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Abstract

Rift Valley fever virus (RVFV) is an arthropod-borne bunyavirus that can cause serious and fatal disease in humans
and animals. RVFV is a negative-sense RNA virus of the Phlebovirus genus in the Bunyaviridae family. The main envelope
RVFV glycoproteins, Gn and Gg, are encoded on the M segment of RVFV and known inducers of protective immunity.
In an attempt to develop a safe and efficacious RVF vaccine, we constructed and tested a vectored equine herpesvirus
type 1 (EHV-1) vaccine that expresses RVFV Gn and Gc. The Gn and Gc genes were custom-synthesized after codon
optimization and inserted into EHV-1 strain RacH genome. The rH_Gn-Gc recombinant virus grew in cultured cells with
kinetics that were comparable to those of the parental virus and stably expressed Gn and Gc. Upon immunization of
sheep, the natural host, neutralizing antibodies against RVFV were elicited by rH_Gn-Gc and protective titers reached to
1:320 at day 49 post immunization but not by parental EHV-1, indicating that EHV-1 is a promising vector alternative in

the development of a safe marker RVFV vaccine.

Main text

Rift Valley fever virus (RVFV) is an arthropod-borne
virus that can cause serious health problems in both ani-
mals and humans [1, 2]. The disease caused by RVFV in
ruminants is characterized by an acute hepatitis, abor-
tion in pregnant animals and high mortality rates, espe-
cially in newborns [3, 4]. In humans, the virus usually
leads to a mild flu-like febrile illness but in some cases,
it can cause severe symptoms, such as hemorrhagic
fever, hepatitis, encephalitis, and retinal degeneration
[5-7]. RVFV can be transmitted from infected animals
to humans, especially when humans are in contact with
infected animals. Of particularly high risk are blood and
aborted fetuses including the amniotic fluid and secundina
[6, 8]. RVFV was first isolated from sheep during an
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epizootic in the Rift Valley of Kenya in 1931. RVFV is an
enveloped RNA virus and belongs to the Phlebovirus
genus in the Bunmyaviridae family. The genome of the
Bunyaviridae is comprised of three segments of negative-
sense, single-stranded RNA that are referred to as S
(small), M (medium), and L (large) with a total genome
size of approximately 11.9 kb [9-11]. The M segment en-
codes the two major envelope surface glycoproteins Gn
and Gc and two non-structural proteins NSml and
NSm2. The Gn and Gc with molecular masses of 57- and
55-KDa, respectively [12, 13], form a heterodimer proc-
essed from a polyprotein by host proteases in the endo-
plasmic reticulum (ER). The glycoproteins are the main
target of protective immunity against RVFV infection [14,
15]. Antibodies against surface Gn and Gc can effectively
neutralize RVFV by blocking virus-receptor interactions
and virus-cell entry [15]. In addition, it may also play a
role in complement-mediated clearance of RVFV [13, 16].
Hence, Gn and Gc are the main targets for vaccine devel-
opment [12, 13, 16-23].
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Although the live attenuated [24] and inactivated vac-
cines [25—27] have been licensed for veterinary use, they
still have some drawbacks. The ideal RVFV vaccine
would be the one that (i) is safe, (ii) elicits rapid humoral
immune responses that neutralize RVFV, and (iii) in-
duces long-term protective immunity. Therefore, this
study presents a different approach, using an EHV-1
strain RacH as the delivery vector. Equine herpesvirus
type 1 (EHV-1) is a member of the genus Varicellovirus
in the subfamily Alphaherpesvirinae. It possesses a
double-stranded DNA genome of 150 Kbp in length.
EHV-1 is capable of entering a wide variety of cell types
of different origins and its attenuation could be attrib-
uted to deletion of both copies of gene 67 [28—30]. The
EHV-1 vaccine strain RacH has been cloned as an infec-
tious bacterial artificial chromosome (BAC) [31] and de-
veloped as a universal live virus vector against various
viruses. RacH has a proven safety record and can induce
both humoral and cellular immune responses to trans-
genes introduced in the vector and provide protection in
vaccinated animals, including mice, dogs, cattle and
swine [32-38]. In the present study, we describe the
construction and evaluation of a RacH-vectored vaccine
expressing Gn and Gc of RVFV (rH_Gn-Gc). We show
that recombinant EHV-1 stably expresses Gn-Gc and in-
duces a Gn-Gc-specific neutralizing antibody response
in a natural host of RVFV, sheep.

The Gn-Gc sequence of an Egyptian isolate of RVFV
(ZH-501 strain; GenBank accession number DQ380200.1)
was commercially synthesized after codon optimization
(Genscript). Gn-Gc sequences were PCR-amplified from
the commercial plasmid using Phusion high-fidelity DNA
polymerase (New England Biolabs) with oligonucleotides
primers P1 (TATGGATCCATGGCTGGAATTGCTAT-
GACT) and P2 (TATGCGGCCGCTTAATTAATCTA-
GATTATCT) and cloned into the BamHI/Notl site of
pEP-CMV-in [39] to generate pEP_Gn-Gc. The expres-
sion cassette containing RVF Gn-Gc under the control of
HCMYV IE promoter was released from pEP_Gn-Gc by di-
gestion with Spel and Sphl, and subcloned into the Spel/
Sphl sites of pUC19_ORF1/2, resulting in the transfer
plasmid pUC19_ORF1/2-Gn-Gc. By digestion of pUC19_
ORF1/2-Gn-Gc with I-Ceul, a 6.7 kbp fragment contain-
ing the Gn-Gc gene expression cassette, a kanamycin re-
sistance gene (aphAl) and two flanking sequences was
released and inserted in lieu of ORF1/2 of pRacH1-EF1
using two-step Red-mediated recombination (Fig. 1) as
previously described [39]. The EHV-1 RacH BAC clone,
pRacHI1-EF1 (termed pH 1-EF1 in this study) was gener-
ated previously by replacing the HCMV IE promoter up-
stream of egfp gene in the mini-F with human elongation
factor promoter 1a (EF-1a) [36, 37]. In the first recombin-
ation, insertion of Gn-Gc sequences and the aphAl gene
resulted in kanamycin-resistant intermediates that differed
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from parental pH 1-EF1 BAC in the EcoRV restriction pat-
tern. As predicted in silico, the insertion of the cassette re-
sulted in an EcoRV fragment of 21,535 bp in size
compared to the 16,411 bp in the parental pH 1-EF1
(Fig. 1d). In the second recombination step, the aphAl
gene was removed, which led to the reduction in size of
the 21,535 bp EcoRV fragment to 20,557 bp (Fig. 1d).
The results of the RFLP analysis were confirmed by
Southern blotting, which revealed that only the 21,535
and 20,557 bp EcoRV bands in the intermediate and re-
solved recombinant, respectively, were reactive with Gn-
Ge-specific probes P3 (GCCCGATTCTTTTGTGTGCT)
and P4 (AATCCGTGAAGAGGCCTGGA) (Fig. le). Nu-
cleotide sequencing using oligonucleotides primers P5
(GCCGAGCGAGTTCGGCATCCT), P6 (GCCATCCTG
GACCAGAACAA), P7 (GCAGGAGATCAGGAAGG
CCT), P8 (CCAGCGCCATCATCGAGACC), P9 (GAGA
AGCAGAAGCCCTACTT), P10 (GTGCGTGGAGAGC
GAGCTGC), P11 (AGATGGAGGGCAGCCTGGCCQ),
P12 (TCGGTCTTGGCCAGCAGCTT), P13 (GGAGC
CACTGGCTCAGCTCT), P14 (GGGTGGAAGTCGGT
GAAGGT), P15 (GTTCATGTCCAGCACCTCGT), P16
(CGTTGCTGCCCTTCTTGAAG), P17 (CTTGCGGT
GTCGTCCTCTCC), and P18 (CTTCCGCTTGCTCT
CCTCCT) further confirmed the correct insertion of the
gene at the left genomic terminus of the pH 1-EF1
clone that otherwise appeared unaltered (data not
shown). From the above results, we concluded that the
generated recombinant pH1_Gn-Gc BAC harbored the
RVFV Gn-Gc sequences in the targeted locus.

Parental RacH virus (rH) and the recombinant rH express-
ing Gn and Gc of RVFV (rH_Gn-Gc) were propagated in
rabbit kidney (RK13) cells. Cultures were maintained in
modified Eagle’s medium (MEM) (Biochrom) supplemented
with 5% fetal bovine serum (FBS, Biochrom), 100 U/ml peni-
cillin, and 100 pg/ml streptomycin (1% penicillin—strepto-
mycin). Reconstitution of recombinant and parental viruses
was achieved by transfection of pH1_Gn-Gc or pH 1-EF1
DNA into RK13 cells using polyethylenimine (PEI) (Poly-
sciences). Reconstitution of EHV-1 gp2-encoding sequences
with subsequent removal of mini-F sequences was achieved
by co-transfection of 1 ug BAC DNA and 10 pg plasmid
DNA p71H containing the full-length ORF71, which encodes
gp2, in RK13 cells [40]. Three days after co-transfection,
nonfluorescing-virus plaques were picked and purified to
homogeneity by two rounds of plaque purification, and virus
stocks were prepared and stored at —80 °C for further use.

To compare the in vitro growth properties of rH_Gn-Gc
with those of parental rH, plaque diameters and single-step
growth kinetics were determined. Plaque areas of rH_Gn-Gc
were compared to those of parental rH virus, which was set
as 100%. Mean percentages and standard deviations were
calculated from three independent experiments. The
Shapiro-Wilks test was used to assess for normality and
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Fig. 1 Generation of recombinant EHV-1 expressing Gn-Gc protein of RVFV (rH_Gn-Gc). Schematic illustration of the construction of rH_Gn-Gc vaccine
vector based on pRacH1. a Depiction of the left terminus of the unique-long segment of EHV-1 strain RacH infectious BAC clone pH 1-EF1, in which
ORF1 and ORF2 are naturally deleted. b A fragment released from transfer plasmid pUC19-ORF1/2-Gn-Gc by /-Ceul digestion was used to recombine
with RacH genome, result in incorporation of Gn-Gc gene of RVFV, HCMV promoter and kanamycin resistance gene in the ORF1/0ORF2 locus of the
RacH genome. ¢ After -Scel digestion, kanamycin was removed in the following step of en passent mutagenesis to generate the final arrangement of
rH_Gn-Gc genome. d and e Restriction fragment length polymorphisms and southern blot of pH1_EF1, the cloning intermediate and the final pH_Gn-Gc
construct. An ethidium bromide-stained agarose gel is shown in the left panel with EcoRV restriction patterns of pH_EF1 (lanes 1), the kanamycin-resistant
intermediate (lanes 2) and pH_Gn-Gc (lanes 3). GeneRuler 1 kb Plus DNA Ladder (Thermo Scientific) was used for determination of DNA fragment sizes. In
the right panel, a southern blot of the same gel is shown after hybridization with a digoxigenin-labeled Gn-Gc RVFV probe

Student’s t-test was employed to compare the mean areas
of the plaques of the examined viruses. Our results shown
that the average diameter of rH_Gn-Gc plaques was re-
duced in size by approximately 17% compared to parental
virus (Fig. 2a); however, this reduction did not reach statis-
tical significance (p = 0.31). To determine single-step
growth kinetics, RK13 cells seeded in 12-well plates were
infected at a multiplicity of infection (moi). of 3. Viruses
were allowed to attach for 1 h at 4 °C, followed by a pene-
tration step of 1.5 h at 37 °C. After washing twice with

PBS, infected cells were treated with ice-cold citrate buff-
ered saline for 3 min to remove residual virus. At different
time points (0, 4, 8, 12, 24 and 36 h p.i.), supernatants and
cells were harvested separately, and intracellular and
extracellular viral titers were determined using plaque
assay. Single-step growth curves were determined in three
independent experiments and means and standard devia-
tions were computed and plotted. Student’s t-test was
used to test the differences of viral growth kinetics of ex-
amined viruses. Both viruses exhibited comparable virus
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Fig. 2 Comparison of in vitro growth properties of rH_Gn-Gc with those of parental virus. a RK13 cells were infected by viruses at moi of 0.001 and
overlaid. Fifty plaques per virus were photographed and the areas were measured. b The single-step growth kinetics of those viruses was analyzed
and revealed no significant differences in growth properties of parental and recombinant viruses. Error bars represent standard deviations. These results
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titers during the 36 h observation period, with respect to
both extracellular and intracellular titers (Fig. 2b). Virus ti-
ters at the end of the observation period were virtually
identical between the analyzed viruses. From these results,
we concluded that the insertion of transgene did not have
a marked effect on viral growth in vitro.

To evaluate expression of the Gn or Gc by rH_Gn-Ge,
indirect immunofluorescence (IF) was used as described
before [30, 36]. RK13 cells were infected either with
rH_Gn-Gc or rH for 24 h and then incubated with
rabbit anti-RVFV(CT) (ProSci catalog no. 4521) or
rabbit anti-RVFV(IN) (ProSci catalog no. 4519), that
recognize the RVFV Gn or Gg, respectively, for 1 h at
RT. After extensive washing with PBS, the secondary
antibody, anti-rabbit IgG conjugated with Alexa 488
(Invitrogen), was added at a 1:500 dilution and incubated
for 30 min at RT. After thorough washing, plaques were
inspected by using an inverted fluorescence microscope

Zeiss Axiovert 100 and plaques recorded with the Axio-
cam (Zeiss). In the case of rH_Gn-Gc, virus plaques
were reactive with both RVFV(IN) and RVFV(CT) pAb,
whereas those induced by parental virus were not (Fig. 3a).
Gn and Gc expression were also assessed by western blot
analysis as described before [30, 36]. Expression of Gn and
Gc was detected with the same antibodies and horseradish
peroxidase-conjugated goat anti-rabbit pAb that was ob-
tained from Southern Biotech. Expression of p-actin was
assessed as a loading control using rabbit anti-B-actin poly-
clonal antibody (pAb) purchased from Cell Signaling Tech-
nologies. Reactive bands were visualized by enhanced
chemoluminescence (ECL plus, Amersham). Proteins of ap-
proximately 57- and 55-kDa in size were reactive with the
anti-RVFV(IN) and anti-RVFV(CT) antibody, respectively,
in lysates of cells infected with the Gn-Gc expressing
rH_Gn-Gc, but was absent in cells that were mock-infected
or infected with parental virus (Fig. 3b). Our findings are in
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agreement with previous reports indicating that the Gn
(57-KDa) and Gc (55-KDa) are produced from a single pro-
tein precursor [12, 13]. We concluded from our results that
the recombinant rH_Gn-Gc efficiently expressed the RVFV
Gn and Gc proteins in vitro.

To test whether the rH_Gn-Gc virus could induce an
RVFV specific antibody response in vivo, serological studies
were done in sheep to determine whether rH_Gn-Gc was
capable of inducing neutralizing antibody responses against
RVFV in the natural host. All animals were screened with
an enzyme linked immunosorbent assay to test for the
presence of antibodies against RVFV Gn and Gc before
immunization (data not shown). All sheep used in these
studies were housed in isolation rooms at the Veterinary
Serum Vaccine Research Institute, Cairo, Egypt. Animal
care procedures were in accordance with state animal wel-
fare guidelines under the supervision of an ethics commit-
tee. One- to five-year-old sheep were allocated randomly to
two groups, with 4 sheep in group 1 and 2 animals in group
2. In group 1, sheep were immunized twice in a 3-week
interval with rH_Gn-Gc (1 x 10° PFU/ml) by intramuscular

(IM) inoculation. In group 2 (control group), sheep were
inoculated by the same route and virus amount with paren-
tal rH virus. Serum neutralizing antibodies to RVFV were
determined in serum samples, collected from both group at
the indicated day post vaccination (0, 14, 21, 35 and 42) by
standard serum neutralization test (SN'T) as described pre-
viously [41]. For SNT, RVFV strain ZH501 isolated from a
human patient during the outbreak of 1977 in Egypt and
kindly provided by the Naval Medical Research Unit 3
(NAMRU-3) Cairo, Egypt, was used. The virus was propa-
gated on baby hamster kidney 21 (BHK-21) cells at the Vet-
erinary Serum Vaccine Research Institute, Cairo, Egypt.
Serum samples were examined by SNT, which revealed that
all animals immunized with rH_Gn-Gc mounted high anti-
body titers against RVFV (Fig. 4). As expected, all animals
in the rH-immunized group did not induce any RVFV-
specific antibody (Fig. 4). Reduction in plaques size of
RVFV by 50% (PRNTS5,) compared with control was used
to quantify titer of neutralizing antibody. Our results
showed that the endpoint protection titer (50% protective
titer) ranged between 1:40 to 1:80 in immunized animals
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Fig. 4 Neutralizing antibody response induced by rH_Gn_Gc. Sheep
were primed and boosted with either rH or rtH_Gn-Gc. Blood samples
were collected from immunized sheep at indicated days 0, 14, 21, 28
and 42. Serum from immunized sheep was titrated by a standard serum
neutralization test (SNT). Each dot represents an individual sheep

after first immunization dose, while the protective titers
reached to 1:320 by day 49 of immunization (Fig. 4). These
titers are within the range associated with protection
against RVF challenge in sheep in a previous study [42].
We concluded from our findings that the engineered
EHV-1 vector expressing RVFV Gn-Gc is able to induce
robust neutralizing antibody responses in immunized nat-
ural hosts for RVFV.

Currently, no RVFV vaccines for humans are commer-
cially available, but live attenuated [24] and inactivated
vaccines [25-27] have been licensed for veterinary use
in endemic countries. While the live attenuated vaccine
is able to induce long-lasting immunity and satisfactory
protection if administrated properly, its safety has been
questionable. Abortions in pregnant ewes and illness in
European cattle [24] were reported, as was the potential
recombination with field strains and reversion to viru-
lence during the vaccine manufacturing process. There-
fore, new approaches are necessary to develop safe and
effective RVFV vaccines. Several viral recombinant vec-
tored vaccines have been developed. Those are based on
vaccinia virus [43], Newcastle disease virus [12], adeno-
virus [13], Venezuelan equine encephalitis virus [44] or
capripoxvirus [18, 45].

In this study, we explored the feasibility of using EHV-1 as
a vehicle to deliver Gn-Gc of RVFV. The potential of EHV-1
as a universal vector for immunization has been previously
demonstrated, including its high packaging capacity, broad
cell tropism, and the lack of pre-existing anti-vector immunity
in non-equine animals [46]. As a live vector, EHV-1 strain
RacH has been developed and proved useful in inducing both
humoral and cellular immune responses and providing pro-
tection in a number of experimental systems and of different
animals, including mice, dogs, swine and cattle [32-38].
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RVFV Gn-Gc are essential and sufficient for immune protec-
tion, as reported in the previous studies using baculovirus
and sheeppox expression of these same two RVFV proteins
[23]. Gn-Gc sequences under the control of the HCMV IE
promoter was inserted in the ORF1 locus, which encodes a
protein mediating evasion of T-cell immunity [47, 48]. In line
with previous studies [32-37], insertion of Gn-Gc into the
EHV-1 genome did not affect in vitro growth characteristics
and the recombinant virus was able to replicate in cell culture
as efficiently as the parental virus and stably expressed Gn-
Gc. Importantly, when we inoculated the recombinant virus
into sheep, a RVFV-specific neutralizing antibody response
was induced following IM administration in sheep. Antibody
titers were maintained at high levels up to the time point
when the experiments were terminated.

In summary, we developed a recombinant EHV-1 vac-
cine encoding RVFV Gn-Gc and evaluated its potential
as a vaccine by measurement of RVFV-specific neutraliz-
ing antibody in sheep. Our results show that EHV-1
could be used as an alternative live vector for RVFV
immunization in sheep. Future study will be designed to
determine whether the recombinant EHV-1-vectored
Gn-Gc vaccine is capable to protect sheep against chal-
lenge infection.
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