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Abstract. Stroke is the leading cause of disabilities and cogni-
tive deficits, accounting for 5.2% of all mortalities worldwide.
Transient or permanent occlusion of cerebral vessels leads to
ischemic strokes, which constitutes the majority of strokes.
Ischemic strokes induce brain infarcts, along with cerebral tissue
death and focal neuronal damage. The infarct size and neuro-
logical severity after ischemic stroke episodes depends on the
time period since occurrence, the severity of ischemia, systemic
blood pressure, vein systems and location of infarcts, amongst
others. Ischemic stroke is a complex disease, and neuronal inju-
ries after ischemic strokes have been the focus of current studies.
The present review will provide a basic pathological background
of ischemic stroke and cerebral infarcts. Moreover, the major
mechanisms underlying ischemic stroke and neuronal injuries
are summarized. This review will also briefly summarize some
representative clinical trials and up-to-date treatments that have
been applied to stroke and brain infarcts.
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1. Introduction

Stroke was the leading cause of disabilities and cognitive
deficits, and the fifth leading cause of mortality in the USA
in 2017 (1). Moreover, ischemic stroke accounted for 5.2% of
all deaths worldwide in 2015 (2). The basic pathological cause
of ischemic stroke is intravascular thrombosis, which can
result in cerebral tissue necrosis and focal neuronal deficits.
There are three known leading causes of ischemic strokes:
50% are caused by arteriosclerotic plaques of the cerebral
vessels and the rupture of the arteriosclerotic plaque, 20% are
caused by cardiogenic cerebral infarction, and 25% are caused
by Lacunar infarcts from small vessel lesions (3). Furthermore,
the remaining 5% are due to other exceptional cause such as
vasculitis and extracranial arterial dissection (4).

Acute ischemic stroke (AIS) is a type of ischemic stroke
that can cause severe brain and neuronal damage in a very
short time after the ischemic episode (5). Various degrees
and types of brain damage are caused by ischemic stroke
and cerebral infarcts, including cerebral tissue lesions and
structural damage, and neuronal death and deficits, amongst
others. Clinical symptoms of these types of damage can be
observed in patients with conditions such as Alzheimer's
disease (6-11), motor functional deficits (12), impaired intel-
ligence quotient score (13) and multiple cognitive functional
deficits (selective attention, working memory, information
processing, abstract reasoning and verbal comprehension),
amongst others (14-19). According to the findings of numerous
studies examining the mechanisms and clinical management
of ischemic stroke and cerebral infarction, there are three
major mechanisms underlying the neuronal injuries caused
by ischemic stroke and cerebral infarcts. Firstly, the loss of
neurons induced by ischemia and infarcts is one of the most
direct cause of neuronal injuries (20). With regards to this
mechanism, researchers have been focusing on the processes
of neuroprotection and regeneration, as well as related
biomarkers and molecular pathways (20). Secondly, vascular
obstruction caused by ischemia excessively produces reactive
oxygen species (ROS), and it has been shown that oxidative
stress exacerbates neuronal damage and leads to severe
functional deficits (21). Pathways reacting to and relieving
oxidative stress are widely investigated to help decrease
neuronal injuries. Inflammation induced by ischemia is an
additional factor that leads to further neuronal damage after
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strokes (22). Therefore, effectively manipulating the immune
responses may help to reduce neuronal injuries.

In vivo animal models of ischemic stroke and brain infarcts
provide valuable insights into the underlying mechanisms and
possible clinical therapies. The middle cerebral artery occlu-
sion (MCAO) model in murine models is most widely used
for in vivo studies (23). Embolic MCAO models closely mimic
human stroke, >80% of which are caused by thrombosis or
embolism (24). MCAO produces regenerative occlusion in
middle cerebral arteries, and also enables reperfusion without
extracranial resection of the occlusion (25). Although the
mechanism of such rapid recovery of blood flow differs from
the pathophysiology of human strokes, this model can still
commendably simulate the clinical application of mechanical
thrombolysis (25), which may be more widely applied in
patients in the future. In addition, the various models of
embolic stroke and spontaneous stroke can most effectively
simulate the real condition of human strokes (26,27). Different
experimental models have contributed significantly to the
current knowledge regarding stroke pathophysiology and its
consequences, and each model causes different changes in the
cerebral microcirculation and local inflammatory responses
after ischemia (26). Nevertheless, these models are accompa-
nied by higher instability regarding the size and location of
infarcts. For instance, such instability includes unpredictable
stroke attacks in spontaneous stroke models and unpredictable
reperfusion conditions in embolic stroke models (23).

The ultimate therapeutic goal for ischemic stroke and
brain infarcts is to reduce neuronal injuries by relieving
arterial occlusion (recanalization) and recovering cerebral
blood flow (reperfusion) (28). The basic hypothesis of the
pathophysiological response during AIS treatment is that once
the cerebral artery has been occluded, hypo-perfused brain
tissues are at risk of permanent infarction, but such tissues
can be effectively rescued via the rapid recovery of the blood
flow (29). These tissues are known as ischemic penumbras,
and preventing the conversion of ischemic penumbra to invers-
ible infarction is the aim of AIS treatment (28). Primary stroke
treatment challenges are partly a result of distinguishing the
penumbra from the core zone and the penumbra from benign
hypoperfusion tissues, which have poor perfusion but without
the risk of infarction (30).

2. Pathophysiological processes of ischemia

Investigations into ischemic stroke and neuronal injuries
have indicated that neuronal damage is caused by neuron
loss, oxidative stress and immune responses (31-33). Various
biomarkers and molecular pathways are involved in rescuing
neuronal damage caused by ischemic stroke and cerebral
infarction.

Neuron protection and regeneration. The survival of neurons
influences the stability and completeness of brain functions,
and neuron loss directly results in cerebral functional defi-
cits (34). Hence, neuronal protection and regeneration has been
the major focus for effectively rescuing cerebral functional
deficits. There are various methods to achieve this goal, which
include enhancing neuron protection, promoting neuron repair
and neuron regeneration, and direct mediation of neuronal

survival or death, amongst others. For instance, astrocytes
contribute to angiogenesis, neurogenesis, synaptogenesis
and axonal remodeling (35). Thus, promoting neurological
recovery during the late recovery phase after stroke could
provide benefits for neuroprotection. Astrocytes limit lesion
extension by exerting anti-excitotoxicity effects and releasing
neurotrophins (36). Therefore, the pivotal involvement of
astrocyte responses to an ischemic lesion designates them
as excellent therapeutic targets to improve the functional
outcome following stroke. In addition, the blockade of the
GSK-3f-induced degradation of B-catenin, which in turn
promotes neuronal survival, represents a key step in the ability
of Wntl to safeguard midbrain dopaminergic neurons (37).
Within the central nervous system, Wnt signaling cascades
orchestrate all aspects of neuronal functions, including differ-
entiation, neuron death or survival, axonal extension, synapse
formation and plasticity, neurotrophin transcription, neurogen-
esis and regeneration (38-41).

Voltage-gated K* channel (Kv)2.1/Kv2.2 pathway and neuron
protection. Kv2.1 is involved in the neuron apoptosis pathway.
Neurons characterized with low functional expression of
Kv2.1 are observed to have high resistance against apoptotic
stimuli (42). However, overexpression of the C terminal in its
homologous Kv2.2 pathway interferes with the Kv2.1 cluster,
without affecting other active channels. Such interference leads
to neuron protection by blocking the increased current intensity
of the K* pathway (43,44). In a previous study, it was identi-
fied that a seven-amino acid declustering domain, SIDSFTS,
induces the dispersion of the Kv2.1 cluster to protect neurons
in a murine ischemia-reperfusion model (45). Furthermore, the
membrane-permeable derivative, TAT-DP-2, induces Kv2.1
surface cluster dispersal, prevents post-injurious pro-apoptotic
potassium current intensity enhancement, reduces infarct
size and improves long-term neurological function following
stroke (45). The therapeutic peptide derived from TAT-DP-2 is
permeable to the blood brain barrier (BBB), providing effec-
tive neuron protection in murine models after ischemic stroke
in vivo (45). Thus, destruction of the Kv2.1 cluster provides
neuronal protection (Fig. 1) (45).

WD repeat containing antisense RNA targeting TP53
(WRAPS53) mediates neuron repair. It has been shown that
WRAPS53 expression induces DNA double strand repair
in neurons to promote functional recovery after ischemic
stroke (46). Moreover, oxygen/glucose deprivation induces
excessive production of ROS in murine stroke models, and
ROS break DNA double strands in neurons (47). Furthermore,
WRAPS53 activation promotes DNA repair after its transloca-
tion into the nucleus. Knockdown of WRAP53 exacerbates
DNA double strand damage, which results in lower resistance
to apoptotic stimuli in neurons. By contrast, overexpression
of WRAPS53 activates DNA double strand repair, and conse-
quently promotes neuron protection and survival (46). Clinical
trials have demonstrated that high WRAPS53, a telomere-related
gene, may be beneficial for healthspan in humans, reversing
certain deleterious metabolic consequences of prediabetes (48).

Neural precursor cells (NPCs) mediate astrocyte-neuron
conversion. NPCs facilitate the survival, proliferation and
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Figure 1. Kv2.1/Kv2.2 pathway in neuron protection. Kv, voltage-gated K* channel. CREB, Cyclic AMP response-element binding protein; PI3K/Akt, phos-

phatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B.

regeneration of neurons in stroke areas and infarct zones in
animal models (9-11). Some clinical trials have reported posi-
tive results for the use of NPCs in patients (49). Moreover,
transplantation of external NPCs is another potential clinical
treatment for strokes (6-8). Neurotrophic factors are used to
amplify neuron regeneration in adult mammalian brains via
embedded neurogenesis, but this only contributes to <1% of
the neuron loss caused by ischemic strokes (50-54).

Having been transplanted into damaged cortical zones,
neural stem cells (NSCs) from the cerebral pituitary
chamber are responsible for producing astrocytes rather
than neurons (55,56). Furthermore, transplanted external
NSCs are associated with various challenges, such as
immunological rejection, tumor progression and poor
long-term survival (12,49,57-59). In addition, astrocytes can
be converted to neurons after ischemic stroke in vitro and
in vivo (13-17,19,60-62). For instance, Chen et al (20) reported
a 74.3% astrocyte-neuron conversion rate in murine models
after stroke. However, the clinical effects of this conversion in
patients has not been investigated.

N-methyl-D-aspartate receptor (NMDAR) bidirectional
regulation of neuronal survival or death. NMDARs are a
crucial regulatory factor of neuron injuries and ischemic
stroke. NMDARS serve a double-edged role in the regulation of
neuronal survival or death (63-65). Firstly, different subtypes
of NMDARSs regulate neuronal survival and death (66-68).
It has shown that NMDAR antagonists, containing NMDA
receptor 2B (GluN2B), relieve the toxicity caused by NMDA
in temporary MCAO (tMCAQ) models in vitro and in vivo.
However, NMDAR antagonists containing GluN2A aggravate
neuronal death rather than relieving its effects (66,68-74).
Secondly, the functions of NMDARSs vary with their loca-
tions. Indeed, NMDARSs inside and outside the synapse exert

opposite functions (63,75,76). NMDAR downstream mecha-
nisms and pathways are complex (77-81). NMDARs inside
and outside of synapses evoke ERK1/2 kinases, but only
the NMDARs inside the synapse increase the level of ERK
phosphorylation to provide protection for neurons under toxic
conditions (80,82). Notably, stimulation of the NMDAR outside
the synapse inactivates ERK1/2 (82). Thirdly, NMDARs
serve various roles in signaling pathways that modulate
neuronal survival and death (64,65). A low concentration of
NMDA activates NSCs to exert a neuroprotective response.
Furthermore, the PI3K/Akt kinase and MAPK pathways
are downstream of NMDARs involved in neuron survival
(Fig. 2) (63,83). MAPK signaling pathway members, including
p44/42 MAPK (ERK1/2), JNK and p38 MAPK, regulate
cell proliferation and differentiation, and the responses to
cytokines and stress during protein kinase cascades. However,
NMDARSs induce neural toxicity by activating NSCs, in the
form of the GluN2B-postsynaptic density protein 95-neuronal
nitric oxides synthase complex (84,85), GluN2B-death associ-
ated protein kinase 1-p53 complex (86,87) or GluN1-PTEN
complex (88) (Fig. 3).

Oxidative stress. Heme oxygenase 1 (HO-1) is highly expressed
in brain tissues after cerebral injuries, including stroke and
infarction, and a high expression level of HO-1 symbolizes
the activation of the protective mechanism against oxidative
stress (89). Brain injuries are associated with oxidative stress.
It has been revealed that Persian blue (PB) nanoparticles
effectively eliminate excessive ROS produced by ischemic
stroke and cerebral infarcts. PB exerts a similar function
to catalase, superoxide dismutase and peroxidase (90,91).
Moreover, hollow Prussian blue nanozymes (HPBZs) react
and neutralize inflammation caused by immune responses, as
well as suppressing neuron apoptosis in vitro and in vivo. Thus,
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Figure 2. NMDARs mediate bidirectional regulation of neuronal survival or death. NMDAR, N-methyl-D-aspartate receptor; mGluR1, metabotropic glutamate
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Figure 3. NMDARs induce neural toxicity through the GluN2B-postsynaptic density protein 95-nNOS axis. NMDAR, N-methyl-D-aspartate receptor;
GIluN2B, NMDAR receptor 2B; nNOS, neuronal nitric oxides synthase; PDZ, PSD95 discs-large and zona occludens-1; Tat-NR2B9c, postsynaptic density 95
blocking peptide; ZL006, a small-molecular inhibitor of the nNOS-PSD-95 interaction; SH3, Src Homology 3; GK, guanylate kinase.

HPBZs increase the tolerance to strokes and minimize neural
injuries (92).

Immune responses. Stroke interrupts the blood flow into the
brain. The pathophysiology of stroke involves a progressive
systematic response after brain damage (93). Animal stroke
models (94) and clinical patients (95) show dynamic BBB
rupture. The BBB fracture induced by stroke initiates a series
of pathological responses. The hyperinflammatory responses
caused by strokes include increased levels of inflammatory

cells, cytokines and chemokines in the circulating blood (96).
Recently, it has been shown that infarct sizes are effectively
decreased and that a promising recovery of neural injuries
occurs at 6.5-7 h after the stroke in an animal model of
tMCAO (22). The intervention used in this model was blood
substitution therapy to replace the blood of mice suffering from
strokes with the whole blood from healthy infant mice (22).
The possible underlying mechanisms in this therapy may be
as follows: Firstly, the brain antigens released after the rupture
of the BBB may activate the immune system after stroke.
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Therefore, replacing the blood in mice with strokes may reduce
the amount of brain antigens in the circulating blood to alleviate
the immune responses after stroke. Secondly, replacing the
blood in mice with strokes effectively reduces the number of
activated leukocytes. Thus, large amounts of harmful signals in
circulating blood after stroke, including cytokines, chemokines
and proteases, are decreased. Finally, new replacement blood
may provide oxygen and various other neuroprotective factors.

Platelet microvesicle (PMV) intervention and microRNAs
(miRNAs/miRs). The molecular mechanism of neuronal
damage caused by ischemic stroke and cerebral infarction is
complex. In addition to the molecular processes previously
mentioned, multiple other factors also provide new insights
into the treatment of stroke. Recently, PM Vs have been found
to significantly improve the recovery of neurological function
in mice with cerebral infarction and promote angiogenesis
at the infarction edge (97). The procoagulant and proinflam-
matory phenotype of circulating PMVs may contribute to
acetylsalicylic acid treatment failure in patients with conva-
lescent stroke (98).

Accumulating evidence has shown that exosomal miRNAs
are one of the most important factors involved in the patho-
genesis of stroke. Exosomal miRNAs are used as non-invasive
biomarkers in stroke diagnosis and for monitoring the response
during therapy (99). Antagomirs (anti-miRNAs) are an effec-
tive treatment method to enhance neuronal survival in various
animal models, for example, administration of an antisense
oligonucleotide inhibitor of miR-129-5p to an amyotrophic
lateral sclerosis animal model, SOD1 (G93A) mice, resulted
in a significant increase in survival and improved the neuro-
muscular phenotype in treated mice (100); and some miRNAs
show therapeutic effects in stroke (101). These miRNAs affect
the pathways induced by stroke, including leukocyte extrava-
sation signaling, NF-kB signaling, Toll-like receptor signaling
and the prothrombin activation pathway (102). For instance,
miR-122, miR-9, miR-298 and miR-155-5p participate in brain
injury after stroke by targeting different genes involved in
the NF-«B signaling pathway (103-106). Thus, miRNAs are
crucial in stroke progression, diagnosis, therapy and prognosis.

3. Clinical management

At present, thrombolytic therapy is the most widely applied
treatment for ischemic stroke and brain infarction (107). The
basic principle of thrombolysis is to recanalize and reperfuse
cerebral arteries using thrombolytic drugs and mechanical
thrombectomy devices, eventually leading to the partial
recovery of brain tissues and neural functions (108). The
clinical effectiveness of intravenous thrombolytic therapy
has been established for patients within 4.5 h of stroke onset.
However, numerous patients experience complicated situa-
tions, such as proximal artery occlusion, >4.5 h of stroke onset
and contraindication of systemic thrombolysis due to recent
major surgeries or active hemorrhage. Such patients are not
suitable for intravenous thrombolysis therapy (109). Therefore,
a recent review indicated that several studies and clinical
trials have focused on catheter or artery-based treatments that
directly remove occlusions in blood vessels and recover the
blood flow (28).

Intravenous thrombolysis. Clinical trials funded by the United
States Natural Institute of Neurological Diseases and Stroke
and the European Acute Stroke Study have shown that intra-
venous thrombolysis has strong effects in patients with mild
symptoms or no disability, and that intravenous thrombolysis
has more benefits than limitations in patients with a full range
of disabilities (110,111). For instance, treatment with tissue
plasminogen activator in the 3- to 4.5-h window confers benefit
on approximately half as many patients as treatment for <3 h,
with no increase in the conferral of harm; ~1 in 6 patients has
a better outcome and 1 in 35 has a worse outcome as a result
of therapy. Previous studies (112-114) have established intrave-
nous thrombolysis as the standard therapy for patients with AIS
within 3 h of stroke onset. Intravenous thrombolysis is benefi-
cial for all levels and subtypes of strokes (115), and 35-40% of
patients displayed a good therapeutic outcome. However, only
10-15% of internal carotid artery occlusions and 25-50% of
proximal MCAO were alleviated by intravenous thrombolysis
therapy alone. These data indicated that the proximal artery
occlusion (internal carotid artery and MCAQO) may be resistant
to intravenous thrombolysis therapy alone (116,117). Proximal
artery occlusion leads to one-third of AIS cases with severe
stroke symptoms and has the negative outcome of ineffective
reperfusion (118). Thus, several large-scale clinical trials have
been focusing on identifying other substitutional or adjunc-
tive therapies based on intravenous thrombolysis to improve
recanalization and the reperfusion rate.

Arterial thrombolysis. Arterial thrombolysis consists of
chemical thrombolysis and mechanical thrombectomy, and
the use of intravenous therapy prior to mechanical throm-
bectomy has been recently questioned (118). The clinical
efficacy and safety of arterial thrombolysis with the selective
thrombolytic recombinant-pro-urokinse (r-proUK) has been
investigated in two randomized acute stroke treatment trials,
namely PROACT I and PROACT II (119). It has been shown
that patients treated with such therapy experience the risk of
cerebral hemorrhage. Moreover, the outcome of combining
arterial thrombolysis with other agents as therapy remains
unclear. Therefore, the Food and Drug Administration (FDA)
did not grant the clinical application of arterial r-proUK.
Nevertheless, a recent study reported that r-proUK promoted
thrombolysis and recanalization, with a decreased risk of cere-
bral hemorrhage, and thus, this treatment exerted protective
effects on cerebral ischemia in rabbits (120).

Different from recently developed chemical thrombolysis,
mechanical thrombectomy has been widely applied in the
clinic (121). The FDA granted permission of several mechan-
ical thrombectomy devices based on positive results yielded
by numerous large-scale clinical trials (122). These devices
can effectively recanalize proximal artery occlusion with an
acceptable rate of complications (123,124). Indeed, any type
of intracerebral hemorrhage was observed less frequently
in the mechanical thrombectomy alone group compared
with that in the group using the combination of intravenous
thrombolysis with mechanical thrombectomy (125). However,
the mechanical thrombectomy alone group failed to show a
favorable functional outcome among patients with acute large
vessel occlusion stroke compared with the combined group.
Furthermore, a recent finding supported the hypothesis that
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intravenous therapy before mechanical thrombectomy does
not influence the prognosis of patients with stroke (126).

Pre-clinical magnetic resonance imaging. Trials of novel
recanalization methods based on MRI tool selection of
patients are ongoing. Unless a specific lesion site is taken into
account, functional deficits due to medium-sized infarcts are
difficult to predict (127). Accurate information regarding the
location of the lesion and the progression of the disease is
crucial for clinic therapy. Therefore, promising neuroprotec-
tive compounds in the pre-clinical phase can be subsequently
dismissed for ineffectiveness in large-scale clinical trials due to
inaccurate information. Infarction of the internal capsule (IC)
may be associated with motor impairment and poor prognosis
in patients with stroke (128). Pre-clinical MRI information
regarding volume size and the precise location of the lesion into
the IC is required for subsequent therapy. Moreover, the state of
neurological damage according to MRI, as well as the destruc-
tion of axonal structures and pathological changes according to
immunostaining, provide information for the precise injection
site of neuroprotective drugs (129). Thus, combined MRI and
histological methods provide a powerful method of assessing
neuronal damage during cerebral ischemia therapy (129).

4. Conclusion and future perspectives

Ischemic stroke leads to severe outcomes, including cerebral
infarcts, permanent brain damage and neural functional
deficits. Therefore, decreasing and preventing neural injuries
caused by stroke and infarctions has been the focus of mecha-
nistic and therapeutic studies. The current review summarized
the pathophysiology, molecular mechanisms, animal models,
and clinical management and therapies in ischemic strokes.
The related molecular mechanisms in clinical trials should
be further investigated. The American Heart Association has
suggested that arterial thrombolysis is an acceptable alterna-
tive therapy for strokes. Multiple stroke centers provide arterial
thrombolysis for patients experiencing a major acute stroke
attack within 6 h. However, the molecular mechanism under-
lying arterial thrombolysis remains to be fully investigated.
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