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Abstract: (1) Background: Today’s elite alpinists target K2 and Everest in midwinter. This study
aimed to asses and compare weather at the summits of both peaks in the climbing season (Everest,
May; K2, July) and the midwinter season (January and February). (2) Methods: We assessed
environmental conditions using the ERA5 dataset (1979–2019). Analyses examined barometric
pressure (BP), temperature (Temp), wind speed (Wind), perceived altitude (Alt), maximal oxygen
uptake (VO2max), vertical climbing speed (Speed), wind chill equivalent temperature (WCT), and
facial frostbite time (FFT). (3) Results: Most climbing-season parameters were found to be more
severe (p < 0.05) on Everest than on K2: BP (333± 1 vs. 347± 1 hPa), Alt (8925 ± 20 vs. 8640 ± 20 m),
VO2max (16.2 ± 0.1 vs. 17.8 ± 0.1 ml·kg−1·min−1), Speed (190 ± 2 vs. 223 ± 2 m·h−1), Temp
(−26 ± 1 vs. −21 ± 1◦C), WCT (−45 ± 2 vs. −37 ± 2 ◦C), and FFT (6 ± 1 vs. 11 ± 2 min). Wind
was found to be similar (16 ± 3 vs. 15 ± 3 m·s−1). Most midwinter parameters were found to be
worse (p < 0.05) on Everest vs. K2: BP (324 ± 2 vs. 326 ± 2 hPa), Alt (9134 ± 40 vs. 9095 ± 48 m),
VO2max (15.1 ± 0.2 vs. 15.3 ± 0.3 ml·kg−1·min−1), Speed (165 ± 5 vs. 170 ± 6 m·h−1), Wind
(41 ± 6 vs. 27 ± 4 m·s−1), and FFT (<1 min vs. 1 min). Everest’s Temp of −36 ± 2 ◦C and WCT
−66 ± 3 ◦C were found to be less extreme than K2’s Temp of −45 ± 1 ◦C and WCT −76 ± 2 ◦C. (4)
Conclusions: Everest presents more extreme conditions in the climbing and midwinter seasons than
K2. K2’s 8◦ higher latitude makes its midwinter BP similar and Temp lower than Everest’s. K2’s
midwinter conditions are more severe than Everest’s in the climbing season.

Keywords: winter sports; mountaineering; environmental conditioning; extreme altitude; Mount
Everest; K2

1. Introduction

The history of alpinism shows that the altitudes considered by one generation to be
at the limit of human survival have been exceeded by the best climbers of succeeding
generations [1]. In May 1978, R. Messner and P. Habeler achieved the final altitudinal limit
of 8848 m Mount Everest (Everest) without supplemental oxygen [2,3]. Their ascent proved
the thesis propounded in 1920 by Alexander Kellas, the pioneer of high-altitude physiology,
that Everest could be ascended by humans of extreme physical and mental constitution
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without supplementary oxygen [4]. In September 1978, L. Reichardt climbed K2 (8611 m),
the second highest 8000 m (8K) peak, without oxygen.

Reaching the top of the world without supplemental oxygen has encouraged moun-
taineers to search for more extreme high-altitude challenges. Since Messner and Habeler’s
success, Everest and K2 had each been climbed more than 200 times without oxygen by
2021 [5–7]. Winter Himalayan mountaineering was launched in February 1980 with the
first winter oxygen-supported ascent of Everest by K. Wielicki and L. Cichy [8]. Only
one climber, Ang Rita Sherpa, has repeated their feat without supplemental oxygen—on
the first day of winter, 22 December 1987 [5,9,10]. By 2021, all 8K peaks but K2 had been
climbed in winter without oxygen [5]. K2 was finally conquered by a team of 10 Nepalese
climbers on 16 January 2021 [11]. One climber, Nirmal Purja, reached the summit without
supplemental oxygen [12].

Apart from the elite mountaineers who focus on climbing Everest and K2 in midwinter
without supplemental oxygen, a growing number of commercial expeditions are interested
in high-altitude winter expeditions [13].

Meteorological factors that limit human survival at the top of Everest—such as baro-
metric pressure (BP), wind chill equivalent temperature (WCT), and facial frostbite time
(FFT)—have already been assessed with meteorological datasets and in situ observa-
tions [9,14–24]. The estimated average monthly BP in May on Everest, its main climbing
season, is 333 hPa, and in midwinter in January and February, it is 323 hPa [23]. The
average climbing-season WCT is −45 ◦C, and the average climbing-season FFT is 7 min;
the average midwinter WCT is close to −65 ◦C, and the average midwinter FFT is less than
one minute [20]. The most extreme air temperature (Temp) on the summit of Everest might
be as low as −49 ◦C, and wind speed (Wind) might be as high as 80 m·s−1 [24].

Surprisingly, similar calculations had not yet been made for K2 (8611 m), which is the
highest peak in the Karakoram range. K2 is the second highest peak in world and was the
last 8K peak climbed in winter. Latitude and altitude are the main factors that determine
climatic parameters such as Temp, BP, and Wind [25]. The higher the altitude and the
latitude and the colder the season, the lower are BP and Temp at a given altitude [14,25–28].
The summit of K2 is 237 m lower than Everest’s, but it is located 8◦ further north, which
might substantially affect its weather conditions, especially in midwinter. Therefore, this
study aimed to assess and compare weather at the summits of Everest and K2 in the main
climbing season and in midwinter, as well as to precisely define which summit has the
most extreme environmental conditions and in which season that occurs.

We analyzed the climatic parameters most limiting human performance and survival
at high altitudes. BP determines the partial pressure of inspired oxygen, which is critical for
physiological performance, maximum oxygen uptake (VO2max), and the speed of vertical
ascent (Speed) at extreme altitude [1,23,29–31]. A combination of low Temp and high Wind
in parameters such as WCT and FFT determines the risk of hypothermia and frostbite [32].

2. Materials and Methods

We estimated environmental conditions at the summits of Everest and K2 in all months
from 1979 to 2019, and then we conducted a comparative analysis of the climbing season
(Everest, May [5,23]; K2, July [7]) and the midwinter season (January and February). The
main climbing season on Everest is mostly restricted to May [5,23] because of summer
snowfalls caused by monsoons [17,18,20]. K2’s climbing season is in July [7].

There are no weather stations on K2 that could provide in situ data. Therefore, our
primary source of meteorological conditions was the ERA5 Reanalysis, a state-of-the-
art database provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF) [33]. ERA5 is based on a model that assimilates all available observations,
including satellite data, and is available at the high spatial resolution of 0.25 × 0.25 degrees
of latitude and longitude. The calculated values of weather conditions should be interpreted
as the average for a roughly rectangular area with sides of about 28 by 24 km (Everest) or
by 22 km (K2) at the altitude of the summit in which the mountain is located.
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In this research, four meteorological variables were used at selected isobaric levels:
300, 350, and 400 hPa. We used hourly means of geopotential height, air temperature, and
wind vector (u, zonal; v, meridional) to calculate Wind. The data preparation required us
to calculate BP at the summit levels of Everest and K2, with a subsequent interpolation
of Temp and Wind. We calculated BP by fitting a nonlinear regression model to each
instance of the air pressure–height profile. Calibrated model coefficients were then used to
estimate BP at a given height, thus providing the data we needed to estimate the value of
other variables. Temp and Wind were derived from linear interpolation using values at
predefined isobaric surfaces from ERA5 and the calculated value of BP at summit level. The
temperature lapse rate changes with the season [34], so Temp was calculated individually
for each instance. The unit of analysis we used for each weather parameter was the monthly
mean based on a sample of 41 monthly means between 1979 and 2019.

BP on the summits of Everest and K2 was presented as perceived altitude (Alt), which
was calculated using the model atmosphere equation [27]:

BP [hPa] = ln(6.63268 − 0.1112 h − 0.00149 h2) 0.75−1, (1)

where h is a perceived altitude in [km] [27]. This equation is representative for the pressure–
altitude relationship at a location within 30◦ of the equator in summer months, so perceived
altitude is the altitude at which the given BP would exist in summer months within 30◦ of
the equator.

We also presented BP values in terms of VO2max and Speed using the formulas presented
by Matthews et al. [23], who synthesized the conclusions of other authors [30,31,35,36]:

VO2max [mL·kg−1·min−1] = [ln(PiO2 0.750) − 3.25] 0.0308−1, (2)

where PiO2 is a partial pressure of inspired oxygen in hPa at a given altitude; and

Speed [m·h−1] = [41.54 85% VO2max − 255.96] 60. (3)

The results of VO2max and Speed are representative for a male Caucasian climber
with a sea-level VO2max of about 57 mL·kg−1·min−1 [14,35]. For the calculation of Speed,
we set the mass of a hypothetical climber with equipment at 100 kg [14,30].

From the Temp and Wind results, we estimated the thermal stress indices WCT and
FFT. Our WCT and FFT calculations we based on formulas by Osczevski and Bluestein and
by Tikuisis and Osczevski [37,38]:

WCT [◦C] = 13.12 + 0.621T − 11.37V0.16 + 0.3965TV0.16 (4)

FFT [min] = [−24.5(0.667V + 4.8) + 2111] (−4.8 − T)−1.668, (5)

where V is the wind speed at 10 m above the surface (km·h−1) and T is the air tempera-
ture (◦C).

Statistical Analysis

We used Statistica 13.1 (StatSoft, Tulsa, OK, USA) for our calculations, testing the
normality of data with the Shapiro–Wilk W-test and then the homogeneity of variance
with the Brown–Forsythe test. To assess the statistical significance of differences, we used
analysis of variance and Tukey’s post-hoc test. Our results are expressed as means with
a standard deviation (x ± SD). We measured the relative variability of all parameters
using a coefficient of variation (CV) and analyzed any associations of the parameters
using Pearson’s correlation coefficient (r). We set statistical significance at p < 0.05 for all
our analyses.
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3. Results
3.1. Barometric Pressure

The average climbing-season BP on Everest’s summit was found to be 13 ± 1 hPa
lower than on K2 (p < 0.001). The BP calculated for the climbing season corresponded with
a perceived altitude (Alt) of 8925 m on Everest and 8640 m on K2 (285 m difference); see
Table 1 and Figure 1.

Table 1. Barometric pressure and BP-dependent parameters for the months we analyzed: monthly means ± standard
deviation (SD), coefficient of variation (CV%), and minimum and maximum values. Sample size—41 monthly means
(1979–2019).

BP
[hPa]

Alt
[m]

VO2max
[ml·kg−1·min−1]

Speed
[m·h−1]

Everest (May) 333 ± 1 (0.3%) 8925 ± 20 (0.2%) 16.2 ± 0.1 (0.7%) 190 ± 2 (1%)
min 331, max 336 min 8878, max 8972 min 16.0, max 16.5 min 184, max 195

K2 (July) 347 ± 1 (0.3%) 8640 ± 20 (0.2%) 17.8 ± 0.1 (0.6%) 223 ± 2 (1%)
min 345, max 349 min 8595, max 8679 min 17.6, max 18,0 min 218, max 228

Everest (January) 324 ± 1 (0.5%) 9134 ± 39 (0.4%) 15.1 ± 0.2 (1.4%) 165 ± 5 (2.8%)
min 321, max 328 min 9049, max 9192 min 14.7, max 15.5 min 159, max 175

K2 (January) 325 ± 2 (0.6%) 9099 ± 42 (0.5%) 15.3 ± 0.2 (1.5%) 170 ± 5 (2.9%)
min 321, max 329 min 9020, max 9205 min 14.7, max 15.7 min 157, max 179

Everest (February) 324 ± 2 (0.6%) 9134 ± 41 (0.4%) 15.1 ± 0.2 (1.5%) 165 ± 5 (3.0%)
min 320, max 328 min 9040, max 9223 min 14.6, max 15.6 min 155, max 176

K2 (February) 326 ± 2 (0.7%) 9091 ± 53 (0.6%) 15.3 ± 0.3 (1.9%) 170 ± 6 (3.7%)
min 321, max 332 min 8952, max 9189 min 14.7, max 16.1 min159, max 187

BP, barometric pressure; Alt, perceived altitude; VO2max, maximal oxygen uptake; Speed, vertical climbing speed.
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Figure 1. Annual cycle of barometric pressure (BP) at the summits of Everest (red boxes) and K2 (blue boxes). Sample
size—41 monthly means (1979–2019). Bars extend to the maximum and minimum BP, boxes span the 25th–75th percentiles,
crosses inside the boxes mark the monthly mean, and vertical lines inside the boxes represents the monthly median. BP
values for all the corresponding months on the two summits were found to differ significantly (p < 0.001).

Midwinter BP values on both peaks were lower than in the climbing season (p < 0.001).
Everest’s midwinter average BP was 2 ± 1 hPa lower than on K2 (p < 0.001). The climbing



Int. J. Environ. Res. Public Health 2021, 18, 3040 5 of 12

season BP difference of 13 ± 1 hPa between both peaks was much higher than in mid-
winter. The drop of BP between the climbing and the midwinter season was higher on
K2 (21 ± 2 hPa) than on Everest (9 ± 1 hPa). Winter BP corresponded with a perceived
altitude of 9134 ± 40 m on Everest and 9095 ± 48 m on K2 (only 39 m difference). The
midwinter VO2max difference between both peaks was only 0.2 ± 0.2 mL·kg−1·min−1

(p < 0.001), much less than 1.6 mL·kg−1·min−1 (p < 0.001) in the climbing season. The
midwinter Speed difference between both peaks was much lower than during the climbing
season, 5 ± 3 (p < 0.001) vs. 33 ± 3 m·h−1 (p < 0.001); see Table 1 and Figure 1.

K2’s midwinter BP was 8 ± 2 hPa lower than Everest’s in the climbing season
(p < 0.001). The perceived altitude of K2’s summit in midwinter was 170 m higher than
Everest’s in May (9095 ± 48 vs. 8925 ± 20 m). VO2max and Speed were significantly lower
in midwinter on K2 than in the climbing season on the summit of Everest; see Table 1 and
Figure 1.

3.2. Air Temperature

K2’s summit Temp was significantly lower than Everest’s in all the corresponding
months of the year. However, the average climbing season Temp in May on Everest’s
summit was 6 ± 2 ◦C lower than in July on K2 (p < 0.001). In midwinter, Temp was
9 ± 2 ◦C lower on K2 than on Everest (p < 0.001). The reduction of Temp between the
climbing and midwinter seasons was higher on K2 (25 ± 2 ◦C) than on Everest (10 ± 2 ◦C);
see Table 2 and Figure 2.

Table 2. Ambient temperature, Wind, and thermal stress indices: WCT and FFT for the months we analyzed: monthly
means± standard deviation (SD), coefficient of variation (CV%), minimum and maximum values. Sample size—41 monthly
means (1979–2019).

Temp [◦C] Wind [m·s−1] WCT [◦C] FFT [min]

Everest (May) −26 ± 1 (5.1%) 16 ± 3 (19.4%) −45 ± 2 (5.5%) 6 ± 1 (22.4%)
min −29, max −24 min 11, max 25 min −50, max −41 min 3, max 9

K2 (July) −21 ± 1 (6.6%) 15 ± 3 (17.3%) −37 ± 2 (6.4%) 11 ± 2 (22.4%)
min −24, max −18 min 8, max 20 min −42, max −31 min 7, max 18

Everest (January) −36 ± 2 (6.1%) 42 ± 5 (12.1%) −66 ± 3 (4.2%) −2 ± 1 (68.0%)
min −40, max −31 min 33, max 53 min −72, max −60 min −4, max 0

K2 (January) −45 ± 1 (2.8%) 27 ± 4 (15.5%) −76 ± 2 (2.6%) 1 ± 1 (63.3%)
min −48, max −43 min 20, max 38 min −82, max −73 min −1, max 2

Everest (February) −36 ± 3 (7.0%) 40 ± 7 (18.1%) −66 ± 3 (4.6%) −1 ± 2 (126.2%)
min −40, max −29 min 26, max 55 min −72, max −58 min −5, max 1

K2 (February) −45 ± 2 (3.7%) 27 ± 4 (13.1%) −75 ± 3 (3.5%) 1 ± 0 (49.0%)
min −48, max −40 min 17, max 33 min −81, max −69 min 0, max 2

Temp, temperature; Wind, wind speed; WCT, wind chill equivalent temperature; FFT, facial frostbite time.
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3.3. Wind Speed

The average climbing season Wind on the Everest’s summit was only 1.1 ± 4.1 m·s−1

higher than on K2 (p = 0.99996). Higher midwinter Wind was encountered on both peaks:
the average on Everest was 14 ± 5 m·s−1 higher than on K2 (p < 0.001). The increase of
Wind between the climbing and midwinter seasons was higher on Everest (25 ± 6 m·s−1)
than on K2 (12 ± 4 m·s−1); see Table 2 and Figure 3.
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3.4. Wind Chill Temperature and Facial Frostbite Time

The average climbing-season WCT on Everest’s summit was 8 ± 3 ◦C lower than on
K2 (p < 0.001). In contrast, the average midwinter WCT on K2 was 10 ± 2 ◦C lower than on
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Everest (p < 0.001). The drop in WCT between the climbing and midwinter seasons was
higher on K2 (39 ± 3 ◦C) than on Everest (21 ± 2 ◦C).

The average climbing-season FFT on Everest was 5 ± 3 min shorter than on K2
(p < 0.001). FFT in winter was extremely low on both peaks but shorter on Everest (<1 min)
than on K2 (1 min) (p < 0.001); see Table 2.

3.5. Combined Weather Parameters

We found a strong positive correlation of BP and Temp (r ≥ 0.8; p > 0.05), a fairly
negative correlation of BP and Wind (Everest r = −0.3; K2 r = −0.5; p < 0.05), and no
correlation between Temp and Wind on both peaks in the climbing season.

In midwinter, BP positively correlated with Temp: on K2, the correlation was strong
(r ≥ 0.8; p > 0.05), but on Everest, it was fair to moderate (February r = 0.4; January r = 0.6;
p > 0.05). There was no correlation between BP and Wind in the midwinter months on both
peaks. In midwinter, Wind moderately positively correlated with Temp on Everest (r ≥ 0.6;
p < 0.05) and fairly positively correlated with Temp in January on K2 (r = 0.3; p < 0.05).

4. Discussion
4.1. Barometric Pressure

Our research aimed to compare climbing conditions on the two summits, but no in
situ data were available for K2, so we presented calculations derived from ERA5. Everest
summit’s estimated mean monthly BP of 333 ± 1 hPa in May, its climbing season, and
324 ± 2 hPa in midwinter corresponded with calculations by other authors: 335 and
324 hPa calculated from radiosonde data [14] and 333 and 323 hPa estimated from in
situ measurements combined with data from the ERA5 Reanalysis [23]. Matthews et al.
corrected data derived from ERA5 with in situ measurements from automatic weather
stations installed on Everest’s South Col (7945 m) and Balcony (8430 m) [23]. The differences
between these results and ours were minimal: Everest’s May BP was the same, and the
midwinter value was only 1 hPa higher in our study compared with Matthews et al. [23].

BP decreases with higher altitude and latitude, but latitude has a much greater effect
in midwinter [25,27]. The relatively large difference between BP on both peaks in climbing
season was caused not only by the altitudinal difference between both peaks but also by the
different months for the main climbing season on both mountains. K2’s season is in July,
the month when a BP of 347 ± 1 hPa was the highest of the year. On Everest, the mean BP
of 338± 0.5 hPa in July was also one of the highest of the year. However, summer snowfalls
on Everest caused by monsoons restrict the climbing season mainly to May, when BP was
found to be 333 ± 1 hPa, which was 5 ± 1 hPa lower than in July. Apart from the 237 m of
altitude difference between peaks, the less barometrically favorable climbing month for
Everest was responsible for the huge BP discrepancy between the peaks in climbing season.

The difference between midsummer and midwinter BP at a given altitude increases
with higher latitude [27], which is in line with our results of a significantly larger BP
difference between midwinter January and midsummer July on K2 (21 ± 2 hPa: 325 ± 2 vs.
347 ± 1) than on Everest (15 ± 12 hPa: 324 ± 1 vs. 338 ± 0.5). K2’s latitude (35◦52′ N) is 8◦

further north than Everest’s (27◦59′ N). K2’s latitude has another important implication:
latitudes between 30◦ and 45◦ N, where K2 is located, show the biggest difference between
the midwinter and midsummer latitudinal effect on BP. Between latitudes of 30◦ and 45◦ N,
at a given altitude BP drops three times more in midwinter than in midsummer [27]. In the
midwinter season, the 8◦ higher latitude of K2 largely reduced the effect of its 237 m lower
altitude on BP, making BP higher but very close to that of Everest in midwinter (2 ± 1 hPa
difference: 326 ± 2 vs. 324 ± 2) and significantly lower than on Everest in climbing season
(8 ± 2 hPa difference: 326 ± 2 vs. 333 ± 1 hPa).

The midwinter BP values we estimated for Everest (324 ± 2 hPa) and K2 (326 ± 2 hPa)
were higher than the BP values of 315 hPa [15] and 302 hPa [23,31] identified as the probable
performance borderlines where VO2max is significantly reduced. Some authors hold that
Bailey’s estimate of 302 hPa was incorrectly based on a linear regression model and is
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unrealistic due to the significantly reduced climbing rates at extreme altitude [39]. Still,
the lower BP in midwinter on both peaks observed in our study was physiologically and
practically significant because of its effect on VO2max and Speed. The 9 ± 1 hPa BP
difference between climbing season and midwinter on Everest amounted to a 7% reduction
in VO2max and a 13% decrease in Speed. The 21 ± 1 hPa BP difference on K2 amounted to
a 14% reduction in VO2max and a 24% decrease in Speed in a midwinter summit bid. The
longer ascent and descent times caused by the slower climbing pace in midwinter should
be considered in summit bid logistics, such as setting the altitude of the last camp and
the times of the start of and withdrawal from a summit bid. An additional unfavorable
circumstance in planning a midwinter summit attack is the shorter winter days.

The prediction of the future BP levels on the summits of Everest and K2 should
consider they will likely increase due to global climate warming. HadCRUT4, a new
dataset of global and regional temperature evolution, demonstrates that global mean
annual ambient temperature increased at a rate of 0.17 ◦C a decade from 1979 to 2010 [40].
Global warming has increased the annual mean BP near Everest’s summit at a rate of
0.35 hPa a decade based on ERA5 Reanalysis from 1979 to 2019 [23] and 0.2–0.3 hPa a
decade based on National Centers for Environmental Prediction (NCEP) Reanalysis from
1948 to 2008 [41].

The perceived altitude of both peaks in climbing season is higher than their altitude
above sea level (a.s.l.). The model atmosphere equation for the pressure–altitude relation-
ship that we used in our research was originally calculated to predict BP at most sites of
interest to high-altitude medicine and works well for locations within 30◦ of the equator in
midsummer [27,28]. The main climbing month on Everest is May, when BP is lower than
in mid-summer months. The Alt in May (8925 ± 20 m) is higher than Everest’s altitude
a.s.l. (8848 m). The perceived altitude on the summit of Everest in June equals its altitude
a.s.l, which proves the model’s atmosphere formula to be correct. K2’s latitude (35◦52′ N)
is higher than 30◦; therefore, because BP at a given altitude decreases with latitude, BP on
K2’s summit in July is lower than if it were located at a lower latitude within 30◦ of the
equator. This explains how K2’s Alt in July was found to be 30 m higher than its altitude
a.s.l. (July 8640 ± 20 m). When extremely low midwinter summit BP values are expressed
as perceived altitude, Everest and K2 are perceived as 9000 peaks in winter, thus making
them the only two such extreme altitudes on Earth.

The same model atmosphere equation was used by Huey and Ward to determine
present-day PiO2 at 9000 m [39]. The estimated value was used as a minimum level
of tolerable PiO2 for calculations of maximum altitude reachable by mountaineers over
geological time. Matthews et al. also converted the differences in Everest’s BP to changes in
elevation [23]. However, they assumed that in May at a pressure of 333 hPa, the perceived
altitude was equal to Everest’s height a.s.l. (8848 m), not the 8933 m from the model
atmosphere equation. This explains why their corresponding Alt values were lower than
ours by about 85 m.

4.2. Air Temperature

Our results showed that K2’s 8◦ further north than Everest’s latitude affects Temp
more than its 237 m lower altitude and makes its Temp significantly lower than Everest’s
throughout the year, especially in midwinter. The main reason that Everest’s Temp is lower
in climbing season is that the climbing season is in spring (May) rather than in summer,
thus accounting for the lower temperatures (Figure 2).

4.3. Wind Speed

Though Wind is similar on K2 and Everest in the climbing season, in midwinter,
Everest experiences significantly higher Wind than K2. This corresponds with global jet
stream trends analyzed by other authors [42,43]. The Northern Hemisphere jet stream forms
a band between northern Africa and Hawaii in winter, but it weakens and shifts northward
in summer [42]. This explains why Wind on K2 and Everest in the climbing season was
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found to be significantly lower than in winter. In winter, the Northern Hemisphere jet flow
splits over the Atlantic Ocean into the Subtropical jet stream (STJ) flowing from western
Africa to the western Pacific and the Polar Front jet stream (PFJ) flowing over northern
Europe and Eurasia [43]. At the longitude of the Himalayas and Karakoram, the STJ flows
between 20◦ N and 35◦ N, above the Himalayas; the PFJ flows between 40◦ N and 70◦

N [43]. This leaves a 5◦ gap between 35◦ N and 40◦ N that lies over Karakoram, which
would explain the significantly lower winter Wind on K2 (Karakoram) that we calculated
compared with Everest (Himalayas).

The STJ shifts towards the pole by about 0.1◦ a decade [43]. K2 is on the northern edge
of the STJ, so this northward shift will make future K2 winter ascents more difficult.

The wind speed is a weather parameter that is commonly used to identify a suitable
weather window for an ascent. Everest’s mean monthly midwinter Wind is about 50%
higher than on K2, so the prospect of a proper acclimatization schedule and finding an
acceptably low Wind weather window in midwinter are definitely diminished on Everest.

4.4. Wind Chill Temperature and Facial Frostbite Time

Our results showed that climbing season WCT and FFT values are lower on Everest,
but in midwinter, WCT is lower on K2 and FFT is shorter on Everest. The colder and
windier main climbing season on Everest explained its lower values of WCT and FFT
than those for K2. The lower midwinter WCT on K2 than on Everest was explained
by the lower Temp on K2. WCT depends more on ambient temperature than on wind
speed [37], so the higher midwinter Wind that we calculated on Everest had less effect
on WCT values than the lower K2’s summit Temp. The WCT index is limited to wind
speeds below 27 m·s−1 [37], so the effect of extremely high midwinter Wind on WCT at
K2, and especially at Everest, could be underestimated. The skin’s rate of cooling is more
sensitive to wind speed than to air temperature [38], so higher midwinter Wind on Everest
explained its lower FFT than that on K2. However, FFTs below 0 min signal that the extreme
combined Temp and Wind midwinter conditions on Everest and K2 might be beyond the
scope of the FFT index.

Everest’s WCT and FFT for the climbing and midwinter seasons that we estimated
were similar to the WCT of −45 ◦C and FFT of 7 min in summer and WCT of −65 ◦C and
FFT <1 min in winter assessed with the US NCEP Reanalysis data [20]. The NCEP Reanaly-
sis is one of the earliest meteorological datasets. It has a 10-times-lower spatial resolution
of 2.5 × 2.5 degrees of latitude and longitude compared with the ERA5 dataset, the highest
quality reanalysis available at this time and what we used in our calculations [44].

Reduced air density at high altitude decreases convective heat loss. Estimates pub-
lished by Huey et al. calculated that with the 60% decline of air density from sea level
to 9000 m, the convective heat loss at 9000 m decreased by about 45% compared with
those at sea level in the same conditions at a Temp of −33.5 ◦C and wind speeds up to
28 m·s−1 [45]. The standard equations for WCT and FFT [37,38] applied in our study
and others [20] include the sea-level densities of air, which therefore might overestimate
heat loss at altitude. Considering the estimates of Huey et al. [45], our results for WCT
and FFT should be reduced to show more realistic values of heat loss at high altitude.
The validation of WCT and FFT or a more complete human heat balance index, such as
the Universal Thermal Climate Index (UTCI) [46], for the high-altitude, low barometric
pressure environment would benefit future high-altitude thermal stress research.

4.5. Combined Weather Parameters

The positive correlation of BP and Temp that we observed for most months corre-
sponded with the interrelation of both parameters described by the ideal gas law relating
pressure, volume, temperature, and the amount of substance of a gas [27]. In the midwin-
ter and climbing seasons, a higher BP accompanied a higher Temp. The fairly negative
correlation of BP and Wind in the climbing season benefits climbers because it means that a
climber should expect a higher BP in a low Wind weather window. The positive correlation
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of BP with Temp and the negative correlation with Wind that we calculated for both peaks
in the climbing season supported the proposal by Moore et al. for Everest climbers that
summit BP can act as a simple and easily implementable predictor of hypothermia and
frostbite [20,22].

One in 34 climbers using supplemental oxygen dies during descents from Everest
compared with one in 12 without oxygen support on Everest and one in five on K2 [6].
Supplemental oxygen reduces the risk of death [6,32,45], high-altitude deterioration, and
hypothermia [47] at extreme altitudes. In view of the more adverse environmental con-
ditions in the main climbing season on Everest than on K2, the technically more difficult
route to the summit of K2 likely accounts for its higher death toll.

In midwinter, Wind moderately correlated positively with Temp on Everest, which
means that during most days of a low Wind weather window, Temp would also be lower.
This link was less evident on K2, where only in January did Wind correlate fairly with
Temp. The higher temperatures that correlated with higher Wind in midwinter on Everest
and K2 were likely related to the high winter STJ activity over this region, as described by
others [43]. The higher correlation of Wind and Temp in midwinter on Everest than on K2
can be linked to the higher winter STJ activity over the Himalayas than over Karakoram.

The combined effects of extremely low BP (which significantly decreases VO2max and
climbing pace), low Temp, and high Wind in midwinter will put climbers trying to reach
the summit of Everest or K2 at high risk of frostbite, hypothermia, metabolic deterioration,
and death [6,32,45,47–49].

We found that midwinter environmental conditions were more severe on Everest,
mostly because of higher Wind, which would make acclimatization and a summit bid
almost impossible. However, when weather risks were compared in potential low Wind
weather windows, they appeared to be slightly worse on K2 because of its lower winter
Temp and extremely low BP compared with Everest. Additionally, K2’s higher death
statistics in climbing season, its more significant decline of weather conditions from the
climbing season to midwinter, and its more technically difficult standard route suggested a
higher risk of deterioration and death in midwinter summit attempts on this peak.

4.6. Limitations and Strengths

Our calculations of weather parameters were not based on in situ measurements but
on the ERA5 Reanalysis dataset, which has a spatial resolution of 0.25 degrees of latitude
and longitude.

This study provides the first comparison of weather parameters at the summits of K2
and Everest in the climbing season and in midwinter. These analyses might help future
winter expeditions to maximize their chances of reaching the summits of K2 and Everest
while minimizing the risks of their attempts.

5. Conclusions

We found that Everest’s higher altitude and spring climbing month presented more
extreme climbing-season weather than the lower K2 with its climbing season in summer;
K2’s 8◦ higher latitude was the main factor responsible for reducing its midwinter BP
to values similar to Everest’s and to a significantly lower Temp than Everest’s; Everest’s
extremely high midwinter Wind made its environmental conditions more severe and
climbing more difficult than on K2 in midwinter. All K2’s winter conditions, including BP,
were more extreme than Everest’s in climbing season.

Author Contributions: All of the authors reviewed and approved the contents of this paper before
submission. All of the authors agreed to be personally accountable for their own contributions
and for ensuring that questions related to the accuracy or integrity of any part of the work, even
ones in which the author was not personally involved, are appropriately investigated, resolved
and documented in the literature. Each named author had full access to the data and analyses
and has substantially contributed to the underlying research and the drafting of this manuscript.
Conceptualization: R.K.S., M.K.P., M.N., and M.S. Methodology: R.K.S., M.K.P., and M.M. Validation:



Int. J. Environ. Res. Public Health 2021, 18, 3040 11 of 12

R.K.S. and M.M. Formal Analysis: R.K.S., M.M., and T.G. Investigation: R.K.S. Resources: R.K.S. and
M.S. Data Curation: R.K.S., M.K.P., and M.M. Writing: Original Draft Preparation, R.K.S. Review and
Editing: R.K.S., M.N., M.S., M.M., and T.G. Visualization: R.K.S. and M.S. Supervision: R.K.S. Project
Administration: M.S. Funding Acquisition: R.K.S. and M.N. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors received no financial support for the research and authorship of this article.
The article processing charges were funded by the Medical University of Gdansk, Debinki 1, 80-211
Gdansk, Poland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: Richard Salisbury for allowing us to use the Himalayan database (https://www.
himalayandatabase.com/), accessed on 1 December 2020.

Conflicts of Interest: The authors declare that they have no conflict of interest related to the content
of this article.

References
1. West, J.B.; Schoene, R.B.; Milledge, J.S. Limiting factors at extreme altitude. In High Altitude Medicine and Physiology, 4th ed.;

Hodder Arnold: London, UK, 2007; pp. 162–165.
2. Messner, R. Everest: Expedition to the Ultimate, 1st ed.; Kaye & Ward: London, UK, 1979.
3. Habeler, P. Everest Impossible Victory; Arlington Books: London, UK, 1979.
4. Kellas, A.M. A Consideration of the Possibility of Ascending Mount Everest. High Alt. Med. Biol. 2001, 2, 431–461. [CrossRef]
5. Salisbury, R.; Hawley, E. The Himalayan Database, The Expedition Archives of Elizabeth Hawley. Available online: http:

//www.himalayandatabase.com (accessed on 1 December 2020).
6. Huey, R.B.; Eguskitza, X. Supplemental oxygen and mountaineer death rates on Everest and K2. JAMA 2000, 284, 181. [CrossRef]
7. 8000ers. Available online: http://www.8000ers.com/cms/k2-general-info-192.html (accessed on 19 January 2021).
8. Brniak, M.; Nyka, J. Two Polish Ascents of Everest. Am. Alp. J. 1981, 23, 51–52.
9. West, J.B. Acclimatization and tolerance to extreme altitude. J. Wilderness Med. 1993, 4, 17–26. [CrossRef] [PubMed]
10. Garrido, E.; Soria, J.M.; Salisbury, R. Breathless and dying on Mount Everest. Lancet Respir. Med. 2019, 7, 938–939. [CrossRef]
11. Farooq, U. Sherpas Successfully Complete First Winter Summit of K2; Spanish Climber Killed. Available online:

https://www.reuters.com/article/us-pakistan-mountain-k2/sherpas-successfully-complete-first-winter-summit-of-k2
-spanish-climber-killed-idUSKBN29L0M2 (accessed on 17 January 2021).

12. Benavides, A. Purja Confirms: No Oxygen on K2. Available online: https://explorersweb.com/2021/01/18/purja-confirms-no-
oxygen-on-k2/ (accessed on 18 January 2021).

13. Benavides, A. Are We Heading for Disaster on Winter K2? Available online: https://explorersweb.com/2020/12/16/are-we-
heading-for-disaster-on-winter-k2/ (accessed on 15 January 2021).

14. West, J.B.; Lahiri, S.; Maret, K.H.; Peters, R.M.; Pizzo, C.J. Barometric pressure at extreme altitudes on Mt. Everest: Physiological
significance. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 54, 1188–1194. [CrossRef]

15. West, J.B. Barometric pressures on Mt. Everest: New data and physiological significance. J. Appl. Physiol. 1999, 86, 1062–1066.
[CrossRef] [PubMed]

16. Moore, G.W.K.; Semple, J.L. High Himalayan meteorology: Weather at the South Col of Mount Everest. Geophys. Res. Lett. 2004,
31, 18. [CrossRef]

17. Moore, G.W.K. Mount Everest snow plume: A case study. Geophys. Res. Lett. 2004, 31, 22. [CrossRef]
18. Moore, G.W.K.; Semple, J.L. Weather and death on Mount Everest: An analysis of the Into Thin Air Storm. Bull. Am. Meteorol. Soc.

2006, 87, 465–480. [CrossRef]
19. Grocott, M.P.W.; Martin, D.S.; Wilson, M.H.; Mitchell, K.; Dhillon, S.; Mythen, M.G.; Montgomery, H.E.; Levett, D.Z.H. Caudwell

Xtreme Everest Research Group. Caudwell Xtreme Everest Expedition. High Alt. Med. Biol. 2010, 11, 133–137. [CrossRef]
[PubMed]

20. Moore, G.W.K.; Semple, J.L. Freezing and Frostbite on Mount Everest: New Insights into Wind Chill and Freezing Times at
Extreme Altitude. High Alt. Med. Biol. 2011, 12, 271–275. [CrossRef]

21. Moore, G.W.K.; Semple, J.L.; Cristofanelli, P.; Bonasoni, P.; Stocchi, P. Environmental conditions at the South Col of Mount Everest
and their impact on hypoxia and hypothermia experienced by mountaineers. Extrem. Physiol. 2012, 1, 2. [CrossRef]

22. Moore, G.W.K.; Semple, J.L. A tale of two climbers: Hypothermia, death, and survival on Mount Everest. High Alt. Med. Biol.
2012, 13, 51–56. [CrossRef] [PubMed]

23. Matthews, T.; Perry, L.B.; Lane, T.P.; Elmore, A.C.; Khadka, A.; Aryal, D.; Shrestha, D.; Tuladhar, S.; Baidya, S.K.; Gajurel, A.;
et al. Into Thick(er) Air? Oxygen Availability at Humans’ Physiological Frontier on Mount Everest. iScience 2020, 23, 101718.
[CrossRef] [PubMed]

https://www.himalayandatabase.com/
https://www.himalayandatabase.com/
http://doi.org/10.1089/15270290152608615
http://www.himalayandatabase.com
http://www.himalayandatabase.com
http://doi.org/10.1001/jama.284.2.181-a
http://www.8000ers.com/cms/k2-general-info-192.html
http://doi.org/10.1580/0953-9859-4.1.17
http://www.ncbi.nlm.nih.gov/pubmed/11538296
http://doi.org/10.1016/S2213-2600(19)30281-4
https://www.reuters.com/article/us-pakistan-mountain-k2/sherpas-successfully-complete-first-winter-summit-of-k2-spanish-climber-killed-idUSKBN29L0M2
https://www.reuters.com/article/us-pakistan-mountain-k2/sherpas-successfully-complete-first-winter-summit-of-k2-spanish-climber-killed-idUSKBN29L0M2
https://explorersweb.com/2021/01/18/purja-confirms-no-oxygen-on-k2/
https://explorersweb.com/2021/01/18/purja-confirms-no-oxygen-on-k2/
https://explorersweb.com/2020/12/16/are-we-heading-for-disaster-on-winter-k2/
https://explorersweb.com/2020/12/16/are-we-heading-for-disaster-on-winter-k2/
http://doi.org/10.1152/jappl.1983.54.5.1188
http://doi.org/10.1152/jappl.1999.86.3.1062
http://www.ncbi.nlm.nih.gov/pubmed/10066724
http://doi.org/10.1029/2004GL020621
http://doi.org/10.1029/2004GL021046
http://doi.org/10.1175/BAMS-87-4-465
http://doi.org/10.1089/ham.2009.1093
http://www.ncbi.nlm.nih.gov/pubmed/20586597
http://doi.org/10.1089/ham.2011.0008
http://doi.org/10.1186/2046-7648-1-2
http://doi.org/10.1089/ham.2011.1061
http://www.ncbi.nlm.nih.gov/pubmed/22429233
http://doi.org/10.1016/j.isci.2020.101718
http://www.ncbi.nlm.nih.gov/pubmed/33376965


Int. J. Environ. Res. Public Health 2021, 18, 3040 12 of 12

24. Matthews, T.; Perry, L.B.; Koch, I.; Aryal, D.; Khadka, A.; Shrestha, D.; Abernathy, K.; Elmore, A.C.; Seimon, A.; Tait, A. Going
to extremes: Installing the world’s highest weather stations on Mount Everest. Bull. Am. Meteorol. Soc. 2020, 101, 1870–1890.
[CrossRef]

25. Whiteman, C.D. Four Factors that Determine Climate. In Mountain Meteorology, Fundamentals and Applications; Oxford University
Press: New York, NY, USA, 2000; pp. 3–7.

26. Brunt, D. Physical and Dynamical Meteorology; Cambridge University Press: Cambridge, UK, 1952; p. 379.
27. West, J.B. Prediction of barometric pressures at high altitudes with the use of model atmospheres. J. Appl. Physiol. 1996, 81,

1850–1854. [CrossRef]
28. West, J.B.; Schoene, R.B.; Milledge, J.S. The atmosphere. In High Altitude Medicine and Physiology, 4th ed.; Hodder Arnold: London,

UK, 2007; pp. 20–23.
29. West, J.B.; Wagner, P.D. Predicted gas exchange on the summit of Mt. Everest. Respir. Physiol. 1980, 42, 1–16. [CrossRef]
30. West, J.B.; Boyer, S.J.; Graber, D.J.; Hackett, P.H.; Maret, K.H.; Milledge, J.S.; Peters, R.M.; Pizzo, C.J.; Samaja, M.; Sarnquist, F.H.;

et al. Maximal exercise at extreme altitudes of Mount Everest. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 688–698.
[CrossRef] [PubMed]

31. Bailey, D.M. The last “oxygenless” ascent of Mt Everest. Br. J. Sports Med. 2001, 35, 294–296. [CrossRef]
32. Huey, R.B.; Eguskitza, X. Limits to human performance: Elevated risks on high mountains. J. Exp. Biol. 2001, 204, 3115–3119.

[PubMed]
33. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.;

et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]
34. Dillon, M.E.; Frazier, M.R.; Dudley, R. Into thin air: Physiology and evolution of alpine insects. Integr. Comp. Biol. 2006, 46, 49–61.

[CrossRef] [PubMed]
35. Pugh, L.G.C.E.; Gill, M.B.; Lahiri, S.; Milledge, J.S.; Ward, M.P.; West, J.B. Muscular exercise at great altitudes. J. Appl. Physiol.

1964, 19, 431–440. [CrossRef]
36. Sutton, J.R.; Reeves, J.T.; Wagner, P.D.; Groves, B.M.; Cymerman, A.; Malconian, M.K.; Rock, P.B.; Young, P.M.; Walter, S.D.;

Houston, C.S. Operation Everest II: Oxygen transport during exercise at extreme simulated altitude. J. Appl. Physiol. 1998, 64,
1309–1321. [CrossRef]

37. Osczevski, R.J.; Bluestein, M. The new wind chill equivalent temperature chart. Bull. Am. Meteorol. Soc. 2005, 86, 1453–1458.
[CrossRef]

38. Tikuisis, P.; Osczevski, R.J. Facial cooling during cold air exposure. Bull. Am. Meteorol. Soc. 2003, 84, 927–933.
39. Huey, R.B.; Ward, P.D. Climbing a Triassic Mt. Everest: Into thinner air. JAMA 2005, 294, 1761–1762.
40. Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. Quantifying uncertainties in global and regional temperature change using

an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos. 2012, 117, 1–22. [CrossRef]
41. Moore, G.W.K.; Semple, J.L. The impact of global warming on Mount Everest. High Alt. Med. Biol. 2009, 10, 383–385. [CrossRef]
42. Archer, C.L.; Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. 2008, 35. [CrossRef]
43. Pena-Ortiz, C.; Gallego, D.; Ribera, P.; Ordonez, P.; Alvarez-Castro, M. Observed trends in the global jet stream characteristics

during the second half of the 20th century. J. Geophys. Res. Atmos. 2013, 118, 2702–2713. [CrossRef]
44. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The

NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–470. [CrossRef]
45. Huey, R.B.; Eguskitza, X.; Dillon, M. Mountaineering in thin air. Patterns of death and of weather at high altitude. Adv. Exp. Med.

Biol. 2001, 502, 225–236. [PubMed]
46. Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol.

2012, 56, 515–535. [CrossRef] [PubMed]
47. West, J.B. High Life: A History of High Altitude Physiology and Medicine; Oxford University Press: New York, NY, USA, 1998.
48. Ainslie, P.N.; Reilly, T. Physiology of accidental hypothermia in the mountains: A forgotten story. Br. J. Sports Med. 2003, 37,

548–550. [CrossRef]
49. Firth, P.G.; Zheng, H.; Windsor, J.S.; Sutherland, A.I.; Imray, C.H.; Moore, G.W.K.; Semple, J.L.; Roach, R.C.; Salisbury, R.A.

Mortality on Mount Everest, 1921–2006: Descriptive study. BMJ 2008, 337, a2654. [CrossRef] [PubMed]

http://doi.org/10.1175/BAMS-D-19-0198.1
http://doi.org/10.1152/jappl.1996.81.4.1850
http://doi.org/10.1016/0034-5687(80)90100-0
http://doi.org/10.1152/jappl.1983.55.3.688
http://www.ncbi.nlm.nih.gov/pubmed/6415008
http://doi.org/10.1136/bjsm.35.5.294
http://www.ncbi.nlm.nih.gov/pubmed/11581324
http://doi.org/10.1002/qj.3803
http://doi.org/10.1093/icb/icj007
http://www.ncbi.nlm.nih.gov/pubmed/21672722
http://doi.org/10.1152/jappl.1964.19.3.431
http://doi.org/10.1152/jappl.1988.64.4.1309
http://doi.org/10.1175/BAMS-86-10-1453
http://doi.org/10.1029/2011JD017187
http://doi.org/10.1089/ham.2009.1039
http://doi.org/10.1029/2008GL033614
http://doi.org/10.1002/jgrd.50305
http://doi.org/10.1175/1520-0477(1996)077&lt;0437:TNYRP&gt;2.0.CO;2
http://www.ncbi.nlm.nih.gov/pubmed/11950141
http://doi.org/10.1007/s00484-011-0453-2
http://www.ncbi.nlm.nih.gov/pubmed/21614619
http://doi.org/10.1136/bjsm.37.6.548
http://doi.org/10.1136/bmj.a2654
http://www.ncbi.nlm.nih.gov/pubmed/19074222

	Introduction 
	Materials and Methods 
	Results 
	Barometric Pressure 
	Air Temperature 
	Wind Speed 
	Wind Chill Temperature and Facial Frostbite Time 
	Combined Weather Parameters 

	Discussion 
	Barometric Pressure 
	Air Temperature 
	Wind Speed 
	Wind Chill Temperature and Facial Frostbite Time 
	Combined Weather Parameters 
	Limitations and Strengths 

	Conclusions 
	References

