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Abstract

Background: To date very few incidences of interdomain gene transfer into fungi have been
identified. Here, we used the emerging genome sequences of Candida albicans WO-I, Candida
tropicalis, Candida parapsilosis, Clavispora lusitaniae, Pichia guilliermondii, and Lodderomyces elongisporus
to identify recent interdomain HGT events. We refer to these as CTG species because they
translate the CTG codon as serine rather than leucine, and share a recent common ancestor.

Results: Phylogenetic and syntenic information infer that two C. parapsilosis genes originate from
bacterial sources. One encodes a putative proline racemase (PR). Phylogenetic analysis also infers
that there were independent transfers of bacterial PR enzymes into members of the
Pezizomycotina, and protists. The second HGT gene in C. parapsilosis belongs to the phenazine F
(PhzF) superfamily. Most CTG species also contain a fungal PhzF homolog. Our phylogeny suggests
that the CTG homolog originated from an ancient HGT event, from a member of the
proteobacteria. An analysis of synteny suggests that C. parapsilosis has lost the endogenous fungal
form of PhzF, and subsequently reacquired it from a proteobacterial source. There is evidence that
Schizosaccharomyces pombe and Basidiomycotina also obtained a PhzF homolog through HGT.

Conclusion: Our search revealed two instances of well-supported HGT from bacteria into the
CTG clade, both specific to C. parapsilosis. Therefore, while recent interkingdom gene transfer has
taken place in the CTG lineage, its occurrence is rare. However, our analysis will not detect ancient
gene transfers, and we may have underestimated the global extent of HGT into CTG species.

Background

Lateral or horizontal gene transfer (HGT) is defined as the
exchange of genes between different strains or species [1].
HGT introduces new genes into a recipient genome that
are either homologous to existing genes, or belong to
entirely new sequence families. Large-scale genomic
sequencing of prokaryotes has revealed that gene transfer
is an important evolutionary mechanism for these organ-
isms [2,3]. HGT has been linked to the acquisition of drug
resistance by benign bacteria [4], and also to the gain of

genes that confer the ability to catabolize certain amino
acids that are important virulence factors [5]. However
there is much debate as to whether lateral gene transfer is
an ubiquitous influence throughout prokaryotic genome
evolution [6]. Until recently, the process of gene transfer
has been assumed to be of limited significance to eukary-
otes [7]. The availability of diverse eukaryotic genome
sequence data is dramatically changing our views on the
important role gene transfer can play in eukaryotic evolu-
tion.

Page 1 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18577206
http://www.biomedcentral.com/1471-2148/8/181
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Evolutionary Biology 2008, 8:181

The rapid increase in fungal sequence data has promoted
this kingdom to the forefront of comparative genomics
[8]. Whereas there is some documented evidence for HGT
between fungal species [9-17] or from bacteria to fungi
[18-28] [see additional file 1], overall very few incidences
have been identified. There are two possible explanations:
either gene transfer is indeed extremely rare amongst
fungi, or it has not yet been thoroughly studied. To
address this question we investigated the frequency of suc-
cessful recent interdomain HGT events between prokary-
otes and yeast species belonging to the CTG clade. We
chose this course of action as we expect recent interdo-
main HGT events to be more readily identified and sup-
ported than more ancient transfers.

For the purposes of this study, we define CTG species as
the immediate relatives of C. albicans, including C. tropica-
lis, C. parapsilosis, Clavispora lusitaniae, Pichia guilliermon-
dii, and Lodderomyces elongisporus. These species have been
completely sequenced, share a relatively recent common
ancestor [29], and the codon CUG is translated as serine
rather than leucine [30].

We used syntenic, phylogenetic and sequence based anal-
yses to identify two cases of interdomain HGT between
prokaryotes and C. parapsilosis, most likely involving the
proteobacteria phylum. Our results suggest that extant
CTG species do not readily take up exogenous DNA.

Results and discussion

Identification of horizontal gene transfer candidates
through Blast database search

We compared all available CTG gene sets against UniProt
using BlastP [31]. CTG genes with top database hits to
bacterial species were identified as putative horizontally
transferred genes and the resultant Blast files were
inspected manually. A D. hansenii gene (protein ydhR pre-
cursor) with a top database hit to a bacterial sequence was
not considered for further analsyes as it has previously
been described [22]. After this process two genes from C.
parapsilosis were considered for further analysis; one
encodes a putative proline racemase, and the second
encodes a member of the phenazine F superfamily.
Related family members were identified by a second
round of database searching against GenBank to ensure
all available genomic data was utilized.

Proline racemase phylogeny and characterization

The C. parapsilosis gene (designated CPAG_02038) is most
similar to a proline racemase homolog from Burkholderia
cenocepacia AU 1054 protein (66% pairwise identity; Fig-
ure 1A). Amino acid racemases catalyze the interconver-
sion of L- and D-amino acids by abstraction of the o-
amino proton of the enzyme bound substrate [32].
CPAG_02038 lies within a large contig and is also present
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in a previously published genome survey of C. parapsilosis
[33], suggesting its presence does not the result from con-
tamination. We could not locate any related genes in any
other CTG genome (using BlastP or TBlastN). Family
members are widely distributed throughout the prokaryo-
tes however, and are also located within the Pezizomy-
cotina.

We extracted 321 putative proline racemases from 207
organisms, including members of the o, B, ¥, and 8-pro-
teobacteria, Actinobacteria, Fungi, Protozoa and Metazoa.
Numerous species were found to have several family
members [see additional file 2]; all were included for
complete comparative purposes. A maximum likelihood
(ML) phylogeny was reconstructed from an alignment of
all the PR proteins (Figure 2).

There are a large number of polytomies displayed in Fig-
ure 2. These probably result from duplication of PR genes
followed by diversifying selection, leading to a high
degree of sequence heterogeneity. For example, Agrobacte-
rium tumefaciens str. C58 contains three PR homologs [see
additional file 2], with an average amino acid pairwise
percentage identity of ~31%. Burkholderia cenocepacia AU
1054 contains 2 proline racemase homologs [see addi-
tional file 2], which are only 28% identical. To help
resolve the evolutionary history amongst PR homologs we
reconstructed an additional ML phylogeny based on a
reduced dataset (Figure 3). We also reconstructed a Baye-
sian phylogeny using the heterogeneous CAT site model.
The CAT model can account for site-specific features of
sequence evolution and has been found to be more robust
than other methods against phylogenetic artifacts such as
long branch attraction [34]. The resultant Bayesian phyl-
ogeny is highly congruent with the ML phylogeny (not
shown).

The putative C. parapsilosis PR homolog lies in a strongly
supported (100% Bootstrap support (BP)) clade with Bur-
kholderia species (Figures 2 &3 clade-A). Burkholderia are 3-
proteobacteria. However, no other B-proteobacteria, or
indeed any other bacterial genus were found within clade-
A (Figures 2 &3).

Although no PR homologs were identified in other CTG
species, or indeed in any other of the Saccharomycotina,
there are homologs in family members of the Pezizomy-
cotina. A Pezizomycotina specific subclade is evident in
our phylogeny containing Phaeosphaeria nodorum, Aspergil-
lus niger and Gibberella zeae (Figures 2 &3 clade-B 100%
BP). This subclade is found in a strongly supported clade
with members of the Actinobacteria (Figure 2 100% BP),
containing Brevibacterium linens and an unclassified
marine actinobacterium and excluding Rubrobacter xylano-
philus (Figure 2 87% BP). This suggests that these Pezizo-
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A) An alignment of PR proteins from C. parapsilosis (CpPR CPAG_02038) and Burkholderia cenocepacia (BcPR) was generated
with MUSCLE. These proteins are 66% identical B) An alignment of PhzF proteins from Candida parapsilosis (CpPhzF
CPAG_03462) and Photorhabdus luminescens (PIPhzF), these are 61% identical.

mycotina species obtained their PR gene from the
Actinobacteridae subclass rather than the Rubrobacteri-
dae subclass. This transfer event is another independent
HGT event of a PR gene into fungi, and we hypothesize it
occurred early in the Pezizomycotina lineage, as it is
shared by three distantly related species. Its patchy
phyletic distribution suggests it has been subsequently
lost in other Pezizomycotina species.

There are also PR homologs in the Metazoans. These are
found in a eukaryote clade that also contains a number of
Pezizomycotina representatives (Figures 2 &3 clade-C
93% BP). Several scenarios can explain this phylogenetic
positioning. Firstly, the PR gene may have been present in
the last universal common ancestor of all eukaryotes but
has been differentially lost in all lineages except those
leading to modern day Metazoa and Pezizomycotina.
Alternatively, an ancient gene transfer from bacteria to the
last common ancestor (LCA) of Metazoa and Fungi could
have occurred, with subsequent gene loss amongst differ-
ent Metazoan and Fungal lineages. A third hypothesis is

that two independent gene transfers have occurred into
the Metazoan and Pezizomycotina lineages from unsam-
pled bacterial donors. Finally, a transfer from unsampled
bacteria into one of the eukaryote clades (either Metazoa
or Pezizomycotina) may have occurred with subsequent
transfer from one eukaryotic group to the other.

A. niger, A. oryzae and G. zeae all contain multiple PR
homologs [see additional file 2]|. One A. niger, one G. zeae
and the three A. oryzae PR homologs are nested in a
strongly supported Pezizomycotina specific subclade (Fig-
ures 2 &3 clade-D 100% BP). This subclade if found
within a larger predominately proteobacterial clade (Fig-
ure 2 74% BP). This infers that there was an independent
gene transfer event of a bacterial PR homolog into an
ancestral Pezizomycotina species.

The phylogenetic position of the C. parapsilosis PR
homolog (Figures 2 &3) resemble that described for the
adenosine deaminase (ADA) gene in the Dekkera bruxel-
lensis genome [21]. In that analysis, the authors suggest
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Figure 2

Proline racemase maximum likelihood phylogeny. The optimum model of protein substitution was found to be
WAG+G. The number of gamma rate categories was 4 (alpha = 1.163). Bootstrap resampling (100 iterations) was undertaken
and are displayed. For display purposes branches with less than 50% support were collapsed. Letters (A-E) in parentheses are
used to distinguish clades and are discussed in the text. Branches are colored according to their taxonomy. Fungal branches

and species names are colored green.

that D. bruxellensis and Burkholderia species received the  only C. parapsilosis and Burkholderia species (Figures 2 &3).
ADA gene from a species not yet represented in the public ~ Burkholderia species are known to have a genomic reper-
sequence databases. Our PR phylogeny suggests a similar  toire that allows the transfer and receipt of exogenous
event may have occurred within clade-A, which contains ~ DNA [35] and a number of studies have reported success-
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Figure 3

Reduced Proline racemase maximum likelihood phylogeny with active site alignment. Bootstrap resampling (100
iterations) was undertaken and percentages are displayed. Fungal branches are shown in green. An alignment around the active
site is also displayed. Clade letters in parentheses correspond to those in Figure 2. The phylogeny is rooted around the Meta-
zoan/Pezizomycotina specific clade (clade-C), all members of this clade have a threonine at the active site. C. parapsilosis and its
phylogenetic neighbors have a threonine instead of a cysteine at the active site (clade-A). A. oryzae, A. niger and G. zeae all con-
tain cysteine at the active site (clade-D). A. flavus, A. oryzae, A. niger, A. nidulans and G. zeae also have cysteine at the active site
(clade-C).
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ful gene transfers into Burkholderia species [36,37]. It is
possible therefore that there have been other successful
gene transfers into this bacterial lineage.

The vast majority of amino acids found in living cells cor-
respond to the L-stereoisomer [38]. However, D-amino
acids are long known to be found in the cell walls of Gram
positive and negative bacteria, where they are essential
components of peptidoglycan [39]. Apart from low levels
of D-amino acids derived from spontaneous racemization
as a result of aging [40], it was assumed that only L-amino
acid enantiomers were present in eukaryotes [41]. How-
ever, recent studies have reported the presence of numer-
ous D-amino acids in an array of organisms, including
mammals [42]. The first eukaryotic (proline) amino acid
racemase has recently been described from the human
pathogen Trypanosoma cruzi [43]. A high degree of
sequence similarity was observed between the T. cruzi and
bacterial homologs [43]. Our phylogeny infers that T.
cruzi obtained its PR homolog through interdomain HGT
from a member of the Firmicutes (subclass Clostridia), as
it is grouped beside members of this group with a high
degree of support (Figure 2 clade-E 96% BP). We per-
formed database searches [44], against other Protozoan
genomes including Trypanosoma brucei, Trypanosoma con-
golense and Trypanosoma annulata. We failed to locate a
homolog in all species except for T. vivax.

Previous analysis has shown that T. cruzi and T. vivax are
not each others closest phylogenetic neighbors, relative to
the other species sampled [45]. This suggests an ancestral
Trypanosoma gained the PR gene and multiple losses in
different Trypanosoma lineages has subsequently
occurred.

Gene order around PR homologs

The C. parapsilosis PR homolog lies close to an ortholog
(CPAG_02041) of 0rf19.1135 from C. albicans (Figure 4).
The gene order to the left of this ORF is conserved in all
CTG species, the order to the right is conserved in most
CTG species apart from C. parapsilosis and L. elongisporus.
C. parapsilosis and L. elongisporus are closely related [29],
and an examination of synteny suggests that the PR gene
(together with a second ORF, cpar5437) were inserted
between CPAG_2041 and CPAG_2037 (Figure 4).
cpar5437 encodes a neutral amino acid (AA) transporter.
The presence of an AA transporter beside the PR homolog
is interesting. If the putative proline racemase has a role in
amino acid metabolism, then the presence of the trans-
porter may be the result of an adaptive translocation to
enhance the activity of the PR gene. Unlike the PR ORF the
AA transporter is fungal in origin. Most CTG species con-
tain a single neutral AA transporter; however C. parapsilosis
and D. hansenii have four.

http://www.biomedcentral.com/1471-2148/8/181

We located tRNA genes for nearly all CTG species beside
the large conserved syntenic block (Figure 4). It has been
shown that tRNA genes are associated with genomic
breakpoints [46]. We hypothesize that a genomic rear-
rangement has occurred at this site in the LCA of C. parap-
silosis and L. elongisporus. We cannot determine if the
bacterial PR homolog was inserted into the LCA of L.
elongisporus/C. parapsilosis and subsequently lost in L.
elongisporus, or gained by C. parapsilosis after speciation.

We also investigated the gene order around the Pezizomy-
cotina PR homologs [see additional file 3]. Gene synteny
around the PR homologs found in clade-D (Figures 2 &3)
is not conserved (not shown). Interestingly however, both
A. niger and G. zeae in clade-D (Figures 2 &3) have genes
containing a FAD dependent oxidoreductase domain in
close proximity to their PR homologs (not shown).
According to Pfam [47], FAD dependent oxidases include
D-amino acid oxidases, that catalyze the oxidation of neu-
tral and basic D-amino acids into their corresponding
keto acids. The presence of these oxidases may be another
example of an adaptive translocation to enhance the activ-
ity of the PR gene in these Pezizomycotina species.

A. oryzae has three PR homologs (Figures 2 &3 clade-C).
All of these have orthologs in its close relative A. flavus
(Figure 3 clade-C), and synteny around these is conserved
[see additional file 3 clade-D]. The remaining two species
in clade-C are A. niger and G. zeae. There is no evidence of
conserved gene order within these species, or with A.
oryzae or A. flavus. Gene order around the A. flavus and A.
terreus PR homologs found in the Metazoan/Pezizomy-
cotina clade (Figures 2 &3) is also conserved [see addi-
tional file 3], as is the order between A. fumigatus and N.
fishceri [see additional file 3]. We could not locate amino
acid transporters or FAD dependent oxidases beside any
of the PR homologs found in clades B or C (Figure 2).

Proline racemase codon usage

It has been shown that recently acquired genes often dis-
play an atypical codon preference when compared to
other genes in the genome [48,49]. However, the trans-
ferred PR homologs have a codon usage consistent with
the rest of their genomes [see additional file 4]. We under-
took an analysis of variation in synonymous codon usage
on all PR genes shown in Figure 2. Homologs from related
species cluster together [see additional file 5]. For exam-
ple, the Actinobactria, the Firmicutes and the Burkholderia
species all inhabit unique areas in two dimensional corre-
spondence analysis space [see additional file 5].

The majority of fungal and Metazoan PRs are clustered
together [see additional file 5]. The C. parapsilosis PR
homolog has a codon usage distinct from the other Pezi-
zomycotina fungal PR homologs [see additional file 5],
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Figure 4

Gene order around C. parapsilosis proline racemase gene. Species names and identifiers are shown in each box. Gene
identifiers relate to annotations from the Broad Institute [66]. On the left hand side orthologous genes are stacked under one
another in pillars. Relative positions of t-RNA genes are shown and may indicate a breakpoint. After the breakpoint, synteny is
conserved between C. albicans, C. dubliniensis, C. tropicalis, D. hansenii and Cl. lusitaniae. Synteny between C. parapsilosis and L.
elongisporus is conserved but differs to the other CTG species. C. parapsilosis has a proline racemase (PR CPAG_02038) and a
neutral amino acid transporter (AA cpar5437) insertion in this region. cpar5437 is absent from the Broad gene list but present
in our manual gene call.

which is unsurprising as C. parapsilosis belongs to the Sac-  originated from a genome with no other close relatives

charomycotina subphylum. The C. parapsilosis homologis = among the species analyzed here.

also separate from the Burkholderia (B-proteobacteria)

genes with which it forms a closely related phylogenetic ~ Proline racemase activity

group (Figures 2 &3). This suggests that the gene may have =~ The PR active site from Trypanosoma cruzi, Clostridium stick-
landii, Agrobacterium tumefaciens, Brucella melitensis and
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Pseudomonas aeruginosa all contain cysteine at amino acid
position 330 [43,50]. This amino acid is essential for
enzymatic function, because substitution with serine
abolishes activity [41]. However, PR homologs from
human, mouse, Rhizobium and Brucella contain a threo-
nine instead of a cysteine at position 330 [41]. We
observed that cysteine is found in the equivalent position
in many of the bacterial proteins. The Pezizomycotina PR
genes found in clade-B and clade-D contain a cysteine at
the active site (Figure 3). The PR homologs found in the
Metazoan/Pezizomycotina clade (clade-B) have a threo-
nine at position 330. Similarly, the C. parapsilosis PR
homolog, together with its relatives from Burkholderia all
contain a threonine (Figure 3). However, Burkholderia spe-
cies have multiple PR homologs [see additional file 2]
with a cysteine as the active site (not shown). It is not clear
what effect the substitution has on enzyme activity. It has
been suggested that homologs containing threonine at the
active site are not true PRs [41], but may instead belong to
a superfamily. We cannot detect any difference in the abil-
ity of C. parapsilosis, the other CTG species or any of the
Pezizomycotina species to utilize D-proline as growth
media (data not shown). We therefore cannot confidently
infer the function of the PR homologs in the fungi ana-
lyzed here.

Phenazine F phylogeny and characterisation

The C. parapsilosis gene (designated CPAG_03462) is most
similar to a Photorhabdus luminescens phenazine F (PhzF)
protein with 61% pairwise identity (Figure 1B). Phena-
zines are biologically active compounds, all of which have
a characteristic tricyclic ring system and have been shown
to confer a selective growth advantage to organisms which
secrete them, as they possess broad-spectrum antibiotic
activity towards bacteria, fungi and higher eukaryotes
[51]. In Pseudomonas, the best studied phenazine pro-
ducer, PhzF is part of an operon required for the conver-
sion of chorismic acid to phenazine-1-carboxylate (PCA)
[52]. PhzF homologs were identified in most of the CTG
species tested as well as several other fungal species. How-
ever, we could not identify a PhzF homolog in the L. elong-
isporus genome, even when multiple TBlastN and BlastN
searches were used.

PhzF homologs were extracted from GenBank for subse-
quent phylogenetic analysis. In total 181 representative
protein coding sequences distributed amongst 154 organ-
isms were used. These taxa were distributed amongst o, B,
vand §-proteobacteria, Actinobacteria, Fungi, Firmicutes a
well as other bacterial groups.

We aligned all sequences and reconstructed a PhzF ML
phylogeny (Figure 5). The C. parapsilosis PhzF homolog is
found in a clade with members of the B-proteobacteria
(Burkholderia multiovorans, Burkholderia cepacia, Burkholde-

http://www.biomedcentral.com/1471-2148/8/181

ria ambifaria), o-proteobacteria (Roseovarius) and the -
proteobacteria (Azotobacter vinelandii, Acinetobacter bau-
mannii, Shewanella baltica and Photorhabdus luminescens)
(81% BP). In contrast, all other PhzF homologs from CTG
species are in a completely separate clade (Figure 5). These
form a sister group (63% BP) to PhzF homologs from
other Saccharomycotina species (C. glabrata, Saccharomy-
ces cerevisiae, Kluyveromyces lactis and Vanderwaltozyma
polyspora). All three clades are grouped together in a larger
clade with high support (75% BP).

The sister group relationship between the PhzF homologs
from the Ascomycota and the proteobacteria clade is
intriguing (Figure 5), as it suggests that an ancestral Sac-
charomycotina species gained the PhzF homolog from a
proteobacteria. The bacterial PhzF gene has subsequently
been retained after multiple speciation events, but lost in
C. parapsilosis. We hypothesize that C. parapsilosis has
recently reacquired a bacterial PhzF homolog from a pro-
teobacterial source, as it is grouped (81% BP) within a
proteobacterial subclade. To test this hypothesis we recon-
structed constrained trees that placed C. parapsilosis
together with the remaining Ascomycota species [see
additional file 6 C-H]. The AU test of phylogenetic tree
selection [53], showed that the original unconstrained
tree (groups C. parapsilosis with proteobacteria) receives
the optimal likelihood tree score, and the differences in
likelihood scores when compared to the constrained trees
[see additional file 6], are significant (P < 0.05). This is
also supported by spectral analysis [see additional file 7].

Our phylogeny shows that the Schizosaccharomyces pombe
PhzF homolog is found in a clade containing all CTG
PhzF homologs (Figure 5 99% BP). Furthermore it is
grouped beside D. hansenii (66% BP). S. pombe is not a
member of the Saccharomycotina, it belongs to the
Taphrinomycotina subphylum. The genome sequences of
Schizosaccharomyces japonicus and Schizosaccharomyces oct-
osporus have recently been completed [54]. We could not
locate a PhzF homolog in S. japonicus but did locate a
homolog in S. octosporus using a TBlastN search strategy.
Phylogenetic analysis has shown that S. pombe and S. oct-
osporus are more closely related to one another than to S.
japonicus [55]. Therefore we hypothesize that the LCA
ancestor of S. pombe and S. octosporus gained the PhzF gene
from an ancestral D. hansenii-like species after speciation
from S. japonicus. We reconstructed a constrained tree that
placed S. pombe outside the Saccharomycotina clade [see
additional file 6B]. The approximately unbiased test of
phylogenetic tree selection (AU test) [53], showed that the
phylogenetic inferences of the unconstrained tree are sig-
nificantly better (P < 0.05) than the constrained tree [see
additional file 6]. This infers that S. pombe has obtained a
PhzF homolog from a member of the CTG clade.
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Figure 5
PhzF maximum likelihood phylogeny. The optimum model of protein substitution was found to be WAG+G. The

number of gamma rate categories was 4 (alpha = 0.873). Bootstrap resampling (100 iterations) was undertaken and are dis-
played. For display purposes branches with less than 50% support were collapsed. Branches are colored according to their tax-
onomy. Fungal branches are shown in green. The S. pombe PhzF homolog is highlighted with a red rectangle.

A small basidiomycete clade is evident amongst prokary-  bacterial source, and both species have retained this after
ote species (Figure 5). Both Ustilago maydis and Malassezia ~ speciation.

globosa belong to the Ustilaginomycotina subphylum.

Therefore our phylogeny infers that an ancestral Ustilagi- A correspondence analysis of synonymous codon usage
nomycotina species gained a PhzF gene from an unknown  for all PhzF homologs was also performed and is shown
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in additional information [see additional file 8]. The S.
pombe PhzF homolog has a codon usage pattern very sim-
ilar to the D. hansenii protein.

Gene order around PhzF
Analysis of the genes adjacent to the PhzF homolog in C.
parapsilosis shows that there is a high conservation of gene
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synteny and supports our hypothesis that PhzF was
recently acquired in this species (Figure 6). Homologs in
the other CTG species are located in completely different
regions of the genome relative to C. parapsilosis (not
shown). For example, the C. albicans PhzF homolog is
located between 01rf19.5619 and 01f19.5621, whereas the
C. parapsilosis homolog is found between 0rf19.6689 &

ey 11190087 gy O1T19.6086 gy OTf19.6685 g
C. albicans C. albicans

C. dubliniensis C. dubliniensis

CTRG_05179 CTRG_05149
C. tropicalis ™™ C. tropicalis

C14608 C14586
D. hansenii D. hansenii
CLUG 01661 CLUG_01660

PGUG_05625 PGUG_05624

CPAG_03464 CPAG_03465

C. parapsilosis

LELG_05170 LELG_05169

Gene order around C. parapsilosis PhzF gene. Species names and gene identifiers are shown in each box. Orthologous
genes are stacked under one another in pillars. The C. parapsilosis PhzF homolog (CPAG_03462) is highlighted with a red box.
Synteny relative to the C. parapsilosis PhzF homolog is conserved in all species. Other CTG PhzF homologs are found in com-
pletely different regions of the genome relative to C. parapsilosis. L. elongisporus is the only CTG species missing a PhzF gene,
and there is no evidence for a pseudogene in the genome.
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0rf19.6687 relative to C. albicans SC5314 (Figure 6).
However, the L. elongisporus genome contains no PhzF
homolog, either at a position equivalent to the C. parapsi-
losis copy or elsewhere in the genome.

We propose that the LCA of L. elongisporus and C. parapsi-
losis lost the PhzF gene present in the other CTG species,
and a second (new) copy was subsequently gained by C.
parapsilosis after speciation. We have partial sequence data
(unpublished) from Candida orthopsilosis, a species so
closely related to C. parapsilosis that it was once designated
C. parapsilosis group 11 [56]. We located a C. orthopsilosis PR
homolog that is 83% identical (at the amino acid level) to
the C. parapsilosis copy. This implies that the common
ancestor of C. parapsilosis and C. orthopsilosis acquired the
bacterial PhzF homolog after speciation from L. elongis-
porus.

Mechanisms of gene transfer into fungi are poorly under-
stood. To date no DNA uptake mechanism has been iden-
tified in CTG species. Interkingdom conjugation between
bacteria and yeast has been observed however [57-59].
Similarly, Saccharomyces cerevisiae has been shown to be
transformant competent under certain conditions [60].
CTG species are known interact with bacteria in vivo [61],
and it is therefore possible that interkingdom conjugation
and transformation may facilitate DNA transfer in C. par-
apsilosis. These mechanisms may also be applicable to the
Pezizomycotina species examined in this analysis.

Conclusion

We investigated the frequency of recent interkingdom
gene transfer between CTG and bacterial species. We
located two strongly supported incidences of HGT, both
within the C. parapsilosis genome. We also located inde-
pendent transfers into the Pezizomycotina, Basidiomy-
cotina and Protozoan lineages.

We cannot determine the exact origin of the PR homolog
(CPAG_02038) found in the C. parapsilosis genome. How-
ever, based on its phylogenetic position it either origi-
nated from a Burkholderia source, or more likely an
organism not yet represented in the sequence databases.
Our PR phylogenetic analysis also suggests there were two
independent transfers into Pezizomycotina species, one
from an Actinobacterial source, and the second is from an
unknown proteobacterial source. There is also evidence
that T. cruzi has obtained its PR homolog from a Firmi-
cutes species. The transferred PR genes analyzed here
belong to a superfamily of proline racemases, although
we cannot determine their exact function in the fungal
species examined. Their proximity to an amino acid trans-
porter (in C. parapsilosis) and a FAD dependent oxidore-
ductase (in A. niger and G. zeae) suggests they do have a
role in amino acid metabolism. Furthermore, evidence of

http://www.biomedcentral.com/1471-2148/8/181

multiple independent transfers into fungi suggests the
protein does confer a biological advantage, although we
cannot determine what is. The bacteria-derived PR gene
has the potential to be a novel antifungal drug target as
there would be no undesired host protein-drug interac-
tions.

The bacterial PhzF homolog (CPAG_03462) found in C.
parapsilosis most likely originated from a proteobacterial
source. Most CTG species examined contained PhzF
homologs, with the exception of L. elongisporus. The crys-
tal structure the PhzF homolog in S. cerevisiae has been
determined and while its function remains unknown, it is
not thought to be involved in phenazine production [62].
We postulate that the PhzF homolog present in other CTG
species was initially lost by the ancestor of C. parapsilosis
and L. elongisporus, but subsequently regained by C. parap-
silosis through HGT. The loss of eukaryote genes and sub-
sequent reacquisition of a prokaryotic copy has previously
been described in yeast, and can confer specific metabolic
capabilities. An analysis of the biotin biosynthesis path-
way discovered that the ancestor of Candida, Debaryomy-
ces, Kluyveromyces and Saccharomyces lost the majority of
the pathway after the divergence from the ancestor of Y.
lipolytica. However, Saccharomyces species have rebuilt the
biotin pathway through gene duplication/neofunctional-
ization after horizontal gene transfer from o and y proteo-
bacterial sources [20]. The acquisition of the URA1 gene
(encoding dihydroorotate dehydrogenase) from Lactoba-
cillus and replacement of the endogenous gene in S. cere-
visiae, allowed growth under anaerobic conditions [19].
Similarly, acquisition of BDS1 (alkyl-aryl-sulfatase) from
proteobacteria may have enabled the survival of S. cerevi-
siae in a harsh soil environment [19]. Our PhzF phylogeny
suggests that the PhzF homolog found in most CTG spe-
cies originated from an ancient HGT event, from a mem-
ber of the proteobacteria. Our analysis also shows that S.
pombe has obtained a PhzF homolog from a CTG species,
most likely one closely related to D. hansenii. There is also
phylogenetic evidence showing that an ancestral Ustilagi-
nomycotina species gained a PhzF gene from an unknown
bacterial source. We cannot however, determine the bio-
logical advantage to the organisms.

Although it was not the major goal of this study, we did
locate HGT from bacteria into fungal genomes outside the
CTG clade, and also inter-fungal transfers. In a previous
analysis of HGT in diplomonads, fifteen genes were found
to have undergone HGT [18]. There is phylogenetic evi-
dence that these genes have undergone independent
transfers into other eukaryotic lineages including Fungi.
Therfore, in eukaryotes just as HGT has affected some spe-
cies more than others [63], there may be groups of genes
that are more likely to be taken up through HGT than oth-
ers. We cannot test this directly however, as we have not
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identified all cases of HGT from bacteria to fungi outside
the CTG clade.

Our analysis indicates that recent interkingdom gene
transfer into extant CTG species is negligible. This sup-
ports a previous hypothesis that genetic code alterations
blocks horizontal gene transfer [64]. It should be noted
however that we searched for recent bacterial gene trans-
fers into individual CTG species, and not for more ancient
transfers. We took this approach because the presence of
recently gained bacterial genes in a eukaryote genome
should be readily detected compared to older transfers.
Similarly, we have not investigated eukaryote-to-eukary-
ote transfers. It is therefore possible that we have underes-
timated the overall rate of HGT into the CTG lineage. The
discovery of HGT in other fungal lineages implies that
HGT plays an important role in fungal evolution and
deserves further analysis. In particular a strategy which can
detect ancient gene transfers would be meaningful.

Methods

Sequence data

The complete C. albicans (SC5314) genome (Assembly
19) was obtained from the Candida genome database
[65]. The Broad institute have sequenced and annotated
five CTG species (C. albicans (WO-1), C. tropicalis, L. elong-
isporus, P. guilliermondii, and CI. lusitaniae). These
genomes were obtained directly from the Broad Institute
[66]. Gene sets for the C. dubliniensis were downloaded
from GeneDB [44].

The incomplete C. parapsilosis geneome was downloaded
from the Sanger Institute [67]. Gene annotations were
performed using two separate approaches. The first
involved a reciprocal best BLAST [31] search with a cutoff
E- value of 107 of Candida albicans SC5314 protein coding
genes against the unannotated C. parapsilosis genome. Top
BLAST hits longer than 300 nucleotides were retained as
putative open reading frames. The second approach
involved a pipeline of analysis that combined several dif-
ferent gene prediction programs, including ab initio pro-
grams SNAP [68], Genezilla [69], and AUGUSTUS [69],
with gene models from Exonerate [70] and Genewise [71]
based on alignments of proteins and Expressed Sequence
Tags. Putative gene sets from both approaches were
imported into Artemis [72] and cross corroborated manu-
ally. The resultant gene sets contained 5,823 protein-cod-
ing genes. The C. parapsilosis genome was also annotated
by the Broad Institute, and where possible we have used
the gene names they assigned.

The UniProt database (v11.1) was downloaded [73].
Database searches against GenBank refer to release 164.0.

http://www.biomedcentral.com/1471-2148/8/181

Blast based approach to detect potential horizontally
transferred genes

Taking one CTG species at a time, we located gene families
of interest by comparing individual protein coding genes
against the UniProt database (v11.1) using the BlastP
algorithm [31] with a cutoff expectation (E) value of 10-20,
To use all available sequence data, CTG proteins with a
top database hit to a bacterial protein in UniProt were
extracted for a second round of database searching against
GenBank (E value of 10-20). Proteins which also had a top
database hit to a bacterial protein in GenBank were con-
sidered as possible incidences of horizontal gene transfer.
All putative homologs were extracted from GenBank and
searched against the relevant CI'G genome to ensure a
reciprocal best Blast hit. For completeness, CTG proteins
not yet deposited in GenBank were added to gene families
of interest where appropriate.

Accession numbers for all sequences used in this analysis
can be found in additional material [see additional file 2|.

Phylogenetic methods

Gene families were aligned using MUSCLE (v3.6) [74]
using the default settings. Obvious alignment ambiguities
were corrected manually.

Phylogenetic relationships were inferred using maximum
likelihood methods. Appropriate protein models of sub-
stitution were selected for each gene family using Model-
Generator [75]. One hundred bootstrap replicates were
then carried out with the appropriate protein model using
the software program PHYML [76] and summarized using
the majority-rule consensus method.

We performed the approximately unbiased test of phylo-
genetic tree selection [53], to assess whether differences in
topology between constrained and unconstrained gene
trees are no greater than expected by chance.

Codon usage analysis and spectral analysis

To determine if the putative HGT genes had a different
codon usage pattern to the host genome an analysis of
variation in synonymous codon usage was undertaken
using the GCUA software [77]. Individual correspondence
analyses of raw codon counts for the Candida parapsilosis,
Ustilago maydis, Malassezia globosa, Aspergillus flavus,
Aspergillus niger, Gibberella zeae, Aspergillus oryzae, Phae-
osphaeria nodorum, and Schizosaccharomyces pombe
genomes were performed, with the first four principal axes
being used to evaluate synonymous codon usage patterns.
Similar analyses were also carried out on members of the
proline racemase and phenazine F gene families displayed
in Figures 2 and 4. We used spectrum [78] to perform a
spectral analysis on a subset of the phenazine data.
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Additional material

Additional file 1

Examples of reported incidences of interkingdom gene transfer
between prokaryotes and fungi. One Kluyveromyces lactis gene
(KLLA0D19949g) previously highlighted [22], been omitted as it is no
longer recognized as an ORF. Y. lipolytica genes denoted with a * and
indicate possible gene duplications after HGT.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-181-S1.doc]

Additional file 2

GenBank accession numbers for PR (A) and PhzF (B) sequences used
in this analysis. Species identified with an * use the accession numbers
created by the Broad Institute [66] or the Wellcome Trust Sanger Institute
[67].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-181-S2.doc]

Additional file 3

Gene order around Pezizomycotina proline racemase genes. Species
names and identifiers are shown in each box. PR genes are labeled. Gene
identifiers relate to annotations from the Broad Institute. Clade letters in
parentheses correspond to those in Figure 2. There is evidence for con-
served gene synteny between some species such as A. oryzae and A. flavus
(clade-C). A. flavus/A. terreus and N. fischeri/A. fumigatus in the
Metazoan/Pezizomycotina clade (B). The A. flavus gene denoted by a *
is absent from the Broad gene set but we were able to locate it with a
BlastX search.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-181-S3.eps]

Additional file 4

Correspondence analysis of codon usage. Correspondence analysis of
codon usage in the C. parapsilosis (1), U. maydis (2), M. globosa (3),
A. flavus (4), A. niger (5), G. zeae (6), A. oryzae (7), P. nodorum
(8), and S. pombe (9) genomes. Transferred genes are highlighted. All
have a codon usage similar to the rest of their genomes which is unsurpris-
ing as transferred genes have been shown to ameliorate their codon usage
to their hosts [79].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-181-84.pdf]
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Additional file 5

Correspondence analysis of codon usage in the proline racemase gene
family analyzed in this study. Major groups are color-coded. The C. par-
apsilosis PR gene has a codon usage pattern distinct from other fungal
species in this analysis. It is also quite distinct from the Burkholderia (3
proteobacteria) species, which were found to be its phylogenetic neighbors.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-181-S5.eps]

Additional file 6

Trees for approximately unbiased test for PhzF homologs. Tree A is the
original unconstrained topology, which groups C. parapsilosis with pro-
teobacteria. Topology B is a constrained tree that places S. pombe outside
the Saccharomycotina clade. Topologies C-H are constrained and place C.
parapsilosis amongst the other Saccharomycotina species. Log likelihood
scores for each tree are given. To assess the likelihood that any differences
in topology between the inferred trees is no more significant that that
expected by chance, we performed the approximately unbiased test. The
AU test shows that the unconstrained tree receives the optimal likelihood
tree score. Furthermore, the differences in likelihood scores when com-
pared to the constrained trees are significant (P < 0.05). Therefore based
on these results the placement of the C. parapsilosis homolog in the pro-
teobacterial clade to the exclusion of the Saccharomycotina and S. pombe
within the Saccharomycotina clade is significant.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-181-S6.eps]

Additional file 7

PhzF spectral analysis. Analysis was performed on the Saccharomycotina
and selected proteobacterial clade. Bars above the x-axis represent fre-
quency of support for each split. Bars below the x-axis represent the sum
of all corresponding conflicts. Clad grams above columns represent the cor-
responding splits in the data. There is no support for the placement of C.
parapsilosis with the other Saccharomycotina species.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-181-S7.eps]

Additional file 8

Correspondence analysis of codon usage in the PhzF gene family ana-
lyzed in this study. Major groups are color-coded. The C. parapsilosis
PhzF gene has a codon usage pattern similar to other CTG species ana-
lyzed. It is quite distinct from the proteobacterial species that were found
to be its phylogenetic neighbors.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-181-S8.eps]
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