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From the start of pandemics, children were described as the ones who were less affected

by SARS-Cov-2 or COVID-19, which was mild in most of the cases. However, with

the growing vaccination rate of the adult population, children became more exposed

to the virus and more cases of severe SARS-CoV-2-induced ARDS are being diagnosed

with the disabling consequences or lethal outcomes associated with the cytokine

storm. Thus, we do hypothesize that some of the children could benefit from nervus

vagus stimulation during COVID-19 ARDS through the inhibition of HMGB1 release and

interaction with the receptor, resulting in decreased neutrophil accumulation, oxidative

stress, and coagulopathy as well as lung vascular permeability. Moreover, stimulation

through alpha-7 nicotinic acetylcholine receptors could boost macrophage phagocytosis

and increase the clearance of DAMPs and PAMPs. Further rise of FGF10 could contribute

to lung stem cell proliferation and potential regeneration of the injured lung. However,

this stimulation should be very specific, timely, and of proper duration, as it could lead to

such adverse effects as increased viral spread and systemic infection, especially in small

children or infants due to specific pediatric immunity state and anatomical features of the

respiratory system.
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INTRODUCTION

Since the start of COVID-19 pandemics, children have been less addressed in the scientific
investigations of SARS-CoV-2 infection as well as treatment implications. First, in comparison
to adults’ pediatric patients have been at lower risk for the severe course and lethal outcomes
of COVID-19. Severe respiratory manifestations predominantly seen in adults were seldom
documented in groups of pediatric patients who mostly tended to have an asymptomatic
or mild form of infection (1–3). Mild COVID-19 in pediatric patients naturally leads to
smaller hospitalization and death rates compared to sick adults. However, significant COVID-19
complications might occur in the pediatric age as well. With the increased mutation rate of SARS-
CoV-2, the virus became more adaptable and targeted different age groups including children.
Moreover, the pediatric population became more susceptible to SARS-CoV-2 infection due to
increasing socialization, and more precautious enrollment in clinical vaccine trials resulting in
later and slower vaccination rates (4). Overall, with the growing infectivity higher number of
children are more likely to be severely ill, especially those with the risk factors (4). Still, the specific
anti-SARS-CoV-2 treatment is lacking, and also, the pediatric population is less involved in the
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clinical trials for specific medication in case of severe COVID-
19. Being a very specific part of the population with different
immunity and distinct anatomy (e.g., respiratory tract) still under
development over the whole childhood to the puberty, children
require a specific glimpse into possible treatment applications
during severe COVID-19 and SARS-CoV-2-induced acute lung
injury (ALI).

Vagal nerve stimulation has been of interest in adult COVID-
19 with a special focus on SARS-CoV-2-induced ALI. The
basic concept behind is its anti-inflammatory activity with
regard to cytokine storm reduction (5). Vagal nerve anti-
inflammatory potential has been already shown in different
chronic inflammatory processes, such as rheumatoid arthritis,
systemic inflammation, acute postsurgical inflammatory
response after lung lobectomy, or polymicrobial sepsis (6–9).
In addition, in most the adult cases with a previous existing
polymorbidity, COVID-19 is associated with decreased cardiac
function. Thus, vagal stimulation can contribute to improvement
via adjusting the sympathetic vagal imbalance (10). Children
do have fewer cardiovascular and pulmonary comorbidities;
thus, vagal nerve stimulation could be of interest emphasizing
its immune-modulatory potential. First, it is demonstrated to
limit dendritic cell recruitment into the lungs (11). Moreover,
it can inhibit HMGB1 release, leading to a decrease of different
pro-inflammatory cytokines. High-mobility group box protein
1 (HMGB1) has been studied as an initiating factor that
participates in multiple inflammation-related diseases in adult
and pediatric patients (12, 13). Research studies in the pediatric
population show that many inflammatory diseases, including
respiratory system-related diseases like pneumonia/bronchiolitis
(14), influenza virus or respiratory syncytial virus (RSV)-induced
infection, and lung injury (15, 16), correlate with increased
levels of HMGB1. In the majority of cases, levels of HMGB1 are
directly linked to the severity of the disease. Considering that
SARS-CoV-2 might initiate inflammatory processes and induce
ALI, HMGB1 could be used as a target for specific prevention
and treatment option for pediatric COVID-19 and SARS-CoV-
2-induced ALI. As nervus vagus activation can inhibit HMGB1
release, we hypothesize that vagal nerve stimulation could be of
benefit in pediatric SARS-CoV-2 infection.

HYPOTHESIS VALIDATION

Acute Respiratory Diseases and
Pathobiology of HMGB1
Different respiratory viruses, including SARS-CoV-2, target
epithelial cells in the respiratory tract and through their
cytopathic effect induces cellular death leading to a local
release of different damage-associated molecular pattern proteins
(DAMPs) together with pathogen-associated molecular pattern
proteins (PAMPs) (17). High mobility group box 1 (HMGB1)
is one of the most broadly studied DAMPs which is upstream
of interleukin (IL) 6 release (13, 18). It plays an important
role in different acute and chronic lung diseases as well as
other inflammatory processes caused by various stimuli (19–21).
HMGB1 plasma levels are shown to be associated with severity

of the disease, survival, and mortality of bacterial pneumonia
complicated by ARDS, meanwhile, treatment with HMGB1-
specific antagonist revealed improved survival in preclinical
animal models of acute inflammation (22–24). The significantly
increased HMGB1 levels were detected in bronchoalveolar lavage
fluid prior to the severe hyperoxia-induced lung injury (25).
In a study of neonatal ARDS (NRDS), HMGB1 is considered
a crucial indicator of disease severity and clinical outcomes
(26, 27). Few studies proved that RSV, a leading cause of
infant bronchiolitis, promotes HMGB1 release and respiratory
epithelial cell necroptosis (28–30).

HMGB1 is a chromatin-linked, non-histonic protein, 99%
identical to mammals with a cytokine activity on a cytosolic,
nuclear and extracellular level (18). After damage and cellular
death or via active secretion by stimulation of innate immune
cells, excessive quantities of HMGB1 are released resulting
in an inflammatory process together with enhanced cells,
such as neutrophils or monocyte, recruitment, migration, and
facilitated cell proliferation. Experimental studies demonstrated
that HMGB1 plays a pivotal role in ALI through the recruitment
of leucocytes into the lungs (25, 31). In addition, it induces
neutrophil dysfunction in experimental sepsis models (32).
Moreover, HMGB1 stimulates dendritic cell maturation and
enhances antibody response (33, 34). The HMGB1 triggered
inflammatory process is generated in two ways, i.e., binding
HMGB1-specific receptors or forming complexes with DNA,
RNA, or other DAMPs (35). Extracellular HMGB1 binds to
Toll-like receptors (TLR), such as TLR3, TLR4, and receptors
for the advanced glycation end product (RAGE). Thus, the
P38 mitogen-activated protein kinase (MAPK), extracellular
signal-regulated kinase 1/2 (ERK1/2), nuclear factor (NF)-kB,
and other downstream pathways are activated which results in
the secretion of tumor necrosis factor (TNF) α, IL-1β, IL6,
transforming growth factor (TGF)-1β, platelet-derived growth
factor (PDGF) and other molecules, leading to increased tissue
damage and organ dysfunction (36, 37). HMGB1-RAGE/TLR4-
axis has been attributed to a central role in influenza virus-
induced infection models. Additionally, in experimental studies,
HMGB1 antagonists demonstrated partial protection against
influenza-induced lung injury as well as encephalopathy (38, 39),
and prevention of necroptotic respiratory epithelial cell death
(40). There are growing data regarding HMGB1 function in
the regulation of autophagy and its diagnostic potential in ALI
(41–43). HMGB1 is a late mediator causing cell apoptosis and
autophagy via translocation of NF-kB inducing the production of
various previously mentioned pro-inflammatory cytokines (44).
Different cytokines further stimulate the release of HMGB1,
thus, contributing to a positive feedback loop enhancing the
inflammatory cascade (25, 45).

HMGB1 Role in SARS-CoV-2-Induced Lung
Inflammation
Considering previous findings, we hypothesize that HMGB1
can be a crucial player in SARS-CoV-2-induced lung injury
of adults as well as in pediatric patients. Indeed, a study
by Chen et al. revealed that COVID-19 patients had higher
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plasma levels of HMGB1 compared to healthy volunteers (46).
In SARS-CoV-2-induced respiratory tract infection, HMGB1
initiates inflammation via two different pathways. First, it
triggers TLR4 leading to IL6 release. IL6 is one of the essential
pro-inflammatory mediators in COVID-19 infection. Increased
plasma levels of IL6 are detected in approximately half of
patients with COVID-19 and are associated with the disease
severity (47, 48). A study by Sivakorn et al. detected a significant
correlation between HMGB1 and IL6 levels and other prognostic
biomarkers, such as D-dimer and C-reactive protein (CRP) on
admission to intensive care unit (ICU) (49). Even though, most
children present asymptomatic or with the mild COVID-19
showing normal concentrations of IL6 (50), severely ill patients
do have increased values of IL6 (51). Moreover, IL6 is frequently
elevated in MISC – a multisystemic inflammatory response
syndrome that is associated with a previous asymptomatic SARS-
CoV-2 infection (52). A study by Abrams et al. demonstrated
that higher IL6 levels together with other factors such as CRP
or ferritin were linked to increased MISC admission to pediatric
ICU, and IL-6 concentrations were related to shock (53). Taking
into account above mentioned experimental data and clinical
studies from the adult population, we speculate that HMGB1
could be an important contributor to pediatric COVID-19. The
data are supported by the fact that HMGB1 is associated with
RSV-induced bronchiolitis, neonatal ARDS, pediatric asthma,
and pneumonia (12).

The second mechanism of HMGB1 action is to promote the
expression of angiotensin-converting-enzyme 2 (ACE2) receptor
on respiratory epithelial cells (13). ACE2 is a crucial host receptor
for the entry of SARS-CoV-2 and is widely expressed in the
human body, including naso- and oropharyngeal mucosa, and
lower respiratory tract, e.g., alveolar epithelial cells. HMGB1
induces ACE2 expression via RAGE (54) which is important
in different respiratory conditions as well as ALI/ARDS (55).
As shown in a study by Pinto et al., increased expression
of ACE2 correlates with SARS-CoV-2 induced disease severity
and outcome (56). Few studies identified lower levels of ACE2
expression in children compared to adults, thus, it could partially
explain milder COVID-19 cases in the pediatric population (57–
59). However, some of the data show, that ACE2 expression
could be ethnicity dependent (60). Moreover, ACE2 expression
in children positive for SARS-CoV-2 was higher compared to
negative ones (59, 61). Nevertheless, the ACE2 expression level
was not related to viral loads (59). Thus, the mechanism of
HMGB1-ACE2 could be of less importance in pediatric COVID,
still, it could be of interest in severe SARS-CoV-2 induced ALI or
in specific risk populations.

ALI, HMGB1, and Cholinergic System
A growing body of evidence shows the interplay between
different immune cells, pro-inflammatory cytokines, and
chemokines, and neural cells in the respiratory tract (5). Vagal
afferents in the lung can identify different tissue-damaging
factors (62) and contribute to the reduction of inflammation
via e.g., the cholinergic anti-inflammatory pathway (63, 64). As
the major sensory channel in the airway-brain axis, the vagus
nerve regulates respiration, and respiratory defense and provides

“feedback” to the brain (65). This process can be disturbed
via ALI/ARDS. More data demonstrate an important role of
the cholinergic system in ALI via inhibition or reduction of
HMGB1. A recent study by Sitapara et al. revealed a potential
therapeutic effect of alpha 7 nicotinic acetylcholine receptor
(α7nAChR) agonist which attenuated hyperoxia-induced
acute lung injury (HALI) by a significant decrease of HMGB1
levels in the airways and serum of mice (66). Nevertheless,
the same study showed improved macrophage phagocytosis.
Induction of α7nAChR demonstrated to prevent activation
of NF-kB pathway leading to inhibition of HMGB1 secretion
in in vitro cultured human macrophages (67). In addition, in
experimental mouse models, vagal nerve stimulation reduced
serum HMGB1 levels resulting in increased survival (68).
The cholinergic anti-inflammatory pathway affects HMGB1
release and inhibits HMGB1 receptor-mediated activities.
Acetylcholine and α7nAChR agonist constrained RAGE-induced
endocytosis of HMGB1 complexes leading to downregulation
of proinflammatory cytokines and pyroptosis (69). Moreover,
α7nAChR signaling inhibits inflammasome activation, thus,
reducing the release of HMGB1 together with IL-1α, IL-1β, and
IL-18 (70) (Figure 1). In addition, vagal-α7nAChR stimulation
promotes lung stem cell proliferation and differentiation in
FGF-10 dependent manner (71). FGF-10 is important in
mesenchymal stromal cell mobilization and lung inflammatory
cytokines’ reduction. Altogether, vagal-α7nAChR stimulation
in pediatric patients could dampen SARS-COV-2-induced lung
inflammation and promote lung tissue recovery via inhibition of
HMGB1 and FGF-10 induction.

APPLICATION OF NERVUS VAGUS
STIMULATION IN CHILDREN

To date, different studies and protocols discuss and propose
the best techniques and modes of vagal nerve stimulation
(72). The duration and mode of nervus vagus stimulation
seem to be pathology and age-dependent with a focus on a
preferable effect. In addition, there are some other important
confounding factors, such as gender, time of the day, and
concomitant diseases of a patient. The majority of the studies
apply transcutaneous, or percutaneous auricular nervus vagus
stimulation associated with minimal side effects, such as local
irritation or pain (72). A short-term auricular vagal stimulation
has been urged for COVID-19 ALI patients as well (5, 73).
Considering the pediatric population, transcutaneous auricular
stimulation would be most suitable as this application is non-
invasive with minimum transient side effects. Moreover, children
do have less confounders, as they do have fewer comorbidities,
thus, they are using fewer medications which could interfere with
the beneficial effect of n. vagus stimulation or influence mode
and duration of its application. Nevertheless, a lot of severely
ill pediatric COVID-19 patients have different comorbidities
(74, 75) and could be prescribed various medications, such
as anti-inflammatory agents (non-steroid or glucocorticoids),
etc. Thus, vagal stimulation modifications emphasizing different
duration and frequencies with regard to the specific side
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FIGURE 1 | Potential anti-inflammatory effect of vagus nerve stimulation. DAMPs, danger associated molecular patterns; PAMPs, pathogen associated molecular

patterns; TLR, toll-like receptor; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; HMGB1, High-mobility group box protein 1; RAGE, receptor

for advanced glycation end product; TNFα, tumor necrosis factor alpha; IL, interleukin; α7nAChR, alpha 7 nicotinic acetylcholine receptor.

effects and COVID-19 treatment applications might be taken
into account. However, nervus vagus stimulation in neonates,
premature babies, and infants, which correspond to another
group of pediatric patients prone to severe COVID-19, could
be challenging due to their anatomy, i.e., smaller ears. Overall,
additional even non-invasive procedures applied in a healthcare
environment can be stressful and children, especially smaller
ones, can be less compliant compared to adults (72). Still,
vagal stimulation has been successfully used in different
pediatric conditions, such as nephrotic syndrome or epilepsy
(76–79), showing its potential and opportunities in other
pediatric diseases, including SARS-CoV-2-induced ALI. Another
consideration should be with regard to voltage and frequency of
nervus vagus stimulation. The higher voltage could be associated
with pronounced bronchospasm (80), thus low voltages should
be applied, especially in systemic nervus vagus stimulation, as
specific fiber stimulation in case of lung pathology or specific

stimulation of α7nAChR might be challenging. In addition,

children do have different normal physiological heart rates (HR)

and it is age-dependent. HR is shown to predict vagal nerve

stimulation response (81), hence, it would be important to
consider when applying vagal stimulation in children of different

ages. The frequency and duration must be sufficient to decrease

SARS-CoV-2-induced inflammation and be tolerable for a child.

Higher voltages and longer duration can be associated with

more side effects, including local pain. Currently, there is no
clear duration and frequency for nervus vagus stimulation in
acute pediatric conditions. Nevertheless, 2-h stimulation with
2 h off for few days (79) or once a day for 5min (76) has
been described, still, it could not be translated to COVID-19.
Considering the pathophysiology and immunology of COVID-
19, vagal stimulation might be started in a later phase of SARS-
CoV-2-induced infection and for few days. However, there is
increasing data that neuromodulation could benefit symptoms of
long-covid (82) which is more frequent in asymptomatic children
or children with mild disease (83), thus repeated stimulation
could be applied to improve post-covid signs and symptoms.

POSSIBLE RISKS OF VAGAL NERVE
STIMULATION IN PEDIATRIC COVID-19

In a variety of model systems, the vagus nerve acts as an
anti-inflammatory. The majority of these counter-inflammatory
actions have been attributed to macrophage nicotinic receptor
activation (84–87). Little is known about the role of the vagal
nerve in modulating the activity of other cells, such as CD4+
T cells and CD8+ cells, involved in an inflammatory response.
SARS-CoV-2 infection may not be unique in this aspect as
most the acute viral infection pathogens induce both CD4+
and CD8+ cells activation and proliferation (88). However,
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activation of T-cells might not be optimal in some patients with
COVID-19, due to delayed or defective type I interferon (IFN)
responses (89), potentially distorting T cell responses. Type I
interferon (IFN-alpha and IFN-beta) is secreted by virus-infected
cells (90), and this explains why viral load could have a major
impact on the magnitude and quality of the T cell response
(91). Besides, even though infants have a good cellular arsenal
fighting against viral infections, they can still be underdeveloped
(92). As an example, newborns do have diminished production
of interferons which reaches adult levels only in children who
are 1–2 years old. Furthermore, the production of other pro-
inflammatory cytokines is decreased, and levels are rising with
age, however, still lower than in adults (93). Additionally,
neonates do present with an impaired macrophage response to
IFN-gamma and neonatal monocytes and macrophages do have
impaired response to multiple TLR ligands, which are crucial in
anti-viral and initial pro-inflammatory response (94). Moreover,
infants do have an attenuated capacity to generate memory
CD4+ T cell response (94). Thus, they are physiologically and
immunologically more prone to viral infections with a possibility
of severe complications (e.g., pneumonia, ALI/ARDS). Reduced
T cell response dependent on IFN also has been ascribed to
the activation of the vagus nerve (95, 96). T cells play critical
roles in pulmonary host defense against viral pathogens therefore
stimulation of the vagal nerve would affect the initial response to
the pathogen, which allows the virus to spread further bypassing
the primary barrier. CD4+ (helper) cells help B cells to produce
antibodies promoting the long-standing protective immunity
(97), and, thus, the stimulation of the vagus nerve during the
incubation period and in the early stages of the symptoms
appearance of coronavirus disease is not recommended. One
prominent feature of SARS-Co-V-2 infection is lymphopenia
with the following decrease in the count of CD4+ T cells, CD8+
T cells, B cells, and natural killers (98, 99). Many respiratory
viruses, such as influenza or human rhinovirus, cause transient
lymphopenia, which lasts only 2–4 days after symptoms start
(100), while COVID-19 associated lymphopenia may be more
severe or persistent (101). The peripheral lymphopenia observed
in patients with COVID-19 may reflect the recruitment of
lymphocytes to the respiratory tract, although autopsy studies of
patients’ lungs were not identified excessive levels of lymphocytes
in bronchoalveolar lavage fluid (102). The mechanism of
lymphopenia in COVID-19 remains incompletely understood,
therefore, there is a presumption that the reduction in the
number of T cells may be related to the anti-inflammatory role
of the vagus nerve.

Dendritic cells (DC) are potent antigen-presenting cells that
respond to sites of injury and are crucial for the priming
phase of the immune response (103). Vagal nerve stimulation
produces an anti-inflammatory effect by inhibiting pulmonary
DC recruitment to the lung and preventing ALI in animal
models (11, 104). Neonatal DCs are less polyfunctional than
those of adults, in response to TLR activation, therefore neonates
and infants are much more susceptible to a wide variety of
infections (105). As compared to adults, this higher susceptibility
is speculated to reflect impairments in both innate and adaptive
immunity (106). On activation, pulmonary DC produces a

range of inflammatory mediators (107), including the cytokines
interleukin (IL)-6 and transforming growth factor (TGF)-beta
(108, 109). TGF is a key mediator of pulmonary edema in ALI
as it is triggered locally by the αvβ6 integrin (110). DC cells are
also known as the IFN factory of the immune system, equipped
to detect viruses and able to produce IFN levels far exceeding
those produced by infected cells or other immune cells (111).
Understanding the density and activity of DCs in COVID-19
is critical due to their potential to significantly amplify the IFN
activation, which also represents a risk for immunopathology
(112). Moreover, there are findings suggesting reduced IFN
signatures in patients with severe COVID-19 (113), in contrast to
the early and strong IFN responses found in antiviral responses
of mild SARS-CoV-2 infection (114). Based on these facts, it is
conceivable that stimulation of the vagus nerve may weaken the
antiviral barrier in adults, and may have an even greater effect in
infancy, as most dendritic cells are immature (115).

The afferent and efferent vagus nerve, α7nAChR-expressing
inflammatory cells, and the central vagal nucleus in the brain
form an inflammatory reflex that could finely coordinate
inflammation and immunity (116). Activation of this pathway
is dependent on the level of inflammation in the local lung
tissue (86), therefore the cholinergic anti-inflammatory pathway
alleviates acute inflammation in turn preventing ALI (117).
Agonists to α7nAChR reduce the release of extracellular HMGB1
and expression of the two main HMGB1 receptors RAGE and
TLR4 and thus inhibit HMGB1-driven inflammation (118).
It seems this cholinergic anti-inflammatory reflex is highly
responsible for HMGB1 expression, and it is locally regulated,
therefore the effect of external stimulation of the vagal nerve can
be debatable. In addition, the study suggests, that vagus nerve
stimulation significantly reduces TNF (tumor necrosis factor)
levels in the spleen (94%) and liver (40%) but not in the lung
(20%) (119), which explains external vagal stimulation influence
is more systemic rather than local on leukocytes and it secreted
cytokines level. Hence, it is possible, that the external vagus
nerve stimulation may not be less effective in children, and the
therapeutic effect might be achieved through the changes in
systemic immunity.

Taken all together, nervus vagus stimulation could be an
optimal therapeutic option in pediatric patients, however, a
specific population of children should be selected, e.g., older
children and adolescents could benefit more compared to
neonates or infants due to their immune systems which is
more mature and closer to adults. Moreover, a specific period
of COVID-19 must be considered as well. Children could be
less capable of effectively responding to vagal nerve stimulation
during the early phase of SARS-CoV-2-induced infection and it
can lead to a boosted viral spread with a systemic disease due to
dampened antiviral response which is already immature.
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