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1 |  INTRODUCTION

Circadian clocks enable animals to anticipate the regular daily 
changes in the environment and to time specific activities to 
specific times of the day (Daan, 2010). On a different times-
cale, circannual clocks evolved to anticipate yearly environ-
mental changes that are most evident in the north and south of 
our planet (Helm & Lincoln, 2017). The circannual and circa-
dian clocks may be linked/interlocked, as circadian clocks can 
provide the necessary time reference for measuring day length 

and prepare for the forthcoming winter or summer (Bünning, 
1960; Denlinger, Hahn, Merlin, Holzapfel, & Bradshaw, 
2017; Goldman, 2001; Pittendrigh & Minis, 1964; Saunders, 
2013). Seasonal changes do not only induce photoperiodic 
responses such as overwintering or reproduction, they have 
also a strong impact on animal’s daily activity pattern. This 
is most evident in small- sized animals, which are more sub-
jected to rapid heat and energy loss than larger animals (Daan 
& Aschoff, 1975; Halle & Stemseth, 2000; Hoogenboom, 
Daan, Dallinga, & Schoenmakers, 1984; Ikeda et al., 2016). 
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Abstract
Life on earth is assumed to have developed in tropical regions that are characterized 
by regular 24 hr cycles in irradiance and temperature that remain the same through-
out the seasons. All organisms developed circadian clocks that predict these environ-
mental cycles and prepare the organisms in advance for them. A central question in 
chronobiology is how endogenous clocks changed in order to anticipate very differ-
ent cyclical environmental conditions such as extremely short and long photoperiods 
existing close to the poles. Flies of the family Drosophilidae can be found all over the 
world—from the tropics to subarctic regions—making them unprecedented models 
for studying the evolutionary processes that underlie the adaptation of circadian 
clocks to different latitudes. This review summarizes our current understanding of 
these processes. We discuss evolutionary changes in the clock genes and in the clock 
network in the brain of different Drosophilids that may have caused behavioural ad-
aptations to high latitudes.
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Insects highly depend on ambient temperature. On cold days, 
it is favourable for them to be active during the warmer parts 
of the day that occur during the photophase. In contrast, on 
hot days it is favourable for them to shift activity to the morn-
ing, the late evening, or even the night to avoid overheating 
(e.g., Fowler & Robinson, 1979). At least two mechanisms 
might help animals to be active at the best time of the day: (a) 
the quick response to acute ambient environment and (b) their 
circadian clocks. Here, we will refer to the latter.

For several small vertebrates it was observed that the 
clock has different waveforms under different day lengths 
(Aschoff, 1966; Daan & Aschoff, 1975). Birds, fishes, and 
several mammals show two activity bouts, one in the morn-
ing (M) and one in the evening (E). M and E activity bouts 
are close together under short days and separated by a pro-
nounced siesta under long days. This pattern persists under 
subsequent constant conditions highlighting its endogenous 
nature. In hamsters, the bimodal activity is reflected by 
a bimodal rhythm of electrical firing in cultured slices of 
the brain master clock—the suprachiasmatic nuclei (SCN) 
(Jagota, de la Iglesia, & Schwartz, 2000). The two max-
ima in electrical firing are close together when the animals 
have previously been kept under a short photoperiod and 
far apart, when they have been kept under a long photope-
riod (Jagota et al., 2000). Among insects, M and E activity 
bouts have been reported in fruit and house flies (Drosophila 
melanogaster and Musca domestica; Bazalova & Dolezel, 
2017; Hamblen- Coyle, Wheeler, Rutila, Rosbash, & Hall, 
1992; Helfrich- Förster, 2000; Prabhakaran & Sheeba, 2012, 
2013; Wheeler, Hamblen- Coyle, Dushay, & Hall, 1993) as 
well as in some mosquitoes (Chiba, 1971; Chiba, Kubota, & 
Nakamura, 1982). Although, in fruit flies, M and E activity 
bouts usually merge to one major peak under constant condi-
tions, the M bout remains visible as a shoulder on the E bout 
in most individuals and in some even as separate activity bout 
(Helfrich- Förster, 2000). Therefore, similar to vertebrates 
both activity bouts appear of endogenous nature. Comparable 
to vertebrates, the two fly activity bouts are closer together 
during cold and/or short days and further apart under hot 
and/or long days (Bazalova & Dolezel, 2017; Chiba, 1971; 
Majercak, Sidote, Hardin, & Edery, 1999; Rieger, Stanewsky, 
& Helfrich- Förster, 2003; Rieger, Peschel, Dusik, Glotz, & 
Helfrich- Förster, 2012). Thus, the adaptation of the daily 
activity patterns to different environmental conditions can 
be easily observed in flies, although individual animals are 
relatively short- lived and do usually not experience several 
seasons (only the individuals that overwinter experience au-
tumn, winter, and spring). The great advantage of studying 
flies is that the molecular and neuronal mechanisms of the 
circadian clock are well- understood in D. melanogaster (see 
King & Sehgal, this issue) and start to emerge also in other 
Diptera (Bazalova & Dolezel, 2017; Bertolini et al., 2018; 
Codd et al., 2007; Gentile, Rivas, Meireles- Filho, Lima, 

& Peixoto, 2009; Gesto et al., 2015; Kaiser et al., 2016; 
Kyriacou, 2014; Meireles- Filho & Kyriacou, 2013; Meuti, 
Stone, Ikeno, & Denlinger, 2015; Noreen, Pegoraro, Nouroz, 
Tauber, & Kyriacou, 2018; Rivas et al., 2018; Rund, Hou, 
Ward, Collins, & Duffield, 2011). In D. melanogaster, recent 
studies have shown that M and E activity bouts are reflected 
by Ca2+ rhythms in the relevant clock neurons controlling M 
and E activity, respectively (Liang, Holy, & Taghert, 2016, 
2017). As shown for the electrical activity in the SCN of 
hamsters, the Ca2+ peaks in the M and E neurons are close 
together in flies that have been kept under short- day condi-
tions and far apart in flies that have been kept under long- day 
conditions (Liang et al., 2016). Thus, the different activity 
patterns of flies in short and long photoperiods have a neuro-
nal basis (reviewed in Helfrich- Förster, 2017; Yoshii, Rieger, 
& Helfrich- Förster, 2012).

In this review, we focus on the circadian clocks of in-
sects within the family Drosophilidae, which is part of the 
order Diptera (flies and mosquitoes; Figure 1a); they alone 
comprise many species that colonized almost all parts of the 
world. Currently, about 4,000 species are described (Brake 
& Bächli, 2008; O’Grady & DeSalle, 2018) but a number of 
surveys have projected the eventual number of Drosophilidae 
species to 5,200 (summarized in O’Grady & DeSalle, 2018). 
This is a huge number of species in comparison to the overall 
6,399 known mammals (Burgin, Colella, Kahn, & Upham, 
2018). Drosophilidae are thought to have originated in the 
tropics (as assumed for mammals) about 50 million years 
ago and have subsequently colonized virtually all environ-
ments including subarctic regions (Markow & O’Grady, 
2007; Obbard et al., 2012; O’Grady & DeSalle, 2018; Russo, 
Mello, Frazão, & Voloch, 2013; Throckmorton, 1975). These 
elements make the Drosophilidae family an unprecedented 
model for studying the evolutionary processes that underlie 
the adaptation of circadian clocks to different environments. 
Here, we will review our current understanding of these 
processes.

2 |  PHYLOGENY OF FLIES 
(DIPTERA) WITH A SPECIAL 
FOCUS ON THE DROSOPHILIDAE

The flies (Diptera) are historically divided into the Nematocera 
(lower Diptera, mosquitoes + others) and Brachycera (higher 
Diptera, “real” flies), but the Nematocera classification is 
controversial and this suborder was recently identified as 
paraphyletic to the Brachycera (Amorim & Yeates, 2006; 
Beckenbach, 2012). Here, we mention only few families 
of which some members have been studied in respect of 
rhythmic behaviour and/or clock genes (Figure 1a). Among 
these are mosquitoes (Culicidae) (Chiba, 1971; Chiba et al., 
1982; Gentile et al., 2009; Meuti et al., 2015) and sand 
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flies (Psychodidae) (Meireles- Filho, Amoretty, De Souza, 
Kyriacou, & Peixoto, 2006; Meireles- Filho, da S. Rivas, et al., 
2006). Mosquitoes and sand flies are very interesting because 
most of them are blood- sucking and potential disease vectors 
(Meireles- Filho & Kyriacou, 2013). Furthermore, they have 
undergone rapid speciation colonizing very different habitats 
all over the world. Their success may be partly due to rapidly 
evolving clock genes that allowed them to colonize different 
temporal niches (Kyriacou, 2014). Particularly interesting is 
also the pitcher plant mosquito, Wyeomyia smithii, which has 
undergone an evolutionary transition from blood feeding to 
obligate nonbiting and at the same time an expansion from the 
south to the north of North America (Bradshaw et al., 2018; 
Merz et al., 2013). This species has become a model species 
to investigate the genetic mechanisms underlying photo-
periodic time measurement (Bradshaw, Emerson, Catchen, 
Cresko, & Holzapfel, 2012). In the family of Chironomidae, 
Clunio marinus and Belgica antarctica, both living in intrigu-
ing environments, are studied for their endogenous clocks. 
Clunio marinus, is the only fly that colonized sea water and 
it possesses circadian and circatidal clocks (Neumann, 1989; 
Kaiser et al., 2016). Belgica Antarctica the only insect en-
demic to Antarctica (Kobelková et al., 2015).

Thus far, the neuronal basis of the circadian clock has not 
been revealed in any of the “lower Diptera” species.

The Brachycera comprise about 120 families. Species of 
the following families have been investigated with respect to 
their rhythms: Tephritidae (An et al., 2002; An, Tebo, Song, 
Frommer, & Raphael, 2004; Bertolini et al., 2018; Chahad- 
Ehlers et al., 2017; Fuchikawa et al., 2010; Matsumoto et al., 
2008; Mazzotta et al., 2005; Miyatake et al., 2002), Phoridae 
(Bostock, Green, Kyriacou, & Vanin, 2017), Calliphoridae 
(Muguruma, Goto, Numata, & Shiga, 2010; Saunders, 1997; 
Smith, 1987; Shiga & Numata, 2009; Warman, Newcomb, 
Lewis, & Evans, 2000; Yasuyama, Hase, & Shiga, 2015), 
Sarcophagidae (Goto & Denlinger, 2002; Koštál, Závodská, 
& Denlinger, 2009; Yamamoto, Nishimura, & Shiga, 2017; 
Yamamoto, Shiga, & Goto, 2017), Muscidae (Codd et al., 
2007; Bazalova & Dolezel, 2017; Pyza & Meinertzhagen, 
2003; Pyza, Siuta, & Tanimura, 2003), and Drosophilidae 
(see below) (Figure 1a). Among these, the genetic and neuro-
nal basis of the circadian clock was revealed for the house fly 
M. domestica (Codd et al., 2007), the blow fly Protophormia 
terraenovae (Muguruma et al., 2010) and recently also for the 
olive fly, Bactrocera oleae (Bertolini et al., 2018). In all three 
fly species, it turned out to be rather similar to that of the fruit 
fly D. melanogaster, although the families of Tephritidae, 
Muscidae, Calliphoridae, and Drosophilidae have separated 
millions of years ago.

The phylogeny of the Drosophilidae is complex and 
still not completely resolved. A recent elaborate review 
can be found in O’Grady and DeSalle (2018). Most re-
searchers agree to the idea that the Drosophilidae can be 

FIGURE 1 Rough classification of Diptera with a focus on the 
phylogeny of the family Drosophilidae. (a) The Diptera are historically 
divided in the Nematocera and Brachycera. The Nematocera contain ~34 
and the Brachycera ~110 families. Here, only the families are shown, in 
which some species have been investigated in respect of their rhythms and/or 
clock genes. (b) Phylogeny of the family Drosophilidae (after Yassin, 2013 
and O’Grady & DeSalle, 2018). They are divided into two sister groups, the 
Drosophilininae and Steganinae. The subfamily Drosophilinae is divided 
in eight clades (I–VIII) of which always the groups that are on the same 
“vertical” level are sister groups (e.g., Chymomyza is the sister group of the 
remaining Drosophilinae (clades II–VIII) and the group of Sophophora can 
be regarded as the sister group of clade III–VIII, etc.). As in a, emphasis is 
laid on those species that have been investigated from the chronobiological 
point of view. These stem predominantly from the Subgenera Sophophora 
and Siphlodora and are listed on the right. Furthermore, rhythms of the 
species from the genus Chymomyza (clade I) and Zaprionus (clade IV + V) 
have been studied. So far none of the species belonging to the subgenus 
Drosophila has been investigated for rhythms. The three species listed here 
are the key species of this group. Details see text
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divided into two sister subfamilies, the Steganinae and the 
Drosophilinae (discussed in O’Grady & DeSalle, 2018) 
(for the definition of sister groups, see Figure 1b). Since all 
of the species investigated for their endogenous clocks are 
within the Drosophilinae, we will only discuss this subfam-
ily (Figure 1b). Yassin (2013) divided the Drosophilinae 
into eight major clades (see Figure 1b). Clade I can be 
regarded as sister clade of the other seven clades (II–VII; 
which cover the main Drosophila groups) and contains the 
genus Chymomyza (which is investigated from the chro-
nobiological point of view (e.g., Koštál, 2011a,b; Stehlík, 
Závodská, Shimada, Sauman, & Kostál, 2008)) and sev-
eral other genera that are not important for this review. 
Within the main Drosophila groups, clade II is again the 
sister group of the remaining six clades. Clade II coincides 
with the subgenus Sophophora and contains the “model” 
species D. melanogaster and other species that have been 
investigated from the chronobiological point of view such 
as D. suzukii, D. yakuba, D. simulans, D. pseudoobscura, 
D. helvetica, D.ananassae, D. willistoni, D. auraria, and 
D. triauraria (Gleason & Powell, 1997; Hamby, Kwok, 
Zalom, & Chiu, 2013; Hermann et al., 2013; Joshi, 1999; 
Low, Lim, Ko, & Edery, 2008;Nishinokubi et al., 2003; 
Nishinokubi, Shimoda, & Ishida, 2006; Ousley et al., 
1998; Pittendrigh, 1967; Pittendrigh & Takamura, 1989; 
Prabhakaran, De, & Sheeba, 2013; Prabhakaran & Sheeba, 
2012, 2013, 2014; Vanlalhriatpuia et al., 2007; Wheeler 
et al., 1991; Yamada & Yamamoto, 2011). Important for 
the present review is that the subgenus Sophophora has 
separated from the remaining groups (clades III–VIII), 
among which is the Drosophila subgenus (clade VI), 
about 30 million years ago. Clade III that contains the 
subgenus Dorsilopha is again the sister clade of the re-
maining clades (clades IV–VIII). Clades IV and V are 
heterogenous and the lineages within this groups are still 
under debate (O’Grady & DeSalle, 2018; Russo et al., 
2013; Yassin, 2013). Therefore, we will treat them as one 
group (Figure 1b). This group includes the tropical genus 
Zaprionus that has been investigated from the chronobio-
logical point of view (Beauchamp et al., 2018; Prabhakaran 
& Sheeba, 2013, 2014). The subgenus Drosophila (clade 
VI) has been redefined recently by Yassin (2013) and cor-
responds roughly to the immigrans- tripunctata radiation of 
Throckmorton (1975). Whereas the immigrans radiation 
consists of New World species, the tripunctata radiation 
contains Old World species. None of these species has been 
studied so far for their rhythmic behaviour. The last two 
clades are the Hawaiian Drosophila species and the subge-
nus Siphlodora. The subgenus Siphlodora was also recently 
redefined (Yassin, 2013) and corresponds roughly to the 
repleta- virilis radiation of Throckmorton (1975). Several 
species within the virilis radiation have colonized high- 
latitudes and were investigated for their rhythmic behaviour 

and neuronal clock network (Bahn, Lee, & Park, 2009; 
Beauchamp et al., 2018; Hermann et al., 2013; Kauranen 
et al., 2012; Lankinen, 1986; Lankinen & Forsman, 2006; 
Menegazzi et al., 2017).

3 |  THE MOLECULAR BASIS 
OF THE CIRCADIAN CLOCK IN 
D. MEL ANOGASTER  AND ITS 
ADAPTATION TO DIFFERENT 
ENVIRONMENTAL CONDITIONS

In 2017, the Nobel Prize in Physiology/Medicine was awarded 
to Jeffrey Hall, Michael Young, and Michael Rosbash for 
their work that led to the understanding of the molecular 
basis of circadian rhythms in D. melanogaster (Callaway 
& Ledford, 2017). This work was initiated by Konopka and 
Benzer in the 1970s of the last century by the isolation of 
the period mutants (Konopka & Benzer, 1971). The period 
gene participates in interlocked molecular transcriptional/
translational feedback loops (Hardin, 2011; Glossop, Lyons, 
& Hardin, 1999).

A first feedback loop involves the clock genes period (per), 
timeless (tim), cycle (cyc), and Clock (Clk), and their respective 
products. CLK and CYC form heterodimers and bind to E- box 
regulatory elements in the promoters of per and tim, activating 
their transcription. Consequently, per and tim mRNA levels 
rise and are translated in the cytoplasm, where their products 
PER and TIM are subjected to posttranslational modification, 
dimerize, and after a while enter the nucleus as a complex. In 
the nucleus, PER/TIM complexes bind to CLK/CYC and re-
press their transcriptional activity. Doing so, they negatively 
regulate their own expression. Subsequent PER and TIM desta-
bilization and degradation stops the repression on CLK/CYC 
activity, and a new transcriptional- translational cycle restarts.

A second feedback loop involves the clock genes, cycle 
(cyc), Clock (Clk), Vrille (Vri), and PAR Domain Protein 1ε 
(Pdp1ε), and their respective products. Vri and Pdp1ε carry 
E- box regulatory elements in their promoters, therefore their 
expression is also activated by the active CLK/CYC complex. 
VRI accumulates earlier than PDP1ε and it represses the ex-
pression of Clk, acting at the level of VP- boxes (VRI/PDP 
regulatory elements (Emery & Reppert, 2004) present in its 
promoter region. PDP1ε accumulates later than VRI and fi-
nally promotes Clk expression. The synergistic activity of VRI 
and PDP1ε generates circadian transcription of Clk. Several ad-
ditional clock factors, that are not focus of this review, fine- tune 
the transcriptional/translational feedback loops (for deeper in-
sights see Glossop et al., 1999; Hardin, 2011; Hardin & Panda, 
2013; Helfrich- Förster, 2017; Ozkaya & Rosato, 2012).

Environmental light- dark cycles synchronize the molec-
ular oscillations via Rhodopsins and Cryptochrome (CRY) 
(reviewed in Helfrich- Förster, 2017; Yoshii, Hermann- Luibl, 
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& Helfrich- Förster, 2016). CRY makes the Drosophila ex-
traordinary light sensitive (Vinayak et al., 2013), because it 
interacts directly with the core clock proteins: light- activated 
CRY binds to TIM and leads to its degradation in the prote-
asome (Ceriani et al., 1999; Naidoo, Song, Hunter- Ensor, & 
Sehgal, 1999). Without TIM, PER is also destabilized and 
degraded, which immediately resets the clock. When flies 
are exposed to constant light instead of light- dark cycles, 
TIM is permanently degraded, which makes the flies ar-
rhythmic, whereas they remain rhythmic without functional 
CRY (Emery, So, Kaneko, Hall, & Rosbash, 1998; Emery, 
Stanewsky, Hall, & Rosbash, 2000a,b; Stanewsky et al., 
1998). Due to the high light sensitivity of the flies, arrhyth-
micity of wild- type flies occurs already at rather low irra-
diances (Konopka, Pittendrigh, & Orr, 1989) and flies with 
CRY overexpressed show even a higher sensitivity towards 
light (Emery et al., 1998).

3.1 | Polymorphisms in TIM and PER affect 
clock sensitivity to light and temperature
The original tim gene gives rise to a short form of TIM (= 
S- TIM) that strongly interacts with CRY and is therefore 
sensitive to degradation by light. However, ~10,000 years 
ago, after D. melanogaster colonized Europe, a mutation 
occurred in the south eastern Italian populations, in which 
a single guanosine was inserted in the 5′ coding region of 
tim that resulted in the production of a long TIM isoform in 
addition to a short one (= LS- TIM). The ls-tim mutants are 
less light sensitive due to a reduced ability of LS- TIM to in-
teract with CRY, and the ls-tim mutants gradually invaded 
Northern Europe (Sandrelli et al., 2007; Tauber et al., 2007). 
The lower light sensitivity of the flies prevents the flies from 
enhanced TIM degradation and from getting arrhythmic dur-
ing the long exposure to light in northern summers. On the 
other hand, the ls-tim mutation causes females to enter dia-
pause (reproductive arrest) earlier in autumn than the s-tim 
allele. Together with the reduced light- sensitivity of ls-tim 
flies, the earlier diapause induction is advantageous for a life 
in the north. Thus, the observed latitudinal cline in TIM pol-
ymorphism appears to be an evolutionary adaptation to the 
conditions at higher latitudes (Kyriacou, Peixoto, Sandrelli, 
Costa, & Tauber, 2008). Polymorphisms appear also present 
in CRY, but a clear latitudinal cline was so far not observed 
(Pegoraro et al., 2015).

Nevertheless, a latitudinal cline in PER polymorphism 
exists, but in contrast with the TIM polymorphism, the PER 
polymorphism does not affect light- sensitivity but has a role 
in temperature adaptation (reviewed in Costa & Kyriacou, 
1998; Kyriacou et al., 2008). PER possesses an uninterrupted 
stretch of alternating threonine- glycine (Thr- Gly) repeats at 
its C- terminus (Yu, Colot, Kyriacou, Hall, & Rosbash, 1987). 
This unusual sequence is shorter in flies stemming from 

southern D. melanogaster populations and longer in flies 
stemming from northern populations in Europe. This latitu-
dinal cline in the Thr- Gly length turned out to be important 
for temperature compensation of the clock. The northern 
populations with long Thr- Gly stretch had the most thermally 
stable periods that were close to 24 hr at all temperatures 
tested. In contrast, southern populations, with short Thr- Gly 
stretch, had free- running periods of 24 hr at 29°C, but the 
periods shortened significantly at cooler temperatures. Thus, 
the “temperature compensated” PER protein with long Thr- 
Gly stretch appears better adapted to the colder and ther-
mally variable higher latitudes, whereas the PER protein 
with short Thr- Gly stretch is more suitable for the warmer 
Mediterranean region. However, this latitudinal cline of the 
PER Thr- Gly stretch was not observed in D. melanogaster 
populations collected along the coast of Australia, suggesting 
that there exist other adaptations to latitudinal clines in tem-
perature (Weeks, McKechnie, & Hoffmann, 2006).

Nevertheless, the polymorphisms in PER and TIM offer a 
fine- tuning of daily rhythms to the environment and can be 
regarded as evolutionary adaptations of the clock to a life in 
warmer or colder regions.

3.2 | Differential splicing of the clock genes 
contributes to the adaptation to different 
temperatures
In addition to polymorphisms in the clock genes, D. mela-
nogaster flies can adapt their activity pattern to changes in 
the environment by splicing per and tim differently. The 
mRNAs of both genes are differentially spliced in their 3′ 
untranslated regions, and in both cases the degree of splic-
ing is dependent on the environmental temperature. Per 
shows an enhanced splicing at low and an attenuated splic-
ing at higher environmental temperatures and long days 
(Majercak et al., 1999; Majercak, Chen, & Edery, 2004). 
For tim it is the opposite: it is spliced to a larger degree 
at high temperatures than at low ones (Montelli et al., 
2015). Enhanced per splicing at low temperatures leads 
to a quicker accumulation of per mRNA and PER protein, 
which accelerates the molecular cycle and advances the 
evening activity of the flies, whereas reduced per- splicing 
at high temperatures slows down the molecular cycle and 
delays the evening activity. This explains activity timing 
of the flies under cold and short autumn days and long and 
hot summer days (Majercak et al., 2004; Montelli et al., 
2015): under autumn condition the flies start evening ac-
tivity early in the day and lack the midday siesta almost 
completely, whereas under summer conditions they have 
a pronounced siesta and start evening activity late. Most 
interestingly, differential tim splicing enhances these sea-
sonal adaptations. The unspliced TIM isoforms at low tem-
peratures have a higher affinity for CRY what leads to an 
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earlier degradation of TIM and an advance of evening ac-
tivity under cold days (Montelli et al., 2015). Under warm 
summer days the spliced TIM isoforms have less affinity 
to CRY, TIM is degraded later and evening activity is also 
later. Thus, per-  and tim- splicing work in the same direc-
tion—advancing evening activity under short winter days 
and delaying it under long summer days.

The thermal regulation of per- splicing can be regarded 
as a mechanism that facilitated the radiation of D. melan-
ogaster from the tropics to temperate climates (Figure 2a). 
Consistent with this hypothesis, Low et al. (2008), Low, 
Chen, Yildirim, and Edery (2012) discovered several single 
nucleotide polymorphisms (SNPs) in per’s 3′ untranslated re-
gion of D. melanogaster that modulate its splicing efficiency. 
Most significantly, there was a latitudinal cline in these SNPs 
in wild- caught populations of flies originating along the east 
coast of the United States with the least efficiently spliced 
versions associated with a longer midday siesta in regions 
where temperatures can reach high levels. Similarly, an alti-
tudinal cline in per splicing was associated in D. melanogas-
ter that influences midday siesta (Cao & Edery, 2017). This 
demonstrates that natural selection can work at the level of 
splicing signals and that differential splicing plays an import-
ant role in the thermal adaptation of life forms. Without doubt 
there are selection mechanisms that are independent of the 
per gene that adapted the rhythms of D. melanogaster flies 
to different temperatures as was shown by Maguire, Schmidt, 
and Sehgal (2014) for natural populations living at different 
altitudes in Africa. Nonetheless, we will continue to focus 
our review on the clock genes and latitudinal adaptations.

4 |  EVOLUTIONARY 
ADAPTATIONS OF THE 
MOLECULAR CLOCK IN SPECIES 
OTHER THAN D. MEL ANOGASTER

Like in D. melanogaster, there is thermal regulation of per- 
splicing in D. simulans that also invaded temperate regions, 
but not in D. yakuba and D. santomea, which have a more 
ancestral distribution in equatorial regions of Africa (Low 
et al., 2008), where day length and temperature exhibit lit-
tle fluctuation throughout the year (Figure 2). D. simulans 
flies also show similar PER polymorphisms in the Thr- Gly 
repeats (Rosato, Peixoto, Barbujani, Costa, & Kyriacou, 
1994). Thus, the thermal adaptations in form of per- splicing 
and PER polymorphisms have most likely facilitated coloni-
zation of temperate northern zones on earth. The repetitive 
threonine- glycine (Thr- Gly) region at the PER C- terminus 
has been investigated in several flies and found to be the 
longest in D. pseudoobscura (Colot, Hall, & Rosbash, 
1988; Costa, Peixoto, Thackeray, Dalgleish, & Kyriacou, 
1991; Nielsen et al., 1994; Peixoto, Costa, Wheeler, Hall, 

& Kyriacou, 1992; Peixoto et al., 1998). D. pseudoobscura 
flies have a wide geographic distribution and extend from 
Mexico along the western third of the North American con-
tinent to British Columbia (Wang & Hey, 1996). Thus, this 
species is exposed to very different climatic zones and needs 
to have a well temperature compensated clock, which was 
demonstrated by generating hybrid per transgenes between 
Drosophila pseudoobscura and D. melanogaster (Noreen 
et al., 2018; Peixoto et al., 1998). Nevertheless, not all spe-
cies with wide geographic distribution have a long Thr- Gly 
region in PER. For example, the Thr- Gly region is short in 
the D. virilis group (subgenus Siphlodora; Figure 1b) and 
seems to encompass just two pairs of Thr- Gly (Hilton & 
Hey, 1996; Lankinen & Forsman, 2006). Drosophila litto-
ralis flies, which are latitudinally exceptionally widespread 
from Mediterranean regions to the northern side of the Arctic 
Circle, do not even show a latitudinal cline in the length of 
the Thr- Gly stretch (Lankinen & Forsman, 2006). This shows 
that this region is not always included in the adaptive clock 
variability; obviously, these flies found other solutions to 
adapt their clocks to northern zones on earth.

Evolutionary modifications in TIM or CRY have so far 
not been demonstrated for fly species other than D. melan-
ogaster, but they are most likely. At least a reduction in cir-
cadian photosensitivity of northern fly populations has been 
documented in Japanese D. auraria flies and was interpreted 
as being an adaptation of the circadian system to the long 
summer day lengths (Pittendrigh & Takamura, 1989). It is 
important to mention that all so far reported results are gained 
in species that belong to the Sophophora subgenus and are 
consequently relatively close to D. melanogaster (Figure 1b).

5 |  EVOLUTIONARY 
ADAPTATIONS OF THE NEURONAL 
CLOCK NETWORK ACROSS 
SPECIES

Only a few fruit fly species have colonized subarctic regions 
(Figure 2a). Among these are D. littoralis, D. montana, 
D. ezoana, and D. lummei, all belonging to the virilis- repleta 
radiation that corresponds to the newly introduced subgenus 
Siphlodora (Figure 1b; O’Grady & DeSalle, 2018). In subarc-
tic regions, the flies are not only exposed to cold winters that 
require effective overwintering strategies (e.g., a strictly pho-
toperiodically controlled diapause), but also to very long pho-
toperiods up to constant light in spring/summer (Figure 2b). 
The activity pattern of the high latitude species is quite dif-
ferent from the bimodal activity pattern of flies that inhabit 
lower latitudes (Beauchamp et al., 2018; Kauranen et al., 
2012; Menegazzi et al., 2017): they show reduced activity in 
the morning, no siesta, and broad activity in the afternoon 
that extends until dusk (Figure 2b). Most interestingly, this 
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activity pattern even persists to a certain extent under labo-
ratory conditions with constant pleasant temperatures, dem-
onstrating that the activity pattern is genetically determined; 
most probably, an altered circadian clock in the brain causes 
it. We do not know yet, to what degree alterations in the clock 

proteins contribute to the altered activity patterns, but most 
likely, they significantly do so. A recent study has conducted 
a phylogenetic analysis of the clock genes period, timeless, 
Clock, cycle, and the cryptochrome gene in 12 Drosophila spe-
cies, among which was D. virilis that belongs to the subgenus 

F I G U R E  2  Colonization of northern latitudes by Drosophilidae and simplified activity patterns of tropical and subarctic flies. (a) 
Drosophilids are thought to have their origin in the tropics. Certain species still have a tropical or subtropical habitat (red). Others have colonized 
temperate regions (green) and still others colonized subarctic regions (blue). (b) The tropics are characterized by photoperiods that remain close 
to 12 hr throughout the year and hot midday temperatures. Flies living in this region (e.g., Zaprionus indianus) avoid the midday heat by taking 
a siesta and being active during the morning and evening. The summers in subarctic regions are characterized by very long photoperiods with 
moderate temperatures that are most pleasant during the afternoon. Flies living in this region (e.g., Drosophila montana) show a broad activity band 
in the afternoon that extends until dusk
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Siphlodora (Noreen et al., 2018). As may be expected from 
the phylogenetic tree (Figure 1b), period, Clock, and Cycle 
of D. virilis showed the largest genetic distance to the respec-
tive genes in D. melanogaster. Nevertheless, this was slightly 
different for timeless, where the largest distance was present 
in D. pseudoobscura that belongs to the Sophophora subge-
nus (Figure 1b). For cryptochrome the largest genetic differ-
ence was revealed for D. willistoni, another species of the 
Sophophora subgenus that is assumed to be closely related to 
D. melanogaster (Figure 1b). Altogether, this indicates that 
the clock genes have differentially evolved, most probably 
due to different environmental challenges as already nicely 
revealed in mosquitoes (see above).

In addition to a putatively altered molecular clock, high 
latitude flies possess an altered neuronal clock network in 
comparison to Drosophila species that remained in tropic re-
gions or colonized temperate regions on earth (Bahn et al., 
2009; Hermann et al., 2013; Kauranen et al., 2012; Kauranen, 
Ala- Honkola, Kankare, & Hoikkala, 2016; Menegazzi et al., 
2017; Beauchamp et al., 2018). In the following, we will 
summarize the most important aspects of the clock network 
in the brain of D. melanogaster and then describe the ob-
served alterations in the brains of high latitude species.

In D. melanogaster, the central clock consists of dorsal and 
lateral neurons that express the core clock genes and form an 
extensive neuropeptidergic network in the brain (Figure 3a; 
reviewed in Helfrich- Förster et al., 2007; Hermann- Luibl 
& Helfrich- Förster, 2015; Helfrich- Förster, 2017; Schubert, 
Hagedorn, Yoshii, Helfrich- Förster, & Rieger, 2018). One of 
the best conserved and most important neuropeptide in the 
insect circadian clock is the pigment- dispersing factor (PDF) 
(e.g., Beer et al., 2018; Helfrich- Förster et al., 2000; Helfrich- 
Förster, 2014; Ikeno, Numata, Goto, & Shiga, 2014; Renn, 
Park, Rosbash, Hall, & Taghert, 1999; Shafer & Yao, 2014; 
Wei et al., 2014). In D. melanogaster, PDF is expressed in 
four small ventro- lateral neurons (s- LNv) and in four large 
ventro- lateral neurons (l- LNv) (Figure 3a), which have dif-
ferent roles in the clock network. The s- LNv are major pace-
maker neurons that are essential for robust rhythmic activity 
under constant darkness and for pronounced morning activity 
under cycling environmental conditions. Furthermore, they 
are connected in a light- dependent manner to the dorsal lat-
eral neurons (LNd) and to one group of the dorsal neurons, 
the DN1p, and by this way shape the activity pattern under 
different light conditions (Chatterjee et al., 2018). The  l- LNv 
are dispensable for rhythmic activity, but they are part of 
the light- input pathway to the clock and they control the 
phase of evening activity, especially under long photoperi-
ods (Schlichting et al., 2016; Menegazzi et al., 2017). PDF 
is released in a rhythmic manner from the s- LNv to the dor-
sal brain, whereas such a rhythm has not been demonstrated 
in the l- LNv (Park et al., 2000; Fernández, Berni, & Ceriani, 
2008). The l- LNv produce amidated PDF that is more stable 

than the PDF from the s- LNv (Park et al., 2008) and that may 
have long- lasting effects on other clock neurons express-
ing the PDF- receptor (Im, Li, & Taghert, 2011; reviewed 
in Helfrich- Förster, 2014). Most importantly, PDF from the 
 l- LNv (or amidated synthetic PDF) phase- delays the clock 
neurons that control evening activity (LNd and 5th LNv) 
(Yoshii et al., 2009; Liang et al., 2017; Menegazzi et al., 
2017). Flies without functional PDF signalling cannot phase- 
delay the Ca2+ oscillations in the evening neurons (Liang 
et al., 2016) and consequently cannot phase- delay evening 
activity (Renn et al., 1999; Yoshii et al., 2009). Thus, their 
evening activity occurs in the middle of the day instead of in 
the late afternoon, and this is most evident under long pho-
toperiods (Menegazzi et al., 2017; Schlichting et al., 2016; 
Yoshii et al., 2009). In contrast, flies in which the l- LNv run 
and secrete PDF into the central brain instead of into the optic 
lobes exhibit a long siesta and late evening activity already 
under 12:12 hr light- dark cycles (Wülbeck, Grieshaber, & 
Helfrich- Förster, 2008). All this fits into the picture that PDF 
from the l- LNv phase- delays evening activity, although we 
cannot exclude that also PDF from the s- LNv contribute to 
this effect.

As mentioned above, CRY is a similarly important mol-
ecule in the circadian clock of D. melanogaster, because it 
interacts directly with TIM and synchronizes the molecular 
clock to environmental light- dark cycles. CRY is not the only 
fly circadian photoreceptor. The compound eyes and the extra-
retinal eyelets contribute essential aspects of entrainment and 
suffice to synchronize flies that lack functional CRY (reviewed 
in Yoshii et al., 2016). Nevertheless, CRY is responsible for 
the extraordinary light sensitivity of the circadian clock. Flies 
without functional CRY are not able to phase- shift their activ-
ity rhythms in response to short light- pulses and they do not 
become arrhythmic under constant light (Emery et al., 1998, 
2000a,b; Kistenpfennig, Hirsh, Yoshii, & Helfrich- Förster, 
2012). CRY is expressed in about half of the clock neurons, 
among which are the PDF- positive neurons (Figure 3a).

High latitude Drosophila species show evident differ-
ences in the expression of PDF and CRY in the clock neurons 
in comparison to D. melanogaster: They lack PDF in the s- 
LNv and CRY in the l- LNv (Bahn et al., 2009; Beauchamp 
et al., 2018; Hermann et al., 2013; Kauranen et al., 2012; 
Menegazzi et al., 2017). Furthermore, their l- LNv invade the 
central brain in addition to the optic lobes (Figure 3b). The 
lack of PDF in the s- LNv explains the reduced morning activ-
ity of the flies, and the PDF arborizations of the l- LNv in the 
central brain may explain their broad late evening activity. In 
addition, they do not become completely arrhythmic under 
constant light that might be caused by the absence of CRY 
in the l- LNv. Most interestingly, we could partly mimic the 
activity patterns of the high- latitude Drosophila species in 
D. melanogaster by expressing PDF only in the l- LNv and 
the central brain and by additionally downregulating CRY in 
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the l- LNv (Menegazzi et al., 2017). This indicates that there 
is indeed a causal relation between PDF/CRY expression and 
activity patterns.

Further evidence comes from the comparison of the 
PDF network and CRY expression in fly species that are 
also from the Siphlodora subgenus, but did not invade 
subarctic regions, such as D. hydei and D. mercatorum 
(Figure 1b). These showed a very similar clock network 
as D. melanogaster in which CRY and PDF was present 
in the s- LNv and l- LNv and no or very little PDF in the 

central brain (Beauchamp et al., 2018). Very similarly, 
Zaprionus indianus and Z. camerounensis that are also dis-
tantly related to the Sophophora subgenus, but restricted 
to tropic regions, exhibit a CRY/PDF expression pattern 
that is undistinguishable from D. melanogaster (Figure 3b) 
(Beauchamp et al., 2018). Even subtropic species outside 
the Drosophilidae such as olive flies, B. oleae (Diptera: 
Tephritidae), have a clock network that strongly resembled 
that of D. melanogaster (Bertolini et al., 2018). Together, 
these results strongly suggest that the D. melanogaster- like 
clock network is the ancestral one that is preserved in all 
fly species that did not invade high latitudes. Only flies 
that colonized the very north, may have lost PDF in the 
s- LNv, gained PDF fibres from the l- LNv running into the 
central brain, and have lost CRY in the l- LNv. If our hy-
pothesis is true, there might even exist fly species in the 
Sophophora group that colonized the north and developed 
the clock network typical for high latitude species. Indeed, 
the latter appears to apply for D. pseudoobscura that have 
the typical high latitude clock network (Hermann et al., 
2013). D. pseudoobscura did not invade subarctic regions, 
but they colonized regions in Canada up to 60°N.

Nevertheless, as already discussed for the Thr- Gly repeat 
in PER of the Siphlodora subgenus, there are different ways 
how the circadian clock can adapt to high latitude habitats. 
The species Chymomyza costata, which is at the base of the 
Drosophilinae (Figure 1b) is well- known for its extreme cold 
resistance (Koštál, 2011a,b). C. costata flies are distributed 

F I G U R E  3  Clock network in the fruit fly brain. (a) Clock 
neurons and their neurites in Drosophila melanogaster. The neurons 
consist of lateral neurons (s- LNv, l- LNv, LNd, 5th LNv, LPN) and 
dorsal neurons (DN1, DN2, DN3) that are heterogeneous in respect of 
neuropeptide and Cryptochrome (CRY) expression. Here, we focus 
on the s- LNv and l- LNv that express the Pigment- Dispersing Factor 
(PDF; cyan, left hemisphere) and CRY (yellow, right hemisphere). (b) 
Confocal pictures showing the PDF neurons and their arborizations 
in the brain and the medulla of the optic lobe for D. melanogaster, 
the high- latitude species D. ezoana and the tropic species Zaprionus 
indianus. D. melanogaster expresses PDF in the s- LNv and in the 
l- LNv. The l- LNv send arborizations to the medulla (ME) and via the 
posterior optic commissure (POC) to the other brain hemisphere. The 
s- LNv project into the central brain and terminate close to the dorsal 
neurons (arrowheads in b, compare with a). D. ezoana expresses PDF 
only in the l- LNv. These also project via the POC to the other brain 
hemisphere, but many fibres leave the POC and invade the central 
brain. Here, the latter come close to the LNd and dorsal neurons 
(arrows in b, compare with a). In the dorsal central brain PDF is 
additionally expressed in non- clock neurons (asterisks). Z. indianus 
expresses PDF in the s- LNv and the l- LNv as does D. melanogaster 
and the overall arborization pattern of these two groups of neurons also 
largely resembles D. melanogaster. The cell bodies of the s- LNv are 
only weakly stained in this individual, but the terminals of the s- LNv in 
the dorsal brain are nicely visible (arrow heads). Scale bar: 100 μm
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in Eastern Siberia, Northern Lapland, Iceland, and from 
northern Japan to the Artic Cycle (Hackman, Lakovaara, 
Saura, Sorsa, & Vepsalainen, 1970). Nevertheless, they pos-
sess a D. melanogaster- like clock network and their rhyth-
mic behaviour under artificial long photoperiods in the lab is 
also D. melanogaster- like (Bertolini and Menegazzi, unpub-
lished observations). This confirms that the clock network 
determines rhythmic behaviour, but it also shows that the 
circadian clock of C. costata flies has found other ways to 
adapt to high- latitudes. Future studies have to reveal these 
mechanisms.

6 |  CONCLUSION

The dissection of the circadian clock into its molecular 
components propelled the understanding of circadian tim-
ing mechanisms. Clock genes evolve rapidly (Colot et al., 
1988) permitting latitude- specific modifications that en-
able organisms to maintain an optimal timing while colo-
nizing higher latitudes (Hut, Paolucci, Dor, Kyriacou, & 
Daan, 2013; Kyriacou et al., 2008). Here, we discussed ad-
ditional modifications of the brain clock network evolved 
in Drosophila species that colonized very high latitudes. 
These modifications concern the clock factors CRY and 
PDF that are involved in circadian photoreception and the 
timing of activity. It will be most promising to investigate, 
whether similar modifications are also present in other in-
sect species that colonized very high latitudes and if not, 
which solutions these found to cope with the environ-
mental challenges at these regions from a clock watcher’s 
perspective.
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