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Abstract

Alveolar macrophages (AM) are one of the key cell types for initiating inflammatory and immune responses to influenza
virus in the lung. However, the genome-wide changes in response to influenza infection in AM have not been defined. We
performed gene profiling of human AM in response to H1N1 influenza A virus PR/8 using Affymetrix HG-U133 Plus 2.0 chips
and verified the changes at both mRNA and protein levels by real-time RT-PCR and ELISA. We confirmed the response with a
contemporary H3N2 influenza virus A/New York/238/2005 (NY/238). To understand the local cellular response, we also
evaluated the impact of paracrine factors on virus-induced chemokine and cytokine secretion. In addition, we investigated
the changes in the expression of macrophage receptors and uptake of pathogens after PR/8 infection. Although
macrophages fail to release a large amount of infectious virus, we observed a robust induction of type I and type III
interferons and several cytokines and chemokines following influenza infection. CXCL9, 10, and 11 were the most highly
induced chemokines by influenza infection. UV-inactivation abolished virus-induced cytokine and chemokine response, with
the exception of CXCL10. The contemporary influenza virus NY/238 infection of AM induced a similar response as PR/8.
Inhibition of TNF and/or IL-1b activity significantly decreased the secretion of the proinflammatory chemokines CCL5 and
CXCL8 by over 50%. PR/8 infection also significantly decreased mRNA levels of macrophage receptors including C-type
lectin domain family 7 member A (CLEC7A), macrophage scavenger receptor 1 (MSR1), and CD36, and reduced uptake of
zymosan. In conclusion, influenza infection induced an extensive proinflammatory response in human AM. Targeting local
components of innate immune response might provide a strategy for controlling influenza A infection-induced
proinflammatory response in vivo.
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Introduction

Alveolar macrophages (AM) reside at the air-tissue interface in

the lung and are one of the first lines of defense that interact with

inhaled microorganisms and particles [1]. They play a critical role

in homeostasis, host defense, and tissue remodeling [2], and they

are readily infected by influenza [3]. AM express many pattern

recognition receptors (PRRs) to help recognize the pathogen-

associated molecular patterns (PAMPs) on the surface of

microorganisms [4,5]. They are important in initiating response

to influenza, regulating the inflammatory response, and potentially

limiting secondary bacterial infections [6].

Influenza A virus causes seasonal and pandemic flu, both of which

pose significant public health burdens. Influenza viral antigens have

been detected in AM from humans and many animal species [7–15],

and AM are critical for controlling viral replication in vivo [11,14].

Recently, several groups have explored the responses of human

monocyte-derived macrophages to avian and/or seasonal flu viral

infection using a genome-wide approach [16–18]. Avian H5N1 and

human H1N1 and H3N2 viruses induce increases in similar groups of

genes despite the stronger response induced by pathogenic avian

viruses compared to seasonal flu viruses in human monocyte-derived

macrophages [16–19]. However, the genome-wide response of

resident human AM to influenza infection has not been reported.

Our previous study showed that cultured primary human AM

support a productive infection with H5N1 but not H1N1 and H3N2

influenza viruses though AM express both avian and human

influenza receptors [3,19]. However, human monocyte-derived

macrophages support productive infection with both human and

avian viruses [19–21]. These results suggest that the response of

human AM to influenza might be different from the response of

human macrophages derived from peripheral blood [22].
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The purpose of our study was to use a genome-wide approach to

define the innate immune response of human AM to influenza.

Using H1N1 influenza virus PR/8, we performed gene profiling of

virus-infected human AM at 4 and 24 h post inoculation (hpi) and

verified the alterations in IFN-related genes by real-time RT-PCR

and cytokine response by ELISA. We investigated the kinetics of

infection-induced cytokine response in human primary AM infected

with both live and UV-inactivated PR/8 and the contemporary

H3N2 virus A/New York/238/2005 (NY/238) [23]. We also

determined if the cytokine response was amplified by paracrine

proinflammatory cytokines, TNF-a and IL-1b. In addition, we

explored whether influenza infection diminishes gene expression of

macrophage scavenger receptors, which could contribute to the

impaired ability of AM to clear other pathogens after influenza.

Results

Overview of global gene expression altered by influenza
infection

Viral infection resulted in significant alterations of mRNA levels in

1,347 transcripts at 4 hpi and 2,152 transcripts at 24 hpi; these

transcripts mapped to 1,077 (4 hpi) and 1,493 (24 hpi) known genes.

Tables 1 and 2 show the top 25 genes that were up-regulated or

down-regulated by influenza virus. The complete list of altered genes

is listed in Data S1. To identify the cellular functions and pathways

affected by the infection, the array data were processed by Ingenuity

Pathway Analysis (IPA) using IPA version 8.0 (IngenuityH Systems,

Redwood City, CA), which associates differentially regulated genes

with known specific biological pathways based on information from

published literature (www.ingenuity.com). The results from IPA

indicate some functional groups of genes were changed at both time

points. These genes are involved in antimicrobial and inflammatory

responses, cell death, cancer, infection mechanisms, cellular growth

and proliferation, cell-mediated immune responses, and immune

cell trafficking. Interferon regulatory factor (IRF) activation and

PRR signaling were the most prominent pathways activated by viral

infection at both time points. In addition, retinoic acid-induced

gene-1 (RIG-I) and interferon (IFN) signaling were dominant at

4 hpi, whereas homeostasis-related pathways such as IL-10 and IL-

6 were activated at 24 hpi.

Influenza infection triggers an early and strong response
of IFN signaling

As shown in Table 1 at 4 hpi, seven out of the top ten PR/8 up-

regulated genes were type I IFN family members, and another two

up-regulated genes, IFN-stimulated gene (ISG) 20 and CXCL11,

Table 1. The top 25 genes up-regulated or down-regulated by PR/8 infection in human AM at 4 hpi.

Up-regulated Down-regulated

Gene name Symbol Fold Gene name Symbol Fold

interferon, beta 1, fibroblast IFNB1 6940 ceroid-lipofuscinosis, neuronal 8 CLN8* 73

interferon stimulated exonuclease gene 20 kDa ISG20 1916 plasminogen activator, urokinase PLAU* 23

interferon, alpha 8 IFNA8 978 Kruppel-like factor 13 KLF13* 19

chemokine (C-X-C motif) ligand 11 CXCL11 850 metastasis associated in colon cancer 1 MACC1 19

interferon, alpha 21 IFNA21 737 DNA fragmentation factor, 45 kDa, alpha polypeptide DFFA 16

interferon, alpha 13 IFNA13 642 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 DYRK2* 16

interferon, alpha 4 IFNA4 602 sorting nexin 12 SNX12 15

interferon, alpha 1 IFNA1 502 zyg-11 homolog B (C. elegans) ZYG11B 15

leprecan-like 1 LEPREL1 370 MAX binding protein MNT 14

interferon, alpha 7 IFNA7 317 G protein-coupled receptor 157 GPR157 14

matrilin 1, cartilage matrix protein MATN1 316 X-linked inhibitor of apoptosis XIAP* 14

lactate dehydrogenase A-like 6B LDHAL6B 301 baculoviral IAP repeat-containing 4 BIRC4* 14

BCL2-like 14 (apoptosis facilitator) BCL2L14 286 potassium voltage-gated channel, Isk-related family, member 3 KCNE3 14

Interleukin 29 IL 29 252 slingshot homolog 1 (Drosophila) SSH1* 13

similar to Immune-responsive protein 1 LOC730249 224 tubulin tyrosine ligase-like family, member 4 TTLL4 13

chemokine (C-C motif) ligand 5 CCL5 223 Hypothetical protein LOC158402 LOC158402 13

glucagon GCG 218 transforming growth factor, beta receptor 1 TGFBR1 12

hairy and enhancer of split 4 (Drosophila) HES4 189 SRY (sex determining region Y)-box 4 SOX4* 11

DKFZp434A119 168 tribbles homolog 3 (Drosophila) TRIB3 11

tumor necrosis factor (ligand) superfamily, member 10 TNFSF10 126 pleckstrin homology-like domain, family A, member 1 PHLDA1* 11

fibroblast activation protein, alpha FAP 125 peptidylprolyl isomerase F (cyclophilin F) PPIF* 10

interferon, alpha 17 IFNA17 122 hypothetical protein LOC153346 LOC153346 10

indoleamine-pyrrole 2,3 dioxygenase INDO 121 ankyrin repeat domain 50 ANKRD50 10

HESX homeobox 1 HESX1 92 calmodulin regulated spectrin-associated protein 1 CAMSAP1* 10

chemokine (C-X-C motif) ligand 9 CXCL9 91 methyltransferase 10 domain containing METT10D 10

Human AM from 3 non-smoking donors were isolated, cultured, and infected by PR/8 virus at a MOI of 0.5. The gene profiling of infected and non-infected cells at 4 hpi
from each donor was examined by microarray experiments using Affymetrix HG-U133 Plus 2.0 chips (Affymetrix, Santa Clara, CA). The filtered gene list was generated as
described in the Section of Methods. The data show the top 25 genes up-regulated or down-regulated altered by viral infection.
*indicates similar results from multiple probes.
doi:10.1371/journal.pone.0029879.t001

Influenza Infection and Human Alveolar Macrophages

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e29879



were IFN-stimulated genes [24]. At 24 hpi, IFN-stimulated genes

CXCL9–11, and IFITM1 were among the top ten genes up-

regulated by PR/8 (Table 2). Therefore, we verified the microarray

data with a focus on IFN-associated genes by real-time RT-PCR

(Figure 1). As shown in Figure 1A, PR/8 infection induces an early

response in type I IFN genes IFNA1 and IFNB as well as type III

IFN genes IL-29 and IL-28A, although the degree of increase was

slightly less than that of most type I IFN genes (Tables 1 and 2).

Along with the increased IFN gene expression, the infection also

increased expression of well-known PRR genes associated with IFN

production. mRNA levels of RIG-I and melanoma differentiation

associated protein-5 (MDA-5) were mainly increased at 4 hpi,

whereas TLR3 and 7 were mainly stimulated at 24 hpi (Figure 1B).

The infection also significantly increased mRNA of IFN-stimulated

anti-viral genes myxovirus (influenza virus) resistance 1 (MX1), 2959

oligoadenylate synthase (OAS), and IFN-stimulated gene 56

(ISG56) (Figure 1C and Data S1), as compared to control cells.

Influenza infection induces an extensive cytokine and
chemokine response

In addition to IFN related genes, PR/8 significantly increased

the expression of many cytokine genes and cytokine-regulated

genes. These included the proinflammatory cytokines TNF-a
(7.3-fold at 4 hpi and 25-fold at 24 hpi), IL-1a (6.9-fold at 24 hpi),

and IL-1b (2.3-fold at 4 hpi and 16.3-fold at 24 hpi). We verified

the alteration in IL-1a and IL-1b by real-time RT-PCR (data not

shown). The infection also upregulated expression of TNF-a
induced proteins 2, 3, 6, and 8, as well as TNF receptor family

members 9 and 10. Expression of IL-1 family members inter-

leukin 1 receptor 1 (IL-1R1) and the IL-1 receptor antagonist

(IL-1Ra) was also increased (Data S1). In addition, PR/8 infec-

tion up-regulated mRNA expression of many chemokine genes

including CC chemokines CCL2–5, and CCL20, as well as CXC

chemokines CXCL9–11 (Data S1 and Tables 1 and 2). CXCL9–

11 were markedly increased when compared to controls both in

the microarray studies and in additional verification studies

(Tables 1 and 2 and Figure 1D). CCL5 was the most increased

CC chemokine (232-fold at 4 hpi, 234-fold at 24 hpi) (Tables 1

and 2).

Besides the increased mRNA expression of proinflammatory

mediators, PR/8 also increased mRNA expression of the anti-

inflammatory cytokine IL-10 (1.9-fold at 4 hpi and 2.8-fold at

24 hpi), its receptor (8-fold at 4 hpi and 6.8-fold at 24 hpi), and

suppressor of cytokine signaling (SOCS)1 (9.4-fold at 4 hpi and

Table 2. The top 25 genes up-regulated or down-regulated by PR/8 infection in human AM at 24 hpi.

Up-regulated Down-regulated

Gene name Symbol Fold Gene name Symbol Fold

chemokine (C-X-C motif) ligand 10 CXCL10 2900 C-type lectin domain family 7, member A CLEC7A* 122

tissue factor pathway inhibitor 2 TFPI2 1003 lysophospholipase-like 1 LYPLAL1 63

chemokine (C-X-C motif) ligand 11 CXCL11 987 metastasis associated in colon cancer 1 MACC1 63

chromosome 9 open reading frame 152 C9ORF152 444 progestin and adipoQ receptor family member V PAQR5 58

fibroblast activation protein, alpha FAP 384 calcium channel, voltage-dependent, L type,
alpha 1D subunit

CACNA1D 35

hairy and enhancer of split 4 (Drosophila) HES4 368 membrane-associated ring finger (C3HC4)* MARCH1 34

interferon induced transmembrane protein 1 IFITM1* 353 solute carrier organic anion transporter family, member 2B1 SLCO2B1* 33

DKFZp434A119 339 transmembrane 7 superfamily member 4 TM7SF4 29

synaptopodin 2 SYNPO2 334 inositol(myo)-1(or 4)-monophosphatase 2 IMPA2 29

chemokine (C-X-C motif) ligand 9 CXCL9 305 tumor necrosis factor (ligand) superfamily, member 12 TNFSF12 28

Interlukin 27 IL27 299 cathepsin S CTSS 27

ATPase, Class I, type 8B, member 2 ATP8B2 236 macrophage scavenger receptor 1 MSR1* 25

apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like 3B

APOBEC3B 230 mitochondrial antiviral signaling protein MAVS* 25

interleukin 28A (interferon, lambda 2) IL-28A 227 prostaglandin F2 receptor negative regulator PTGFRN 25

chemokine (C-C motif) ligand 5 CCL5 225 solute carrier family 46, member 3 SLC46A3 23

BCL2-like 14 (apoptosis facilitator) BCL2L14 195 thioesterase superfamily member 2 THEM2 23

bone morphogenetic protein 2 BMP2 191 hydroxyprostaglandin dehydrogenase 15-(NAD) HPGD* 23

transmembrane protein 47 TREM47 170 hexokinase 3 (white cell) HK3 21

somatostatin receptor 2 SSTR2 169 choline dehydrogenase CDH 21

interferon, alpha 1 IFNA1 167 lung cancer metastasis-associated protein NAG1 20

interleukin 29 (interferon, lambda 1) IL-29 135 ribulose-5-phosphate-3-epimerase RPE 19

interferon induced transmembrane protein 1 (9–27) IFITM1 133 MPN domain containing MPND 18

interferon stimulated exonuclease gene 20 kDa ISG20 108 C-type lectin domain family 4, member A CLEC4A* 18

guanylate binding protein 1, interferon-inducible, 67 kDa GBP1 95 deoxyribonuclease II beta DNASE2B 18

similar to Immune-responsive protein 1 LOC730249 91 macrophage expressed gene 1 MPEG1* 17

Human AM from 3 non-smoking donors were isolated, cultured, and infected by PR/8 virus at a MOI of 0.5. The gene profiling of infected and non-infected cells at
24 hpi from each donor was examined by microarray experiments using Affymetrix HG-U133 Plus 2.0 chips (Affymetrix, Santa Clara, CA). The filtered gene list was
generated as described in the Section of Methods. The data show the top 25 genes up-regulated or down-regulated altered by viral infection.
*indicates similar results from multiple probes.
doi:10.1371/journal.pone.0029879.t002
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12.1-fold at 24 hpi) and SOCS3 (5.4-fold at 4 hpi), which have

been shown to be important in turning off inflammatory responses

and dampening a robust innate immune response [25]. PR/8 also

upregulated expression of IL-6 (36.9-fold at 4 hpi and 66.6-fold at

24 hpi), another important cytokine responsible for homeostasis,

and several cytokines that activate and regulate adaptive immune

response, especially IL-15 and its receptor, IL-23A, and IL-27

[26–28] (Data S1).

We verified the putative increases in secreted cytokines and

chemokines at the protein level by ELISA in 8–14 additional

donors. As shown in Figure 2, PR/8 infection significantly

increased secretion of cytokines of TNF-a, IL-6, IFN-a, and IL-

29, and CXC chemokines CXCL8–11 as well as CC chemokines

CCL2, 4 and 5. Consistent with the mRNA data, CXCL10,

CXCL11 and CCL5 were the main chemokines induced by the

virus, and AM secreted slightly more IFN-a than IL-29 (Figure 2).

Figure 1. Verification of virus-induced increase of mRNAs of IFN and IFN-associated genes by quantitative RT-PCR. Human AM
isolated from donor lungs were cultured and infected with PR/8 at a MOI of 0.5. Total RNA was isolated at 4 and 24 hpi from virus-infected and non-
infected cultures. mRNA expression of IFN and IFN-associated genes were measured by real-time RT-PCR. The data represent mean+SE of the relative
expression levels of each gene in infected cultures to that of non-infected controls after normalization to the level of the constitutive probe
cyclophilin B, N = 8. Expression of all the tested genes are significantly different between virus-infected cultures and non-infected cultures, * indicates
that the difference between 4 and 24 hpi is statistically significant (P,0.05).
doi:10.1371/journal.pone.0029879.g001

Figure 2. Verification of virus-induced secretion of chemokines and cytokines by ELISA. Human AM isolated from donor lungs were
cultured and infected by PR/8 at a MOI of 0.5. Secretion of chemokines and cytokines from infected and non-infected cultures was measured by ELISA
at 24 hpi. The data represent mean+SE of each released cytokine and chemokine (pg/ml). The number of individual donors ranged from 8 to 16. *
indicates P,0.05, ** indicates P,0.01, *** indicates P,0.001 vs. non-infected cells.
doi:10.1371/journal.pone.0029879.g002

Influenza Infection and Human Alveolar Macrophages
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Secretion of cytokines and chemokines occurs without
the release of a significant amount of infectious viral
particles

From our previous studies we knew that AM do not release a

significant amount of infectious virus particles after infection with

human influenza viruses [3,19]. To investigate whether the

infected macrophages were synthesizing viral proteins, we

performed a time-course infection experiment in AM from an

additional 4 donors using both live (Figure 3A–D) and UV-

inactivated PR/8 viruses (Figure 3E), examined the kinetics of

viral antigen synthesis by staining hemagglutinin (HA) or

nucleoprotein, and measured secretion of selected cytokines by

ELISA. As shown in Figure 3F, there was a slight increase in viral

production at 6 hpi, when about 20% of the cells expressed viral

antigens and then no more net increase in viral release as up to

80% of the cells expressed viral proteins by 48 hpi. The viral

antigen staining was due to viral replication, since there was no

signal with UV-inactivated virus (Figure 3E). Despite the abortive

release of infectious virus, PR/8 infection induced a time

dependent cytokine and chemokine response in human AM

(Figure 3G–K). Viruses triggered an early and rapid secretion of

IFN-a and CXCL10 at 6 hpi. Secretion of CCL5 and CXCL8

followed the pattern of the viral protein synthesis increasing with

time. The virus-induced increase of TNF-a peaked at 24 hpi and

then declined. UV-inactivation abolished the virus-stimulated

TNF-a production, significantly decreased secretion of IFN-a,

CXCL8, and CCL5. However, the inactive virus was able to

stimulate a strong CXCL10 response, although the degree was

slightly smaller than that from live PR/8 (Figure 3I). The different

patterns of the induction suggest that the cytokine response may

involve different regulatory mechanisms. In addition, we com-

pared the alterations in mRNA levels of selected innate immune

response genes at 3 and 24 hpi for both UV-inactivated PR/8 and

live PR/8 infections. Consistent with the protein data, both live

and UV-inactivated PR/8 stimulated a large increase in CXCL10

mRNA at both time points. UV-inactivated PR/8 stimulated an

up to 4 fold increase of CCL5 and IFNA1. UV-inactivated virus

did not alter mRNA levels of RIG-I, TLR7, or ISG56 at either

time point (data not shown). These results indicate that viral

replication is required for most selected innate immune responses

but not required for the CXCL10 response.

Contemporary influenza virus induces a similar response
as PR/8

To investigate whether the results observed with PR/8 can be

extended to contemporary human influenza virus infection, we

performed a time-course experiment using a H3N2 virus NY/238,

a influenza virus rescued by reverse genetics technology based on a

swab sample from a patient from New York during the winter of

2005 [23]. Consistent with the results from PR/8 infection, human

AM do not support a productive NY/238 infection as verified by

no increase in infectious viral particles released from infected

culture as measured by plaque assay (data not shown). As shown in

Figure 4A, NY/238 infection markedly stimulated CXCL10

mRNA, NY/238 virus also triggered an early increase in the

expression of RIG-I and IFNA1 genes and increased mRNA levels

of antiviral gene ISG56 and CCL chemokine CCL5. Inoculation

with the same amount of UV-inactivated NY/238 virus was able

to stimulate an IFNA1 and CXCL10 response. However, the

response was smaller than that observed with live virus. Unlike

PR/8, NY/238 virus did not induce a significant increase in

TLR7 mRNA (Figure 4A). At the protein level, NY/238 virus

induced a similar response as PR/8 virus in terms of cytokine and

IFN production (Figure 4B). Consistent with the finding with PR/

8, viral replication was required for most chemokine and cytokine

response and but was not requisite for CXCL10 release.

Targeting TNF and IL-1 signaling independently reduces
the virus-induced secretion of CXCL8 and CCL5

Because PR/8 infection increased secretion of TNF-a and

increased gene expression of IL-1 family members, well-known

proinflammatory mediators that cause release of inflammatory

chemokines, we were interested in the impact of these proin-

flammatory mediators on the overall chemokine response during

the infection in human AM. Our hypothesis was that TNF and IL-

1 signaling would augment chemokine secretion in a paracrine

manner [29]. As shown in Figure 5, neutralization of TNF

pathway by its soluble receptor significantly decreased secretion of

CXCL8 by 65% (P,0.001) and CCL5 by 53% (P,0.05), but did

not alter secretion of IFNs, CXCL10, or TNF-a itself. Blockade of

the IL-1 receptor by its naturally occurring receptor antagonist IL-

1Ra [30] had a similar effect. When the activity of both cytokines

was inhibited, there was no further reduction in chemokines

greater than that of a single inhibitor, although there was a slight

decrease in CXCL10 response in the presence of both inhibitors,

the response was not statistically significant.

Influenza infection decreases mRNA expression of
macrophage receptor genes and impairs phagocytosis of
zymosan

AM are important phagocytes and express many scavenger

receptors. The microarray experiments indicated that PR/8

infection also significantly decreased mRNA levels of many

macrophage receptors especially at 24 hpi (Table 2 and Data

S1). We, therefore, investigated the impact of influenza infection

on expression of scavenger receptors by real-time RT-PCR.

Consistent with the results from microarray experiments, PR/8

infection significantly decreased the mRNA levels of CLEC7A

(Dectin 1), macrophage scavenger receptor 1 (MSR1), CD36, and

the mannose receptor C type 1 (MRC1) but did not change the

expression of MRC2. However, we were not able to confirm the

decrease of MARCO, due to the large variation in responses

among different donors (Figure 6A). To further investigate if the

decrease in macrophage receptor expression was associated with

functional consequences, we evaluated the uptake of zymosan,

which are yeast walls recognized by CLEC7A, and heat-killed S.

aureus. As shown in Figure 6B, PR/8 infection reduced uptake of

zymosan by AM at 24 hpi in a dose dependent manner. We did

not observe a significant cell loss or cytopathic effect at 24 or

48 hpi, although most cells were infected as seen in Figure 3A–C.

In addition, PR/8 infection did not affect uptake of heat-killed S.

aureus until 72 hpi, when the infection induced a significant

cytopathic effect (data not shown).

Discussion

Alveolar macrophages produce a robust innate immune

response to influenza. This includes a significant induction of

cytokines and chemokines, pathogen recognition, and apoptotic

responses, which are similar to the responses of human monocyte

derived macrophages [16,17]. Consistent with other studies of

avian or human influenza infections in humans and animals

[16,17,31–33], PR/8 stimulated an early and prominent IFN

response in human AM despite of the failure to release infectious

viral particles. Human AM produce both type I and type III

interferons (Figures 1 and 2). In contrast, alveolar epithelial cells

do not produce any type I interferon IFN-a in response to

Influenza Infection and Human Alveolar Macrophages
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Figure 3. Kinetics of influenza infection with live and UV-inactivated PR/8. Primary AM were cultured and infected by live PR/8 at a MOI of
0.5 or the equal amount of UV-inactivated PR/8, and cells were harvested at designated time post inoculation. Panels A–F. Kinetics of viral antigen
synthesis and infectious virus release. Panels A–C show representative immunofluorescence staining for influenza HA from live PR/8-infected AM
culture at 6, 24, and 48 hpi. Panel D shows the quantitation of these experiments. The data represent mean6SE of percentage of positive-stained
cells from 6 donors. Panel E. Representative staining of viral antigen in UV-inactivated PR/8 infection at 48 hpi. Panel F. Representative release of
infectious viral particles from both live and UV-inactivated PR/8-infected AM from 6 donors. Panels G–K. Time course of cytokine and chemokine
response in PR/8-infected AM. The supernatant from cultured cells were collected at 1, 6, 24, and 48 hpi. Secretion of TNF-a (Panel G), IFN-a (Panel H),
CXCL10 (Panel I), CXCL8 (Panel J), and CCL5 (Panel K) was measured by ELISA. Data show representative release of each cytokine from infected AM of
6 donors that all showed similar response.
doi:10.1371/journal.pone.0029879.g003

Influenza Infection and Human Alveolar Macrophages
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Figure 4. Innate immune response of both live and UV-inactivated contemporary H3N2 influenza viruses-infected AM. Human AM
isolated from donor lungs were cultured and infected by live NY/238 virus at a MOI of 0.1 or the equal amount of UV-inactivated NY/238. Cells were
harvested at designated times for evaluation of their innate immune response. Panel A. Alterations in mRNAs of innate immune response-related
genes at 3 and 24 hpi by realtime RT-PCR. The data represent mean+SE of the relative expression levels of each gene in infected cultures compared
to that of non-infected controls after normalization to the level of the constitutive probe cyclophilin B, N = 4. * indicates P,0.05 and ** indicates
P,0.01 between live and UV-inactivated cells. Panel B. Kinetics of cytokine and chemokine response by ELISA. The data show representative release
of TNF-a, IFN-a, CXCL10, CXCL8, and CCL5 from both live and UV-inactivated NY/238 virus-infected AM from one of 6 donors that all showed similar
response.
doi:10.1371/journal.pone.0029879.g004

Influenza Infection and Human Alveolar Macrophages
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influenza [34]. These results indicate a cell-specific pattern in

producing IFN in response to viral infection. It is well known that

RIG-I like RNA helicases (RLHs) and TLRs are the two main

PRRs responsible for IFN production against RNA viruses

including influenza. RLHs (RIG-I and MDA-5) recognize

cytoplasmic viral double-stranded RNA, whereas TLRs (TLR3

and TLR7) sense viral nucleic acid in the endosomal compartment

[35,36]. In the current study, PR/8 infection up-regulated mRNA

levels of RIG-I and MDA-5 mainly at 4 hpi, but the mRNAs of

TLR3 and 7 mainly at 24 hpi (Figure 1B), which suggests that

RLHs might be the early sensors and TLRs might be the late

sensors for PR/8 in human AM. These results correlate well with

those reported by Takeuchi and Thompson that RLHs were

responsible for local production of IFNs, whereas TLRs were

mainly involved in the late stages of systemic infection [35,36]. At

early times PR/8 triggered mainly pro-inflammatory responses,

whereas at later times PR/8 also activated pathways involved in

the maintenance of homeostasis such as the activation of IL-10

and IL-6, as well as up-regulation of SOCS genes (Data S1).

Therefore, therapeutic regulation of the inflammatory response in

Figure 5. Inhibition of TNF and/or IL-1 pathways decreases release of CXCL8 and CCL5 but not CXCL10 and IFNs induced by
influenza infection. Human AM isolated from donor lungs were cultured and infected by PR/8 at a MOI of 0.5. Soluble TNF p55 receptor and IL-1Ra
were added to the cultures at 10 mg/ml 45 min before the infection and added back to the cultures after viral inoculation. Secretion of chemokines
and cytokines was measured by ELISA at 24 hpi. The data represent mean+SE of each released cytokine and chemokine (pg/ml). N = 6.
* indicates P,0.05, ** indicates P,0.01, *** indicates P,0.001 vs. virus-infected cells.
doi:10.1371/journal.pone.0029879.g005

Figure 6. Influenza virus infection decreases CLEC7A (Dectin1) mRNA and reduces phagocytosis of zymosan by AM. Panel A. Human
AM were cultured and infected by PR/8 at a MOI of 0.5. The total RNA from infected and non-infected cells was evaluated for the expression of
macrophage receptor genes by real-time RT-PCR at 24 hpi. The data show the relative expression levels of each gene in virus-infected cells compared
to that of non-infected cells after normalized to the expression of constitutive probe from 4 to 14 donors. Each symbol indicates one donor. *
indicates there was a significant difference between control and virus-infected cells (P,0.05). Panel B. PR/8 infection induced a dose-dependent
decrease of uptake of zymosan. Isolated AM were cultured and infected by PR/8. At 24 hpi, fluorescent FITC-labeled zymosan was added without
serum for 2 h and then the cells were washed and fixed with paraformaldehyde. Uptake of zymosan was measured as percent of cells containing
zymosan evaluated under fluorescent microscopy. The data represent mean+SE of percent cells uptaking zymosan. N = 4. ** indicates P,0.01, ***
indicates P,0.001 vs. non-infected cells.
doi:10.1371/journal.pone.0029879.g006
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acute lung injury should consider both strategies to inhibit secreted

cytokines but also strategies to dampen the innate immune

response by stimulating IL-10 and SOCS genes. We were able to

confirm the results found with PR/8 in contemporary influenza

virus NY/238-infected human AM with the exception of an

increase in TLR7 mRNA. This might be due to a lower MOI of

virus used in the experiments because of the limitation of the viral

titer, but it could also be due to differences in the natures of these

two viruses or the difference in methods for propagating these two

viruses.

CXCL9–11 were the most highly induced chemokines by

influenza viruses as verified at both mRNA and protein levels

(Figures 1 and 2). These three chemokines bind to a common

receptor CXCR3, and the importance of CXCR3 signaling has

been shown in the pathogenesis of several viruses including

influenza [32,37–39]. CXCL10 is highly induced in avian flu

(H5N1)-infected ferrets, non-human primates, and human cells

including alveolar epithelial cells and monocyte-derived macro-

phages [16–18,32,33,40], and has been viewed as a prognostic

marker for several viral infections [37,39,41,42]. In mice, the peak

level of CXCL11 mRNA coincides with the peak of the viremia

[43], and the CXCL11 protein has been reported to have anti-

viral activity [44]. In addition, all three CXCR3 ligands can

induce epithelial cell chemotaxis and proliferation and perhaps

accelerate epithelial wound repair during the resolution of viral

infections [45,46]. The robust induction of CXCL9, 10, and 11 in

both AM (Figures 1 and 2) and human alveolar type II cells [34] as

well as the distinct CXCL10 response induced by both live and

UV-inactivated influenza virus PR/8 and contemporary virus

NY/238 (Figure 3 and 4) suggest that this family of proteins likely

plays an important role in the human lung alveolar defense against

influenza infection, which will require further study.

The response of alveolar macrophages was different in a several

ways from that reported for human monocyte derived macro-

phages. The major difference is that alveolar macrophages

infected with human influenza viruses do not release much

infectious virus, whereas human monocyte-derived macrophages

do ([19,20] and Figure 3). The mechanism for the non-productive

infection was not investigated in this study and is likely

complicated. One of the possible mechanisms might be related

to the lack of gene expression of transmembrane protease serine

S1 member 2 (TMPRSS2) and human airway trypsin-like protease

(HAT) by human AM (microarray data not shown). Both

TMPRSS2 and HAT are type II transmembrane serine proteases

[47] possessing trypsin-like activity and are known to be important

for cleaving influenza HA required for productive infection [48].

In recent studies Bottcher et al suggest that TMPRSS2 is mainly

responsible for cleavage of newly synthesized HA, whereas HAT

cleaves both endocytosed and newly synthesized HA [49].

Therefore, lack of these two gene products in human AM may

partially explain the lack of released infectious virus by these cells.

In addition, both PR/8 and NY/238 viruses induced an early

activation of type I IFN, especially IFN-a (Table 1 and Figures 1,

3, and 4). The strong anti-viral property of type I IFN [50] may

also contribute to the non-productive infection in these cells.

Further studies will be required to understand the mechanism for

the failure of release of infectious viral particles by human AM. In

addition, inactivation of influenza by UV did not abolish the

influenza viruses-stimulated CXCL10 secretion by AM (Figures 3

and 4), which is different from studies with human monocyte-

derived macrophages [21,51] and with human alveolar type II

epithelial cells isolated from the same donors ([34] and data not

shown). In those studies, release of CXCL10 is totally dependent

on viral replication. The mechanism for the distinct CXCL10

response in human AM will require additional and carefully

designed studies. The differences between human AM and

monocyte-derived macrophages indicate the importance of

investigating the response of AM to influenza infection during

the initial phases of infection in the lung because AM are main

targets for both human and avian influenza viruses [19].

Chemokine and cytokine responses are required for protection

of the host against viral infection. However, an exuberant response

contributes to the influenza-induced morbidity and mortality,

especially in severe pandemic and avian influenza infections

[16,52]. In the current study, PR/8 infection induced an increase

in TNF-a and IL-1b, well-known paracrine proinflammatory

factors. Therefore, we hypothesized that inhibiting these factors

might reduce the influenza-induced-inflammatory response. Since

the contemporary virus NY/238 induced a similar cytokine and

chemokine response as PR/8, it would be reasonable to expect

that the regulation of chemokine and cytokine in contemporary

influenza infection might also be similar to PR/8 infection. As

shown in Figure 5, inhibiting TNF and/or IL-1 decreased more

than 50% of the PR/8-induced secretion of inflammatory

chemokines CXCL8 and CCL5 but did not truly affect type I

interferon or CXCL10 response, although we observed a decrease

of CXCL10 in the presence of both inhibitors (Figure 5). TNF and

IL-1 signaling are known to be regulated by NF-kB and there are

several NF-kB binding sites in the promoter of CXCL10 [53],

despite of the fact that CXCL10 is an IFN-induced protein [24].

This may explain why inhibiting both pathways slightly decreased

the amount of CXCL10 from infected AM. Our results suggest

that short term targeting the critical paracrine factors might be

beneficial for controlling the excessive infiltration of inflammatory

cells and acute lung injury during pandemic or avian flu infection

in vivo. Of course, this would require careful consideration of time

and dose so as not to increase secondary bacterial infections.

Influenza infection significantly decreased mRNA level of

macrophage receptors CLEC7A, MSR1, CD36, and MRC1

(Figure 6A and Table 2). CLEC7A belongs to the C-type lectin

family and functions as a PRR that recognizes a variety of beta-1,

3-linked and beta-1, 6-linked glucans from fungi. A decrease of

CLEC7A in infected AM suggests that these cells might not

efficiently recognize and engulf fungi after influenza infection. As

shown in Figure 6B, the uptake of zymosan, a yeast cell wall

component containing beta-1-3-glycosolic linkeages, was de-

creased in a dose-dependent manner in PR/8-infected human

AM. This effect was not associated with cell loss or cytopathic

effect because we did not observe a significant cytopathic effect

(Figure 3B) even at a MOI of 1 (data not shown). However, the

explanation of the decreased uptake might be more complicated

than simply the loss of this receptor. In addition, other

macrophage receptors MSR1, MARCO, CD36, as well as

mannose receptor MRC1 are important for bacterial and particle

uptake [54–56]. Mice with deletions of MSR1 or CD36 have

increased susceptibility to pneumococcal or staphylococcal

pneumonia [57–59]. Although impairment of macrophage

phagocytosis of bacteria after influenza in mice is well recognized

[60,61] and secondary bacterial infection after influenza is a

common clinical problem, we were not able to detect a significant

decrease in uptake of heat-inactivated S. aureus in human AM until

72 hpi, at which time the cytopathic effect was significant. We did

not observe a consistent decrease of MSR1 protein by flow

cytometry in PR/8-infected AM, which might explain why the

infection did not impair the bacterial uptake (data not shown). We

were also not able to verify the decrease of mRNA level of

MARCO, another important macrophage scavenger receptor for

influenza infections in mice and human cells [54,56,58,62]. Nine

Influenza Infection and Human Alveolar Macrophages

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e29879



of 11 donors showed a decrease in mRNA levels of MARCO after

infection with PR/8 (Figure 6A). Two other donors had an

increase in levels of MARCO mRNA. Therefore, changes of

bacteria-related receptors in human AM after influenza require

additional studies, and there may be variations in response among

individuals.

In summary, we performed a global profiling of innate immune

response and regulation with a focus on chemokine and cytokine

response in influenza-infected human AM. Human AM are

apparently different from human monocyte derived macrophages

in their ability to release infectious virus and the CXCL10

response to UV inactivated virus. Future studies should compare

these responses in peripheral and alveolar macrophages from the

same donors. In addition, during acute lung injury, short term

targeting of paracrine inflammatory factors such as TNF and IL-1

as well as targeting IL-10 and SOCS genes might decrease the

acute injury and allow for better gas exchange.

Methods

Isolation and culture of human alveolar macrophages
AM were isolated from deidentified human donor lungs, which

were not suitable for transplantation and donated for medical

research. We obtained the donor lungs through the International

Institute for the Advancement of Medicine (Edison, NJ) and the

National Disease Research Interchange (Philadelphia, PA) [3].

The Committee for the Protection of Human Subjects at National

Jewish Health approved this research and has designated this

research as non-human project. The isolated AM could be frozen

and recovered in 90% FBS and 10% DMSO. There was no

apparent difference in response with frozen or freshly isolated

macrophages in terms of the level of infection and virus-induced

TNF-a secretion (data not shown). AM were plated in DMEM/

10% FBS with antibiotics, and cultured at 37uC in 10% CO2

overnight. The cells were then washed and cultured for another

day in DMEM and 1% charcoal stripped FBS with antibiotics

before viral infection. Their purity was measured by staining for

CD68 (Dakocytomation, Carpinteria, CA) [3].

Virus preparation and infection
Influenza A virus A/PR/8/34 (PR/8) was grown in 10-day-old

SPF Premium Eggs (Charles River SPAFAS. North Franklin, CT)

and prepared as described previously [3]. Contemporary influenza

H3N2 virus, A/New York/238/2005 (NY/238), was created by

reverse genetics using plasmids that corresponded to the

consensuses sequence obtained from a human swab specimen

collected in New York State in the winter of 2005 [23]. NY/238

was passaged in Madin-Darby Canine Kidney (MDCK) cells and

the viral titer was measured by plaque assay on MDCK cells as

described previously [34]. Briefly, stocks of purified virus was

serially diluted in DMEM with 1 mg/ml TPCK trypsin (Sigma-

Aldrich, St. Louis, MO) and used to inoculate triplicate wells of

near confluent MDCK cells. After a 1 h inoculation, the inoculum

was removed and the cells were overlaid with MEM with 4% FBS

and 0.5% SeaKem LE agarose (Cambrex, Rockland, ME).

Plaques were stained and counted after 72 h incubation at

37uC, with the agarose overlay medium containing 10% neutral

red (Sigma-Aldrich). For UV-inactivation of PR/8 or NY/238,

500 ml diluted virus was placed in a 35-mm2 petri dish on ice and

irradiated twice in a UV Stratalinker (Stratagene, La Jolla, CA) at

a cumulative dose of 120 mJ/cm2. Viral inactivation was

demonstrated by plaque assay on MDCK cells as described above.

On the day of infection, AM were inoculated with live PR/8 at

a designated multiplicity of infection (MOI) or with the same

amount of UV-inactivated PR/8 for 1 h. After inoculation, cells

were washed and then cultured until harvest. Influenza infection

was verified by immuno-fluorescent staining with goat antibody to

the hemagglutinin of PR/8 (kindly provided by BEI Resources,

Manassas, VA). For NY/238 infection, AM was inoculated with a

MOI of 0.1 instead of 0.5 due to the limitation of viral titer and

infection was confirmed by immuno-fluorescent staining with

mouse antibody to influenza nucleoprotein (Millipore, Billerica,

MA).

For the inhibition experiments, cells were treated with 10 mg/ml

human IL-1 receptor antagonist (IL-1Ra) [63] and extracellular

TNF neutralization was achieved by treating cells with 10 mg/ml

recombinant human soluble TNF receptor (sTNFR) [64]. Both IL-

1Ra and/or sTNFR were added to the cells for 45 min before

virus inoculation. DMEM alone was used as vehicle control for

both inhibitors. After inoculation, cells were washed and cultured

with the inhibitors for an additional 24 h.

Affymetrix microarray experiments
At 4 and 24 hpi, total RNA from virus-infected and non-

infected AM from three donors was extracted and purified using

RNeasy kit (QIAGEN, Valencia, CA). The samples were run on

Affymetrix HG-U133 Plus 2.0 chips (Affymetrix, Santa Clara, CA)

and processed as indicated by the manufacturer in the Microarray

Core of the University of Colorado Denver. All data is MIAME

compliant and the raw data had been deposited in a MIAME

compliant database Gene Express Omnibus (GEO). The GEO

accession numbers are GSM762686, GSM762687, GSM762688,

GSM762689, GSM762694, GSM762695, GSM762696, GSM762697,

GSM762702, GSM762703, GSM762704, GSM762705. Analyses

of microarray data were performed using R statistical package from

Bioconductor open source software for bioinformatics. Prior to

statistical analyses, raw data from array scans were processed using

the Robust Multi-chip Average (RMA) normalization method to

subtract a background value [34]. After normalization, data were

filtered to exclude all probe sets with an ‘‘absent’’ call in all samples

and to remove transcripts that demonstrated little variation across

all arrays by comparing the variances of the log-intensities for each

gene with the median of all variances for the entire array. The

filtered gene list was generated using the Student’s T test to select

statistically significant genes and corrected using the False Discovery

Rate approach. Genes that had at least a 2-fold change in

comparison to the uninfected controls for all three subjects were

used for further analyses.

Real-time RT-PCR
mRNA expression of selected genes that were significantly up-

regulated by PR/8 or NY/238 were validated by quantitative real-

time RT-PCR [34]. These genes include IFNs, PRRs, chemo-

kines, and SOCSs. Except for IFN-b and IL-29 genes whose

probes were synthesized in house [34], the specific probes for other

genes were purchased from Applied Biosystems (Applied Biosys-

tems Inc. Foster City, CA). The expression level of each specific

gene was normalized to the level of a constitutive probe cyclophilin

B [34].

Enzyme linked immunosorbent assay (ELISA)
Supernatant from PR/8 OR ny/238-infected and non-infected

cells were harvested at designated times after inoculation for the

measurement of chemokine and cytokine secretion by ELISA. The

ELISA kits for human CXCL9, CXCL10, CXCL11, CCL5,

CXCL8, and IL-29 were purchased from ELISA Tech (ELISA

Tech, Aurora, CO). The ELISA kit for IFN-a was purchased from

Invitrogen (Invitrogen, Carlsbad, CA).
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Uptake of zymosan and heat killed S. aureus
Human AM were cultured and infected with PR/8 at the

designated MOI. Uptake of zymosan or heat-killed S. aureus were

performed according to manufacturer’s instructions. For uptake of

zymosan, cells were incubated with fluorescent-labeled zymosan A

Bioparticles (Invitrogen) at a ratio of 10 particles per cell for 2 h,

then cells were washed and fixed with 4% paraformaldehyde for

10 min. The uptake was analyzed by fluorescent microscopy. For

uptake of heat-killed S. aureus, cells were incubated with pHrodo-

labeled, heat-killed S. aureus (pHrodo-SA) (Invitrogen) at a ratio of

20 particles per cell for 2 h. The cells were then washed to remove

non-internalized particles, collected, and fixed with 4% parafor-

maldehyde. Uptake of the pHrodo-SA was analyzed on the LSR II

flow cytometer (BD Biosciences) in the National Jewish Health

Flow Cytometry Core, and the data were analyzed using FlowJo

software (TreeStar, Ashland, OR). In addition to the PR/8

infected cells, positive control uninfected cells and negative control

paraformaldehyde fixed cells were also used.

Statistics
Statistical analyses were conducted in GraphPad Prism version

5.0 (GraphPad Software, San Diego, CA). Pair-wise comparisons

were tested for significance using Wilcoxon matched pairs test or

Paired T test. Comparison among three or more groups was

performed using one-way ANOVA with Tukey’s post test analysis.

Supporting Information

Data S1 Human AM from 3 non-smoking donors were isolated,

cultured, and infected by PR/8 virus at MOI of 0.5. The gene

profiling of infected and non-infected cells at 4 and 24 hpi from

each donor was examined by microarray experiments using

Affymetrix HG-U133 Plus 2.0 chips (Affymetrix, Santa Clara,

CA). The filtered gene list was generated as described in the Section

of Methods and Materials. The data show probe ID, gene symbol,

gene name, and fold change at 4 and 24 hpi. Red indicates similar

results from multiple probes for the same gene, and the probe ID is

the representative probe ID from several probes.

(XLS)
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