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Abstract

The function of the immune system in cancer initiation and progression has been widely exam-

ined. Notably, immunotherapy has become a promising approach for cancer treatment. CD47,

a member of the immunoglobulin superfamily, plays an important role in the immune regulation of

cancer by binding to SIRPa. Multiple studies have detected high CD47 expression on the surface

of tumor cells, which indicates poor prognosis. Treatments that block the interaction of CD47

and SIRPa significantly suppress tumor growth and metastasis through diverse mechanisms, such

as phagocytosis, antibody-dependent cellular cytotoxicity, and apoptosis. Recently, several studies

have reported increased CD47 expression on different types of lymphoma cells, indicating that

the CD47-SIRPa pathway can be used as a therapeutic target in lymphoma. This review focuses

on the role of CD47-SIRPa in B-cell lymphoma and discusses promising therapeutic strategies

targeting the CD47-SIRPa axis, which yield insights into the immunotherapy of B-cell lymphoma.
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Introduction

Non-Hodgkin lymphoma (NHL) is a
common lymphoid malignancy. According
to the American Cancer Society, the mor-
bidity of NHL currently ranks seventh
among all cancers.1 Although chemo-
immunotherapy improves the survival of
CD20-positive B-cell lymphoma, many
patients experience disease relapse, and
some show drug resistance to both conven-
tional chemotherapy and rituximab, sug-
gesting that additional approaches are
needed to more effectively treat lymphoma
patients.2 Immunotherapy is a novel
approach for treatment of B-cell lymphoma
that is relapsed or refractory after chemo-
therapy. Chimeric antigen receptor T cell
(CAR-T) therapy uses genetic engineering
to alter T cells to produce transmembrane
proteins on the cell surface with an extra-
cellular antibody fragment domain that rec-
ognizes a tumor antigen; such therapy
shows high response rates in refractory
B-cell lymphoma.3 As a fusion protein con-
taining both an antigen recognition domain
and T cell signaling domain, the CAR
specifically activates T cell-mediated anti-
tumor immune responses.4 In contrast,
immune checkpoint inhibitors, such as pro-
grammed cell death-1 or programmed cell
death ligand-1 (PD-1/PD-L1) monoclonal
antibody (mAb), can activate T cells to
attack cancer cells; thus, they offer new
options for patients with lymphoma.5

PD-1 is an immune checkpoint receptor
expressed on the surface of T cells; by bind-
ing to PD-L1, predominantly expressed on
tumor cells, PD-1 attenuates the T cell-
mediated anti-tumor immune response.6

The innate immune system also plays an
important role in anti-tumor responses.
Macrophages are important components
of innate immunity, which can inhibit
tumor growth through phagocytosis.
CD47 is a 50-kDa ubiquitous cell mem-
brane protein in the immunoglobulin

superfamily. By interacting with integrin

avb3 and thrombospondin, CD47 partici-

pates in regulation of cell motility, adhe-

sion, migration, and platelet activation.7–10

Signal regulatory protein-a (SIRP-a) is

another immunoglobulin superfamily trans-

membrane receptor primarily expressed on

the surface of myeloid cells, including mac-

rophages, granulocytes, monocytes, and

dendritic cells.11 The interaction of SIRP-a
with CD47 phosphorylates its immunore-

ceptor tyrosine-based inhibition motif,

then activates the inhibitory tyrosine phos-

phatases SHP-1 and SHP-2 to suppress

phagocytosis.12,13 CD47 was first identified

on human ovarian tumors. A growing

number of studies have reported high

CD47 expression on diverse types of cancers,

including breast cancer, hepatocellular carci-

noma, and colon glioblastoma; high CD47

expression is associated with poor progno-

sis.14–17 Recently, CD47 was reported to be

expressed on NHL.18 Therefore, targeting

CD47 may be a novel strategy for lympho-

ma treatment. This review focuses on the

role of the CD47-SIRPa pathway and effects

of therapeutic strategies targeting this path-

way in B-cell lymphoma.

Mechanisms and effects of

blocking CD47 in cancer

CD47 expressed on tumor cells and tumor

stem cells has been identified as a “don’t eat

me” signal, and binding of CD47 to SIRPa
contributes to inhibition of macrophage

phagocytosis, thus facilitating cancer

immune evasion.19–21 Indeed, Liu et al.22

reported that high CD47 expression led to

the progression of ovarian cancer by inhib-

iting macrophage phagocytosis; CD47

downregulation by shRNA, or its inhibition

by mAb, promoted phagocytosis and mac-

rophage infiltration in tumor cells.22 Anti-

CD47 antibodies also induced macrophage-

mediated phagocytosis and suppressed
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tumor growth in myeloma, hepatocellular
carcinoma, and glioblastoma23–26; addition-
ally, blockage of CD47 increased M1 mac-
rophages, affected overall macrophage
distribution, and promoted the migration
of macrophages into the tumor.25–26 These
studies demonstrated that blocking the
CD47 inhibitory signal promoted an
innate immune response through
macrophage-dependent phagocytosis.

The anti-tumor mechanisms of blocking
CD47 include: 1) Activation of the
antibody-dependent cellular cytotoxicity
(ADCC)-mediated innate immune
response. For example, Kim et al.27

showed that high CD47 expression was
associated with a reduction in natural
killer (NK) cell-mediated cytotoxicity in
head-and-neck squamous cell carcinoma
(HNSCC); treatment with anti-CD47 anti-
body remarkably increased NK cell-
mediated cytotoxicity against HNSCC.27

Chao et al.28 observed that the use of anti-
CD47 antibody caused NK cell-mediated
ADCC in lymphoma, in an Fc receptor-
dependent manner. 2) Promotion of adap-
tive immunity. Tseng et al.29 reported that
antigen-specific CD8þ T cells proliferated
after macrophage phagocytosis induced by
the use of an anti-CD47 antibody in colon
cancer, whereas the number of regulatory T
cells was reduced; an increase in CD8þ T
cells showed good anti-tumor effects in vivo,
indicating that the use of an anti-CD47
antibody enabled adaptive T cell immune
responses and overwhelmed the regulatory
T cell-mediated immune evasion in cancer.29

Similarly, another study showed that the
anti-CD47 antibody inhibited tumor progres-
sion by enhancing the antigen-specific CD8þ
T cell response, which was activated by
dendritic cell-mediated tumor antigen presen-
tation to T cells.30 Recently, Soto-Pantoja
et al.31 reported that blocking of CD47
induced a cytotoxic T cell-dependent anti-
tumor immune response and enhanced the
effects of irradiation in fibrosarcoma; CD47

knockdown in CD8þ T cells also significant-

ly enhanced their tumoricidal activity.

Moreover, elevated CD47 expression was

associated with reduced CD8þ T cell infiltra-

tion in melanoma.31 3) Direct induction of

apoptosis. Several studies showed that the

blockage of CD47 by the antibody MABL

(specific for an extracellular domain of

CD47) promoted apoptosis of leukemia and

myeloma cells.32–33 Additionally, MABL-

induced apoptotic activity in myeloma cells

was not affected by chemotherapy, indicating

an independent anti-myeloma role for

MABL-induced apoptosis.33 4) HIF-1-

mediated inhibition of cancer stem cells

(CSCs). Zhang et al.34 reported that CD47

gene transcription was dependent on HIF-1

in breast cancer. CD47 expression also con-

tributed to maintenance of breast CSCs.

Therefore, downregulation of CD47 by

blockage of HIF-1 may inhibit breast CSCs.

Therapeutic strategies targeting

CD47-SIRPa in B-cell lymphoma

Increasing evidence has demonstrated that

increased CD47 expression by different

types of B-cell lymphoid malignancies was

associated with tumor progression and dis-

semination. For example, Chao et al.28,35

reported that CD47 mRNA expression was

significantly increased in various B-cell lym-

phoma cells, and that high CD47 expression

indicated poor survival and disease progres-

sion in diffuse large B-cell lymphoma

(DLBCL), B-cell chronic lymphocytic leuke-

mia (B-CLL), and mantle cell lymphoma.

Subsequently, increased CD47 expression

was detected in disseminated lymphoma

samples; further, CD47 knockdown reduced

disease involvement at secondary sites in a

lymphoma xenograft model, indicating that

lymphoma dissemination was CD47-depen-

dent.28,35 Starr et al.36 also reported that

CD47 was highly expressed in both nodal

and intravascular DLBCL cells, indicating
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that CD47 plays an important role in the
intravascular dissemination of DLBCL.
Therefore, blocking the CD47-SIRPa path-
way may be an effective approach to treat
B-cell lymphoma.

Strategies targeting the CD47-SIRPa
pathway in B-cell lymphoma are diverse.
First, CD47 can be directly blocked by
monoclonal antibodies. Second, CD47 can
bind to recombinant polypeptides derived
from SIRPa, such as the SIRPa-Fc fusion
protein. Additionally, the interaction of
CD47 and SIRPa can be inhibited by an
anti-SIRPa antibody.37 Goto et al.38

reported increased expression levels of
CD47 on the surface of primary effusion
lymphoma (PEL) cell lines, and showed
that CD47 knockdown by siRNA or anti-
CD47 antibody increased the phagocytosis
of PEL cells by macrophages; they also
demonstrated that the use of an anti-
CD47 antibody significantly inhibited the
growth and metastasis of PEL cells in a
xenograft mouse model.38 Similarly, Chao
et al.28,35 demonstrated that both anti-
CD47 and anti-SIRPa antibodies promoted
macrophage phagocytosis of NHL cells, in
a manner dependent on the level of CD47
expression; additionally, the use of an anti-
CD47 antibody inhibited tumor growth and
extended the survival of both localized
and disseminated lymphoma in vivo.
Interestingly, although the anti-CD47 anti-
body did not fully eliminate the lymphoma,
it reduced the growth rate of the tumor and
prevented both extranodal and hematoge-
nous spread in a macrophage-dependent
manner, demonstrating the inhibitory
effect of anti-CD47 antibody on lymphoma
dissemination.28,35 Uno et al.39 reported
that the anti-CD47 monoclonal antibody
(mAb), MABL, enabled apoptosis in
JOK-1 cells, but did not induce cell death
in CD34þ progenitor cells; additionally,
treatment with MABL prolonged the sur-
vival of xenograft mice; the median survival
of mice injected with MABL was longer

than that of mice treated with fludarabine,
demonstrating the efficacy of MABL in
eradicating B-CLL.39 To reduce hemagglu-
tination fromMABL, Sagawa et al.40 devel-
oped an S-S diabody, a disulfide-stabilized
dimer of a single-chain antibody fragment
of MABL; the S-S diabody induced apopto-
sis in B-CLL cells, but not in normal
leukocytes. The experiment in B-CLL-
transplanted mice also revealed the
anti-tumor effects of the S-S diabody,
which blocked tumor growth and improved
survival.40 Additionally, CD47 ligation by
an anti-CD47 mAb induced apoptosis and
cell death in B-CLL through the caspase-
independent pathway; apoptotic cells were
then eliminated by dendritic cell-mediated
phagocytosis.41–42

However, CD47 is also widely expressed
on normal cells, including red blood cells,
platelets, and mesenchymal stem cells,
weakening the specificity of the antibody
towards tumor cells.43 Therefore, several
studies have developed bispecific antibodies
(BsAbs) to specifically limit CD47 neutrali-
zation to tumor cells. Piccione et al.44

reported that BsAbs co-targeting CD47
and CD20 increased the phagocytosis of
NHL cells; BsAb also reduced the tumor
burden in both localized and disseminated
NHL mouse models and significantly pro-
longed survival, compared with either anti-
CD47 antibody or rituximab monother-
apy.44 Métayer et al.45 showed that both
anti-CD47 and anti-CD19 antibodies
induced phagocytosis in Burkitt’s lympho-
ma cells. Subsequently, Dheilly et al.46

developed a CD47/CD19 dual-targeting
BsAb and demonstrated its binding selectiv-
ity and anti-lymphoma effects, which were
mediated by antibody-dependent cellular
phagocytosis. Although these BsAbs
showed satisfactory binding selectivity, the
interaction of the functional Fc fragment of
these BsAbs with the Fc receptor of macro-
phages led to phagocytic systemic toxicity
and premature off-target effects that

Zhang et al. 4421



reduced the accumulation of BsAbs on the

tumor cell surface. Recently, van Bommel

et al.47 built a novel BsAb containing single-

chain fragments of variable regions (scFv)

of anti-CD47 antibody and scFv (derived

from the anti-CD20 antibody rituximab)

to resolve this limitation. They demonstrat-

ed that this novel BsAb specifically induced

antibody-dependent cellular phagocytosis

in CD20þ/CD47þ malignant B-cell lym-

phoma in an Fc-independent manner, and

that it enhanced the anti-tumor effect of

the mAbs daratumumab, alemtuzumab,

and obinutuzumab.47

In addition, combination strategies based

on blockage of the CD47-SIRPa pathway

exerted synergistic anti-lymphoma effects.

Liu et al.48 reported that the combination

of Hu5F9-G4 and rituximab resulted in

phagocytic elimination of lymphoma and

significantly prolonged the survival time

of NHL model mice. Similarly, Chao

et al.28 reported that an anti-CD47 antibody

enhanced phagocytosis induced by rituximab

in different lymphoma cell lines, but not in

normal peripheral blood cells; notably, com-

bination therapy with an anti-CD47 antibody

and rituximab eliminated lymphoma in some

xenograft mice and induced long-term surviv-

al without disease relapse. The improved

anti-tumor effect originated from anti-CD47

antibody-mediated Fc-independent and

rituximab-mediated Fc-dependent macro-

phage phagocytosis, but not through NK

cells or complement.28 The anti-SIRPa mAb

MY-1 also facilitated the phagocytosis of

Burkitt’s lymphoma cells induced by rituxi-

mab; MY-1 significantly enhanced the inhib-

itory effect of rituximab on lymphoma

growth in vivo.49 Furthermore, the safety

and anti-lymphoma effects of several agents

blocking CD47 alone or in combination with

rituximab have been investigated in phase 1

and 2 clinical trials (Table 1).
In addition to their synergistic effects with

tumor antigen-specific antibodies, antibodies

targeting CD47-SIRPa may combine with

other agents to augment treatment efficacy.

For example, an anti-CD47 mAb triggered

type III programmed cell death in B-CLL

cells, demonstrating involvement of the

caspase-independent pathway in CD47-

mediated tumor destruction; anti-CD47

mAb-induced type III programmed cell

death was associated with F-actin dynamics.

Thus, additional F-actin regulators may

enhance the anti-tumor effect of the anti-

CD47 mAb. Additionally, because caspase-

dependent apoptosis enables cell death in

B-CLL, therapeutic strategies that combine

anti-CD47 mAb with caspase modulators

may constitute promising approaches.50

TTI-621, a soluble SIRPa Fc fusion protein

that blocks CD47, significantly increased the

phagocytosis of lymphoma cells by macro-

phages in vitro and tumor-associated macro-

phages derived from xenograft DLCBL

tumors. TTI-621-stimulated macrophages

Table 1. Clinical trials of combination strategies targeting CD47-SIRPa.

NCT number Agent Strategy Type of lymphoma Phase

NCT02663518 TTI-621 Single agent; combination

with rituximab

NHL Phase I

NCT02367196 CC-90002 Single agent; combination

with rituximab

NHL Phase I

NCT02953509 Hu5F9-G4 Single agent; combination

with rituximab

NHL; DLCBL;

indolent lymphoma

Phase IþII

NCT03013218 ALX148 Combination with rituximab NHL Phase I

Abbreviations: DLBCL: diffuse large B-cell lymphoma; NHL: non-Hodgkin lymphoma.
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exhibited a highly phagocytic phenotype
upon exposure to cytokines (interferon
(IFN)-c, IFN-a, and interleukin-10) or
Toll-like receptor agonists (lipopolysacchar-
ides, Poly (I:C), and R848), suggesting that
blockage of CD47 with macrophage regula-
tors may serve as a potential combination
therapy.51 Furthermore, Gautam et al.52

observed that the Hsp70-peptide complex
transformed M2 macrophages into tumor-
inhibiting M1 macrophages in Dalton’s lym-
phoma; additionally, SIRPa expression on
macrophages was elevated after treatment
with Hsp70-peptide complex. Therefore,
the combination of Hsp70 with an
anti-SIRPa antibody may have synergistic
anti-lymphoma effects52 (Table 2).

Conclusion

Tumor immune escape is a primary mecha-
nism of lymphoma progression and dissem-
ination. Therefore, immunotherapy has
become a hotspot of lymphoma treatment
in recent years. The CD47-SIRPa axis plays

an important role in the immune regulation
of lymphoma. Studies targeting the CD47-
SIRPa pathway have shown significant
anti-lymphoma effects, mainly through the
activation of innate immunity, mediated by
macrophage phagocytosis, or direct promo-
tion of apoptosis. However, anti-CD47
antibodies have some limitations: 1) CD47
is not solely expressed on lymphoma cells; it
is also expressed on normal cells, resulting
in toxic effects and antibody exhaustion.
Bispecific antibodies co-targeting CD47
and other tumor-specific antigens may
improve the binding specificity of antibod-
ies and tumor cells, enhancing safety and
efficacy. 2) Most studies have reported
that anti-CD47 antibody monotherapy
does not fully eliminate lymphoma; combi-
nation strategies that activate adoptive
immunity or involve the use of the anti-
CD20 antibody, macrophage agonists such
as IFN-c, IFN-a, interleukin-10, and other
agents (e.g., caspase modulators and
F-actin regulators), may have lasting and
effective anti-lymphoma activities. 3)

Table 2. Therapeutics targeting CD47-SIRPa in lymphoma.

Drug Type of tumor Mechanism Combined agents Refs

Anti-CD47 antibody PEL Phagocytosis / 38

MABL B-CLL Apoptosis / 39

S-S diabody NHL Apoptosis / 40

Anti-CD47 antibody B-CLL Apoptosis / 41

CD47/CD20 BsAb NHL Phagocytosis / 44

CD47/CD19 BsAb Burkitt’s lymphoma ADCP / 46

CD47/CD20 scFv B-cell lymphoma ADCP / 47

Anti-CD47 antibody;

Anti-SIRPa antibody

NHL Phagocytosis Rituximab 28

Anti-CD47 antibody Burkitt’s lymphoma ADCP Anti-CD10 antibody;

anti-CD19 antibody

45

Hu5F9-G4 NHL Not mentioned Rituximab 48

MY-1 Burkitt’s lymphoma Phagocytosis Rituximab 49

Anti-CD47 antibody B-CLL Type III PCD F-actin regulators;

caspase modulators

50

TTI-621 DLBCL Phagocytosis Macrophage agonists 51

Abbreviations: ADCP: antibody-dependent cellular phagocytosis; BsAb: bispecific antibody; B-CLL: B-chronic lymphocytic

leukemia; DLBCL: diffuse large B-cell lymphoma; NHL: non-Hodgkin lymphoma; PCD: programmed cell death; PEL:

primary effusion lymphoma; scFv: single-chain fragment of variable regions.
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The efficacies of different methods of block-
ing CD47, such as anti-CD47 antibody or
scFv derived from an antibody, remain
unknown. Therefore, strategies based on
blockage of the CD47-SIRPa axis require
further evaluation in pre-clinical studies
and clinical trials, and may provide new
directions for lymphoma treatment.
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