increased current. NO donor augments

IK1 in human atrial myocytes.

Gomez et al. (2009)

I f Guinea-pig/sinoatrial and atrial

preparations, rabbit/sinoatrialmyocytes

Stimulation cGMP-mediated, biphasic. Musialek et al. (1997)

cGMP, cyclicguanosine monophosphate; cAMP, cyclic adenosine monophosphate; DTT, dithiothreitol; CHO, Chinese hamster ovary.

Table 2 | Electrophysiologic effects of SIN-1.

Ion channel or

current

Species or cell

type/chamber

Effect of

peroxynitrite/SIN-1

Comments/mechanism Reference

ICa-L Guinea-pig/ventricle Increases cAMP and cGMP independent effect; reversed by SOD Malan et al. (2003)

Ferrets/ventricle Variable/biphasic Variability in cGMP-dependent effects Campbell et al. (1996)

Sheep/atria Increases Twofold increase in ICa-L Lenaerts et al. (2011)

Human/atria Increases Twofold increase in ICa-L, mediated via cGMP-inhibited

phosphodiesterase

Kirstein et al. (1995)

IKr/hERG Xenopus oocytes Concentration-dependent

Inhibition

Not studied Taglialatela et al. (1999)

I f Guinea-pig/atrial

preparations,

rabbit/sinoatrial

myocytes

Stimulation Atrial preparations: biphasic response – stimulation at

low concentrations, inhibition at high concentrations;

Myocytes: I f augmentation via cGMP-dependent

mechanism

Musialek et al. (1997)

cGMP, cyclicguanosine monophosphate; cAMP, cyclic adenosine monophosphate; SOD, superoxide dismutase.

impaired contractile function associated with AF (Mihm et al.,
2001). Collectively, these data support a role for acute and
chronic modulation of atrial electrophysiology and function
by OONO−.

NOS2 IN ATRIAL PATHOLOGY
NOS2 can be inducibly expressed in macrophages, neutrophils,
endothelial cells, vascular smooth muscle cells, and cardiomy-
ocytes. NOS2 uncoupling in macrophages has been shown to
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catalyze the production of O•−
2 and OONO−, which are impor-

tant in immune response and cytotoxicity of macrophages (Xia
and Zweier, 1997). This is of interest as human atrial samples
from patients with AF were recently shown to have increased
immune cell infiltration compared to those from patients with-
out AF (Yamashita et al., 2010). In this report, recruitment of
immune cells to the atrial myocardium was shown to be mediated
by intracellular adhesion molecule (ICAM-1), vascular cell adhe-
sion molecule-1 (VCAM-1), and monocyte chemotactic protein-1
(MCP-1) expression. The immunologically active monocytes and
macrophages were found in a gradient with the highest con-
centration in the endocardium with evidence of migration to
midmyocardium (Yamashita et al., 2010). This suggests a potential
role for immune cells as contributors to oxidative stress-mediated
atrial pathogenesis and AF.

While in normal hearts, NOS2 gene and protein expression is
minimal or undetectable, it can be highly expressed during heart
failure, including human heart failure (Winlaw et al., 1994; Hay-
wood et al., 1996; Vejlstrup et al., 1998). Increased cytokines in
heart failure (e.g., interleukin-6 and tumor necrosis factor-alpha)
induce NOS2 expression (Balligand et al., 1994; Umar and van
der Laarse, 2010). In end-stage human heart failure, NOS2 is
increased in all four chambers (Haywood et al., 1996). The cel-
lular location of NOS2 is not consistently described, however,
diffuse distribution in myocytes has been reported, suggesting a
role for NOS2-dependent modulation of atrial myocyte pathology
(Barouch et al., 2002; Ziolo and Bers, 2003).

In human samples from patients with permanent AF, there was
induction of NOS2 and increased 3-nitrotyrosine (OONO− bio-
marker) expression in the right atrium, compared to those with
normal sinus rhythm (Han et al., 2008). In contrast, eNOS expres-
sion did not differ as a function of AF (Han et al., 2008). The LV
size and ejection fraction was comparable in the permanent AF
and control group, suggesting that the induction of iNOS was not
a function of heart failure, but rather of AF itself.

We recently reported induction of NOS2 expression in the
failing canine atria (4 months tachypacing-induced heart failure;
Nishijima et al., 2011). This was associated with shortening of
the atrial effective refractory period and the development of a
substrate for inducible atrial fibrillation. We found that chronic
heart failure led to depletion of BH4 in the left atrium, while l-
arginine was unchanged. There was attendant evidence of NOS
uncoupling as there was reduced NO production and increased
O•−

2 production in atrial tissue, with evidence of increased atrial
oxidative stress measured by electron paramagenetic resonance
(EPR) spectroscopy. Repletion of BH4 with chronic oral treat-
ment normalized NOS enzyme activity and EPR spectra, while
reducing the inducibility of atrial fibrillation. The mechanisms
for the in vivo electrophysiologic responses were assessed in left
atrial myocytes, where we observed attenuation of the heart fail-
ure induced changes in electrophysiology. Thus, this supports a
role for induction of NOS2 as a contributor to the substrate for
atrial fibrillation in chronic heart failure.

eNOS IN ATRIAL PATHOLOGY
Cai et al. (2002) studied a porcine model of 6 weeks of atrial fibril-
lation. The left atrium was found to produce a significant amount

of NO, relative to the right atrium or aorta. Atrial fibrillation
resulted in reduced left atrial endocardial eNOS and a signifi-
cant reduction in NO production (Cai et al., 2002). In contrast, a
paper in a 7-day canine atrial tachypacing model of AF reported
increases in left atrial iNOS and eNOS (Shiroshita-Takeshita et al.,
2006). Therapy to reduce eNOS expression (prednisone) was asso-
ciated with attenuation of atrial electrophysiologic remodeling
(less inducibility of AF, less shortening of the atrial ERP, and
less reduction in rate adaptation of the atrial ERP) compared to
control.

The association between eNOS polymorphisms and AF has
been examined in clinical cohorts with non-valvular AF (Gensini
et al., 2003; Fatini et al., 2006; Giusti et al., 2007). The first report
examined the association between T-786C, G894T, and 4a/4b poly-
morphisms in Caucasians with AF,polymorphisms associated with
altered NO production by eNOS (Gensini et al., 2003). This study
compared patients with AF to normal controls, and did not find
any association between eNOS genotype polymorphisms and AF.
A second study of 331 patients with non-valvular AF examined T-
786C, 4a/4b, and G894T eNOS genotype polymorphisms relative
to controls, as well as polymorphisms in minK, the beta subunit of
the IKs channel(Fatini et al., 2006). An interaction between minK
S38G polymorphism and eNOS -786C gene variants was observed,
resulting in a significant increase in the risk of AF, while the eNOS
variant alone had a modest association with an increased risk of AF
(OR = 1.50). The other two eNOS polymorphisms were not asso-
ciated with the development of AF. A subsequent study found an
association between the eNOS -786C genotype and homocysteine
concentrations (Giusti et al., 2007). In this cohort, AF patients
had elevated concentrations of homocysteine. While there was
an association between the -786C genotype and homocysteine
concentration, no association was found between the eNOS poly-
morphism and AF in this study. A study of patients with heart
failure and atrial fibrillation also examined the role of T-786C,
G894T, and intron 4b/a eNOS polymorphisms (Bedi et al., 2006).
In this study, there was an association between the eNOS 894
T/T genotype and AF (OR = 3.2). Collectively, these data suggest
a possible modulatory effect of eNOS gene polymorphisms on
AF risk, which are likely to depend on interactions with other
polymorphisms or variables to mediate an altered risk of AF.

ENDOGENOUS METHYLARGININES AND ATRIAL PATHOLOGY
Symmetric dimethylarginine (SDMA) does not directly impact
NOS enzymatic activity but can modulate NO formation via
inhibiting cellular uptake of the NOS substrate, l-arginine. A
study of ischemic stroke survivors found that those with atrial
fibrillation had increased circulating SDMA compared to those
in normal rhythm, while ADMA did not differ between the two
groups.(Schulze et al., 2010) Elevated SDMA was also a predictor
of all-cause mortality following ischemic stroke in this cohort. It is
difficult to predict the impact of elevated SDMA on atrial function,
as there is ample reserve of arginine in cardiac tissue.

Systemic concentrations of ADMA, the endogenous l-arginine
analog, have been shown to be elevated in patients with heart
failure (Usui et al., 1998), and in patients with persistent AF,
with ADMA concentrations reduced following cardioversion
(Goette et al., 2012). In parallel studies in a porcine right atrial
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tachypacing model (7 h), systemic ADMA concentrations were
elevated. Further investigation is needed to understand the rela-
tionship between dimethylarginines and NOS modulation in atrial
fibrillation.

NADPH OXIDASE AND NOS IN ATRIAL PATHOLOGY
In addition to NOS, other sources of superoxide anion have been
shown to participate in the pathology of AF. Time-dependent alter-
ations in ROS sources during AF were examined in a tachypacing-
induced AF chronic goat model (Reilly et al., 2011). Superoxide
anion was increased after 2 weeks of AF, and did not increase
further when assessed at 6 months of AF. The increase in super-
oxide was NADPH oxidase dependent at 2 weeks of AF (but not
at 6 months of AF), and NOS- and mitochondria-dependent after
6 months of AF. Thus, the duration of AF may itself be an impor-
tant mediator of ROS source. Complementary studies in atrial tis-
sues from humans undergoing cardiac surgery found higher basal
superoxide production in patients who developed post-operative
AF, which was NADPH oxidase dependent; while atrial samples
from patients with permanent AF had NOS- and mitochondrial-
dependent increases in superoxide production. This suggests that
the efficacy of ROS-specific therapeutic approaches may be highly
dependent on the duration of AF, and that initiation, mainte-
nance, and permanent sustenance of the arrhythmia may result
from variable forms of ROS signaling. The authors also suggest
that structural remodeling may contribute to the observed shift in
ROS source.

A study in human right atrial samples examined sources of
superoxide anion in atrial fibrillation by comparing samples from
those with AF to those in sinus rhythm, with no history of atrial
arrhythmias (Kim et al., 2005). In this report, NADPH oxidase
was found to be a major source of superoxide, and NO synthases
were also found to be a source of superoxide, consistent with NOS
uncoupling in human AF.

THERAPEUTICS
There are preclinical (e.g., prednisone or BH4 as reviewed above)
as well as clinical studies describing modulation of NOS path-
ways as a therapeutic strategy in AF. In this section we will discuss
other therapeutic approaches to ameliorate AF through manipu-
lation of NOS pathways. An important caveat is that many of these
approaches are non-specific and may affect multiple pathways
which participate in AF pathogenesis.

ANTIOXIDANT VITAMINS
There have been multiple trials of antioxidant therapies to pre-
vent atrial fibrillation, many focusing on post-operative AF. Many
of the trials have been limited by small cohorts, heterogeneous
populations, variable therapeutic regimens, and variable adher-
ence to the therapeutic regimen. A recent meta-analysis suggests
that prophylaxis with the antioxidant vitamins C and E may be
antiarrhythmic in the post-operative period (Harling et al., 2011).
This meta-analysis of 567 patients found that the odds-ratio for
the development of post-operative AF was 0.43 (95% CI 0.29–
0.99). A sufficiently powered study with a standardized dosing
regimen and appropriately controlled study design is required to
definitively determine the role of peri-operative antioxidants in
the prophylaxis of post-operative AF.

HMG–CoA REDUCTASE INHIBITORS (STATINS)
In observational studies, statins [3-hydroxyl-3-methyl coenzyme
A (HMG–CoA) reductase inhibitors have been shown to reduce
the incidence of AF; Young-Xu et al., 2003; Hanna et al., 2006].
In contrast a recent interventional trial to assess the efficacy of
atorvastatin did not find a reduction in the recurrence of AF after
cardioversion (Negi et al., 2011), and was associated with reduc-
tions in inflammatory, but not oxidative stress biomarkers. The
discrepancy in clinical trial results may reflect temporal differences
in the pathologic processes contributing to AF.

Acute application of fluvastatin has been shown to reduce
automaticity in rabbit pulmonary veins, an important source for
initiation of atrial fibrillation; this effect was attributed to modula-
tion of eNOS activity via phosphorylation of the enzyme through
an IP3 Kinase/AKT pathway (Hu et al., 2009). In a 2-week ventricu-
lar tachypacing model of heart failure, treatment with simvastatin
was found to reduce the inducibility of AF (Shiroshita-Takeshita
et al., 2007). Interestingly, in this 2 weeks model, simvastatin also
reduced eNOS, iNOS, and 3-nitrotyrosine in the left ventricle, but
not the left atrium. The beneficial effects of simvastatin treatment
on the atrial fibrillation substrate were attributed to attenuation of
atrial fibrosis, and conduction abnormalities, as well as improved
LV function. An investigation of angiotensin II-induced atrial
remodeling in an eNOS knockout mouse model found that statin
treatment reduced atrial remodeling and AF (Yagi et al., 2010).
This eNOS-independent beneficial effect of pitavastatin was attrib-
uted to reductions in TGF-β1 and Smad 2/3 signaling as well as
reduced rac1 activation. Notably, the potential role of angiotensin
II-induction of iNOS (Vaziri et al., 2002) was not evaluated in this
model system.

A recent report suggests that treatment with the HMG–CoA
reductase inhibitor, rosuvastatin, alters ADMA concentrations (Li
et al., 2012). In this study a canine rapid atrial pacing model of AF
was used (400 BPM for 6 weeks), with treatment with rosuvastatin
started 3 days prior to the initiation of pacing. The serum con-
centration of ADMA was reduced and the concentration of NO
was increased in the rosuvastatin-treated group compared to the
control group. This was accompanied by a reduction in pacing-
induced increases in atrial interstitial fibrosis, apoptosis, atrial
dilatation, and was also associated with improved atrial contractile
function.

Collectively, these studies suggest that statins may exert ben-
eficial effects on the atrial substrate for AF through multiple
mechanisms, including modulation of NOS activity. Based on
current literature, further investigation of statins as an upstream
therapy to reduce AF is warranted.

FISH OIL AND OMEGA-3 POLYUNSATURATED FATTY ACIDS
The essential polyunsaturated fatty acids, eicosapentaenoic acid
(EPA), and docosahexaenoic acid (DHA), are not synthesized by
mammals. Therefore, dietary intake or supplements are required
for these fatty acids. The most common sources are consump-
tion of marine vertebrates or fish, or fish oil or omega-3
polyunsaturated fatty acid supplements.

Prophylactic dietary treatment with fish oil in a canine model
of post-cardiac surgery canine model was reported to reduce post-
operative AF (Mayyas et al., 2011). The reduction in AF was
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attributable in part to reduced inflammatory changes accompa-
nied by less induction of atrial iNOS. Eicosapentaneoic acid (EPA),
a component of the omega-3 polyunsaturated fatty acids found in
fish oil, has recently been found to reduce the spontaneous activity
in pulmonary veins (Suenari et al., 2011). Unlike the canine study
of fish oil, this study used acute application of EPA to rabbit pul-
monary vein preparations. Acute application of EPA was found
to reduce delayed afterdepolarizations; the effects of EPA on PV
electrophysiology were somewhat abrogated by the NOS inhibitor,
l-NAME, suggesting that the effects of EPA were NOS mediated.
The results of this study must be interpreted with caution since the
effects of acute application of EPA are likely to differ from chronic
treatment where the EPA is incorporated into the tissues (Billman
et al., 2010).

CONCLUSION
NO signaling is an important component of the homeostatic reg-
ulation of the cardiovascular system. Uncoupled NO synthase is
an important contributor to oxidative stress in the atrium, and
several lines of evidence (preclinical and clinical) implicate a role
for NOS signaling in the pathogenesis of atrial fibrillation. The

role of specific NOS isoforms is difficult to definitively define
at the present time, but may be highly significant based on the
intracellular distribution of various isoforms.

Therapeutic interventions to modulate NOS function have had
variable efficacy. Considering the complex system for cardiac redox
balance, and the interactions between the redox pathways, modu-
lation of a single pathway is a complex challenge. The variability
in response to therapeutic interventions likely reflects the complex
nature of the problem, the requisite role of NO signaling in main-
tenance of normal function, and confounding effects by off-target
effects.

Our current understanding of NOS pathway signaling in nor-
mal atrial function as well as in AF is incomplete. It appears that
there may be chamber-specific effects which may further com-
plicate therapeutic manipulation of NOS signaling. These factors
currently limit the ability to design optimal therapeutic interven-
tions. Thus, much remains to be learned and further investigation
is warranted.
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