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Abstract: Eye diseases are associated with visual impairment, reduced quality of life, and may
even lead to vision loss. The efficacy of available treatment of eye diseases is not satisfactory. The
unique environment of the eye related to anatomical and physiological barriers and constraints
limits the bioavailability of existing agents. In turn, complex ethiopathogenesis of ocular disorders
that used drugs generally are non-disease specific and do not act causally. Therefore, there is a
need for the development of a new therapeutic and preventive approach. It seems that matrix
metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have a significant
role in the development and progression of eye diseases and could be used in the therapy of these
disorders as pharmacological targets. MMPs and TIMPs play an important role in the angiogenesis,
epithelial-mesenchymal transition, cell invasion, and migration, which occur in ocular diseases. In
this review, we aim to describe the participation of MMPs and TIMPs in the eye diseases, such as
age-related macular degeneration, cataract, diabetic retinopathy, dry eye syndrome, glaucoma, and
ocular cancers, posterior capsule opacification focusing on potential mechanisms.

Keywords: ocular diseases; matrix metalloproteinases; tissue inhibitor of matrix; metalloproteinases; gelatinases

1. Introduction

The ocular surface is composed of various tissue components including a specialized
stratified epithelium that acts as an effective barrier to environmental, microbial, and
inflammatory injuries [1]. All these components work together to maintain the integrity and
function of the ocular surface. Unfortunately, due to aging, allergies, and chronic diseases
such as diabetes, cardiovascular disease, and hyperthyroidism, the global incidence of
eye disease is increasing. Vision quality can be disturbed by several eye diseases, such as
cataracts [2], glaucoma [3], diabetic retinopathy (DR) [4], dry eye [5], age-related macular
degeneration (AMD) [6] or retinoblastoma [7], all of which can significantly lower the
standard of living.

Undiagnosed or untreated DR, AMD, and cataracts remain the leading causes of sight
loss in the world [8]. Although a cataract is a kind of reversible blindness and surgery is an
effective way to restore vision, it may further lead to multiple postoperative complications
and infections [9]. For example, the posterior lenticular capsule may become opaque
during various periods after cataract surgery [10]. Therefore, new, safe pharmacological
alternatives to surgical intervention are needed.

All of the aforementioned eye diseases are closely associated with extracellular matrix
(ECM) remodeling, which plays an important role in both its pathogenesis and its regulatory
systems [2,11,12]. It has been reported that matrix metalloproteinases (MMPs) and their
tissue inhibitors (TIMPs) are actively involved in this process [13]. Our understanding
of MMP biology is continually expanding as new functions of MMPs in ocular tissue
are discovered. While their levels are low or insignificant in most tissues during stable
conditions, changes, in particular, MMP/TIMP complexes and under the influence of
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other mechanisms connected with both genetic and environmental factors result in the
progressive degradation or accumulation of ECM structural elements, which may finally
contribute to the development of eye diseases [14]. As a result, changes in MMP expression
or/and activity have been proposed as possible biomarkers for the diagnosis and prognosis
of particular pathological disorders. MMP inhibitors have also been applied to reverse
the effects of MMPs and to assess whether MMPs are of importance for specific biological
processes or pathological conditions.

Thus, the main purpose of this review was to present the role of endogenous and
exogenous inhibitors of MMPs in the development of eye diseases, and their value as
biomarkers or therapeutic targets. However, it should be noted that the precise role of
each MMP in eye disorders remains unclear, therapies have their limitations and the
mechanisms causing their upregulation are mostly undiscovered. Hence there is a clear
need to investigate the potential of new-generation biological and synthetic inhibitors with
greater MMP specificity and fewer side effects. These could play an important part in
targeting specific MMPs, reducing unrestrained tissue remodeling, and improving the
management of MMP-involved eye disorders.

2. Metalloproteinases (MMPs)

MMPs are zinc-dependent endopeptidases. They are among the most important
proteolytic enzymes for tissue remodeling and extracellular matrix [15]. Currently, at least
23 MMPs have been investigated in humans and they are widely expressed in every tissue,
including the eye. They are initially secreted as inactive pro-MMPs; these are cleaved into
active MMPs by proteases or other MMPs, which interact with various protein substrates
in the ECM and cell surface. They are divided into six groups based on their chemical
substrate or function: collagenases, gelatinases, matrilysins, stromelysins, membrane-
type (MT)-MMPs, and other MMPs [13]. They play a leading role in the modification
of various ECM components, including collagen, elastin, gelatine, matrix glycoproteins,
and proteoglycan degradation [13]. For example, the collagenases (MMP-1, 8, 13, and 18)
degrade collagen I, II, and III, while the gelatinases (MMP-2 and MMP-9) degrade collagen
I and IV. The stromelysins (MMP-3 and MMP-11) and matrylisins (MMP-7) act on elastin,
fibronectin, and laminin. Finally, the MT-MMPs include MMP-14 (acting on type I, II, and
III collagen), MMP-15, MMP-16, MMP-17, MMP-24, and MMP-25 [16].

MMPs are generated by connective tissues and pro-inflammatory cells such as fibrob-
lasts, osteoblasts, endothelial cells, macrophages, neutrophils, and lymphocytes under
the control of various hormones, growth factors, and cytokines [16]. Their expression
and activity can be regulated via multiple cellular signaling pathways, such as mitogen-
activated protein kinases (MAPKs), and by various signal transduction pathways, such
as p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N- terminal kinase (JNK),
extracellular signal-regulated kinases (ERK), and nuclear factor-kappa B (NF-κB) [17,18].
MMPs are regulated at the gene transcription level, by post-translational modifications of
the MMP protein, or by the endogenous or exogenous activation of enzyme precursors.

To maintain healthy tissue, ECM must regenerate, and replace old or damaged pro-
teins with new ones. However, these degradation and synthesis mechanisms might be
disturbed, leading to connective tissue disorders [19]. MMP proteolytic expression is
tightly controlled by endogenous tissue inhibitors of metalloproteinases (TIMPs). Four
members of the TIMP family have been recognized so far (TIMP-1, TIMP-2, TIMP-3, and
TIMP-4) [20]. When the MMP/TIMP balance is disturbed, the resulting change in net MMP
activity influences ECM turnover and tissue remodeling [15]. While MMPs play impor-
tant roles in the normal physiological functions of connective tissue during the process of
embryogenesis, morphogenesis, wound healing, and angiogenesis [11,21], the abnormal
expression has been implicated in chronic degenerative diseases such as cardiovascular
disease (atherosclerosis), musculoskeletal disorders (arthritis), neurodegenerative diseases
(Alzheimer’s, Parkinson’s), diabetes or various cancers [22–25] (Figure 1). There is a grow-
ing body of evidence that the proteolytic activity of MMPs also influences eye physiology,
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with multiple studies reporting upregulated levels of some MMPs (MMP-1, -2, -7, -9 or
MMP-13, -14) in the eye [26–30]. Research suggests that MMPs have a significant role in the
etiology of primary open-angle glaucoma and that they may serve as molecular markers in
such conditions. [3,31]. They are believed to act mainly on the remodeling of the trabecular
meshwork, which is responsible for ensuring adequate aqueous humor outflow [31].
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Hence, the development of MMP inhibitors that can directly suppress MMPs gene
expression and/or activity provides an opportunity for creating novel pharmacological
strategies. However, due to the high structural homology within the MMP family, synthetic
MMP inhibitors have generally failed in vivo or in clinical trials, mainly because of their
poor individual MMP selectivity, high risk of side effects, and low bioavailability [32].
Despite this, the most recent generation of MMP inhibitors has improved pharmacokinetics
and required selectivity, and greatly improved toxicity profiles. Their application should
provide opportunities to prevent diseases at a much earlier stage. Currently, only doxycy-
cline, a very broad MMP inhibitor, is approved by the US Food and Drug Administration
(FDA) for the treatment of disorders associated with elevated MMP activity [33].

3. The MMPs and TIMPs in Eye Diseases
3.1. Ocular Cancers

While primary intraocular cancers are relatively rare diseases, delayed diagnosis and
inadequate therapy result in a poor prognosis, and the condition can be fatal if left un-
treated. Eye cancers, as well as carcinogenesis, have a multifactorial etiology, and a complex
molecular pathogenesis that remains unclear [34]. Nevertheless, MMPs, especially the
gelatinases MMP-2 and MMP-9, have a significant role in the development and progres-
sion of cancers, including those of the colon, lung, prostate, and breast. Moreover, their
expression and activity are regulated by a range of signaling pathways, mainly NF-κB, Akt,
phosphoinositide 3-kinase (PI3K), JNK, and ERK1/2 [35].
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3.1.1. Uveal Melanoma

One of the most common intraocular cancers in adults is uveal melanoma (UM), which
forms from neuroectodermal melanocytes in the choroid, ciliary body, and iris. Moreover,
metastases in the liver are often detected in the course of UM [34]. Its development may be
strongly influenced by MMP and TIMP levels: Immunohistochemical studies have found
MMP-1, -2, -9, and -19, membrane-type 1-MMP and physiological inhibitors of MMPs
(TIMP-2 and -3) to have a heterogeneous distribution and intensity consistent with regional
differences in the tumor microenvironment [36].

Immunostaining studies indicate that more than 20% of UM tumor cells demonstrated
medium MMP-1, -9, and -19 expression while over 70% demonstrated membrane-type
1-MMP expression. Interestingly, strong MMP-2 expression was observed in tumor vascula-
ture and stromal cells. In addition, protein expression of MMP-1, MMP-9, MT-MMP1, and
TIMP-2 has been detected in the UM vasculature, and MMP-9 in the extracellular matrix,
indicating that MMPs play a significant role in UM growth and angiogenesis [36]. It has
also been evidenced that the high gene expression of MMP-9 observed in UM is associated
with reduced survival in the later stages of the disease [37]. Moreover, increased expression
of MMP1, MMP2, MMP9, and MMP16 mRNA was observed in UM; this resulted in poor
overall survival, lowered disease-free survival, and intensified infiltration by immune cells,
particularly Th1 cells, Th2 cells, and T follicular helper cells, indicating that MMPs are
involved in UM-related inflammation and the immune response [12].

The expression of certain MMPs results in poorer prognosis; for example, increased
MMP-9 expression positively correlates with metastatic profile, degree of tumor necrosis,
and the formation of metastases [38,39]. In addition, downregulation of MMP-2 limits
the migratory and invasive potential of UM cells; this is observed during knockdown
of the leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) and reduced
expression of the MMP inducer (CD147) [40,41]. In addition, TIMP-3 gene downregulation,
observed in UM tumors with monosomy of chromosome 3, is a predictive factor for disease
progression and poor prognosis [42].

The molecular mechanisms of the MMP activity in UM are complex and not fully
understood. However, it seems that MMP-9 activation is enhanced in UM by vascular
retinal pericytes being a component of the vasculature. Additionally, UM cells appear to
induce the transition of human retinal pericytes to UM-activated fibroblasts, resulting in
increased expression of active MMP-9 in UM cells. It seems that the conversion of retinal
pericytes to UM-activated fibroblasts is molecularly induced through binding platelet-
derived growth factor (PDGF) with PDGF receptor beta (PDGFRβ) causing the activation of
the signal transducer and activator of transcription 3 (STAT-3) signaling pathway and
nuclear translocation of phospho-STAT3. It also increases the expression of vascular
endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β) in UM-
activated fibroblasts, inducing tumor progression and promoting angiogenesis in UM. It is
hence clear that activated and changed retinal pericytes play a role in the progression of
UM. In turn, PDGFRβ blockade limited MMP-9 expression and significantly inhibited the
migration and invasion of UM cells, demonstrating the dependence of MMP-9 expression
on PDGFRβ activation [43]. Further, UM cells are able to stimulate MMP-2 production in
scleral fibroblasts, resulting in scleral degradation and facilitating the local invasion of UM
into, and through, the sclera [44]. Furthermore, MMP-2 and MMP-9 take part in facilitating
the metastasis and progression of UM, and their synthesis may be also enhanced by other
mechanisms. Their expression may be also induced by epidermal growth factor (EGF), and
by Grb2-associated binder 2 (Gab2) [45].

Gab2 is a member of the DOS/Gab family of scaffolding adapters. It is characterized
by the presence of a C-terminal portion with numerous tyrosine phosphorylation sites, as
well as a N-terminal pleckstrin homology domain and proline-rich motifs. When Gab2 is
stimulated, it interacts with SH2-domain-containing proteins, thus promoting the migration
and invasiveness of cancer cells. Evidence suggests that Gab2 is regulated by the PI3K
pathway in cancers [45]. In addition, Gab2 facilitates the epithelial-mesenchymal transition
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(EMT) of cancer cells, the key process in cancer metastasis; this is mediated by enhanced
MMP expression, mainly MMP-9, via activation of the mitogen-activated protein kinase
(MEK) and extracellular signal-regulated kinase-1/2 (ERK1/2) signaling pathways [46].

Moreover, MMP-9 expression is promoted by the activation of the protein kinase B
(Akt) and PI3K pathways, and their regulation plays a key role in exacerbating UM growth
and progression. Interestingly, these two signaling pathways are regulated by the high-
mobility group AT-hook1 (HMGA1) protein: this is known to modify transcriptional activity
and chromatin structure in multi-genes by regulating the transcriptional factors binding
to the minor groove of AT-rich DNA sequences. It is also known to play a role in UM
invasiveness [47]. Downregulating the NF-κB signaling pathway also limits the migration
and invasiveness of UM cells, due to lowered MMP-2, MMP-9, and VEGF expression [48].
Interestingly, UM cells also express high constitutive levels of MMP-8. This MMP degrades
various types of collagen and non-collagenous ECM components and is involved in UM
progression by tissue remodeling. Its expression is significantly upregulated by tumor
necrosis factor-alpha (TNF-α), one of the key factors for UM aggressiveness, and this
change is mediated by the phosphorylation of mitogen-activated protein kinases, such as
ERK1/2 and JNK1/2 [49,50].

MMP-14 takes part in the aggressiveness of UM, whose active form is localized on the
cell surface. Its exposure at the cell surface and consequent activity is regulated through
the phosphorylation/dephosphorylation of the tyrosine (Thr) residues in the cytoplasmic
tail of MMP14 by, inter alia, protein tyrosine phosphatase 4A3 (PTP4A3). Active MMP-14
degrades the components of the ECM such as collagen type I, II, and III, laminins 1 and 5,
and fibronectin, and promotes cell migration and invasiveness in UM [51].

3.1.2. Retinoblastoma

Retinoblastoma is the most frequent ocular cancer in the pediatric population. The
condition develops from retinal cells. It is characterized by high proliferation and tendency
to necrosis and thereby requires diagnosis at an early stage of the disease to prevent
loss of sight and the eyeball, and even death during childhood [52]. Studies indicate
that activated MMPs enable the migration and angiogenesis of retinoblastoma cells, and
even contribute to chemoresistance. The levels of MMP-1, MMP-2, and MMP-9 have also
been found to have a significant positive correlation with the intensity of retinoblastoma
invasion and the occurrence of metastases [53]. In addition, higher levels of MMP-2
and MMP-9 in retinoblastoma cells are associated with an elevated risk of optic nerve
invasion by cancer [54], suggesting that they may be responsible for increased malignancy
of retinoblastoma, and their presence indicates the need for more aggressive therapy.
Higher MMP-9 expression is associated with a more advanced stage of disease; MMP-2 is
believed to regulate the differentiation of retinoblastoma cells via the activation of ERK1/2
pathway [53,55]. Furthermore, MMP-9 and VEGF expression are positively correlated in
retinoblastoma tissue [53], possibly due to the fact that MMP-9 plays a key role in the
acquisition of an angiogenic cell phenotype by supporting VEGF secretion [53] while VEGF
promotes MMP-9 expression through the activation of ERK pathway [56].

Furthermore, MMP-3 and MMP-13 mRNA and protein expression may be induced by
homeobox gene B 5 (HOXB5), which is upregulated in retinoblastoma cells; this promotes
cell migration and invasiveness, which are mediated through stimulating the ERK1/2 path-
way [57]. In addition, enhanced TIMP-1 and TIMP-2 expression are sometimes observed in
metastatic retinoblastoma, and this can increase invasiveness. TIMPs are well known to
inhibit MMP activity and their production is generally decreased in cancer cells; however,
they are also implicated in the activation of MMPs, and may thus promote retinoblastoma
progression. Therefore, the interaction between MMPs and TIMPs may have an important
role in the progression of retinoblastoma [58]. Interestingly, Reinhard and co-workers indi-
cate that the lowered mRNA expression of MMP-2 is associated with poorer prognosis and
chemotherapy resistance in retinoblastoma; however, no such change was observed at the
protein level of pro- or active-MMP-2. Moreover, declined gene expression of TIMP-2 also
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contributed to metastasis and therapy resistance [59]. As such, the interplay between TIMPs
and MMPs in retinoblastoma seems to be a complex one that requires further investigation.

A number of mechanisms are responsible for the enhanced expression of MMP-2 and
MMP-9 in retinoblastoma, and thus the promotion of proliferation, invasion, migration of
retinoblastoma cells: these include Wnt/β-catenin, NF-κB, PI3K, and Akt pathway activa-
tion, the upregulation of HMGA2 gene expression, as well as elevated expression of sup-
pressor of Zeste 12 homolog (SUZ12), a component of the polycomb group protein [60–64].
Nevertheless, a decline in MMP production and activity results in significant inhibition of
retinoblastoma development and progression [65–68]. Interestingly, the selective inhibition
of MMP-2 and MMP-9 in retinoblastoma reduces the production of TGF-β1, the key factor
for EMT, known to facilitate invasion and metastasis [66] providing an insight into the
wider role of MMPs.

3.2. Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is the main cause of irreversible blindness
among patients older than 65 years in developed countries. The condition is characterized
by loss of function and degradation of retinal pigment epithelial cells and photoreceptors,
together with pathological matrix remodeling and new blood vessel formation; this has been
attributed to the inflammatory response and oxidative stress [69–71]. The most recent data
indicate that dysregulation of the extracellular matrix function, and its regulatory system
based on MMPs and TIMPs, play an important role in the pathogenesis of both dry and
wet AMD [72,73]. The conditions are characterized by changes in the level of gelatinases:
patients with AMD demonstrate elevated levels of MMP-2 in the retinal pigment epithelium-
associated interphotoreceptor matrix and MMP-9 in plasma [74,75]. However, other studies
indicate no significant increase in serum levels of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1,
and TIMP-3 in patients with AMD compared to those without [76].

It is widely known that aging is a risk factor for AMD. One of the explanations
may be the fact that the MMPs level increases with age in Bruch’s membrane, where
initial pathological changes occur in AMD, predisposing to its disruption by proteolytic
processes [73]. In addition, one of the early symptoms of AMD is the occurrence of drusen,
small extracellular deposits of various molecules and proteins. These are also observed
under retinal pigment epithelial cells in Bruch’s membrane during oxidant injury to the
retina, characterized by a decrease in MMP-2 activity. Hence, it is possible that MMP-2 may
play a key role in the early stage of the disease. Interestingly, MMP-14 overexpression is
believed to prevent retinal oxidative injury in AMD by maintaining the appropriate activity
of MMP-2 [77–79]. MMP-14 also plays a key role in extracellular matrix degradation at
focal adhesions in human retinal pigment epithelial cells [80]. Furthermore, MMP-14 may
be involved in the process of MMP-2 activation, which occurs when the level of TIMP-2 is
reduced in the relation to MMP-14 in the pro-MMP-2/TIMP-2/MMP-14 complex [78].

Further, MMP-1 and MMP-3 are also believed to play a role in the pathogenesis of
AMD. Elevated protein levels of these molecules were observed in retinal pigment epithelial
cells exposed to oxidative stress. Their activity may be mediated by the ERK1/2 and p38
MAPK pathways. A shift in the MMP-1,-3/TIMP-1 ratio was found to contribute to the
intensive degradation of type I collagen. It seems that this change may have an important
role in the initiation of early exudative AMD [81].

AMD manifests as dry and wet forms, dependent on the formation of pathological
blood vessels. The wet form, i.e., with neovascularisation, has been characterized by the
presence of MMP-2 and MMP-9 in the retinal pigment epithelium-Bruch’s membrane,
vessels, and stroma; indeed, MMP-9 is known to promote an angiogenic phenotype among
choroidal endothelial cells in AMD [82,83]. Interestingly, MMP-9 may take part in patholog-
ical vessel formation in two ways: by inducing extracellular matrix degradation, facilitating
choroidal neovascularization, and stimulating endostatin, an endogenous inhibitor of an-
giogenesis [82]. Nevertheless, these data require further analysis. A positive correlation has
been found between the MMP-9 level in the vitreous humor and the quantity of subretinal
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fluid in patients with wet AMD, suggesting that MMP-9 may be a potential biomarker of
subretinal exudate [84]. They found that mice with laser-induced choroidal neovascular-
ization with a lowered expression of MMP-9 also had decreased volume of laser-induced
choroidal change [85]. In addition, the in vitro expression of MMP-9 was found to be
dependent on TNF; this plays a key role in the development of neovascular AMD, and is
governed by the JNK pathway [85,86]. Additionally, there is evidence that VEGF could
promote choroidal neovascularization, an element of neovascular AMD, by stimulating the
secretion of MMP-2 and MMP-9 in retinal pigment epithelial cells [87]. It is likely that the
changes occurring during choroidal neovascularization are governed by a feedback loop
between VEGF and MMPs; hence, the proteins of the extracellular matrix may increase the
secretion of VEGF by retinal pigment epithelial cells. Further, VEGF is able to upregulate
the expression of MMPs in the retina, with hypoxia being one of the triggers [87–89].

Interestingly, a recent study indicated that MMP-2 may influence AMD by modulating
the complement system. Fernandez-Godino and co-workers report the presence of a
disorganized fiber network of collagen IV among human fetal retinal pigment epithelial
cells cultivated on Bruch’s membrane from subjects with AMD compared to those without
AMD. They also note an elevation in MMP-2 activity and C3a levels in the AMD patients.
This result may indicate a relationship between abnormal extracellular matrix production,
MMP-2 level, and the complement system in AMD [90]. In addition, angiotensin II, a
molecule taking part in the regulation of hypertension being a risk factor of AMD, may
affect the activity of MMPs in AMD. Elevated angiotensin II level was found to enhance
MMP-2 activity in human retinal pigment epithelial cells in vitro; this was accompanied by
elevated levels of MMP-14, intensified type IV collagen degradation, and greater ERK and
p38 MAPK pathway stimulation [91,92].

A literature review found that TIMPs take part in the development of AMD. High
levels of TIMP-3 are related to lower levels of ECM components in the Bruch’s membrane
and lower ECM thickness in AMD [93,94]. Furthermore, AMD patients tend to demonstrate
differences in MMP-9, TIMP-1, and TIMP-3 plasma concentrations. In addition, plasma
levels of TIMP-1 and MMP-9 proteins are elevated in patients with geographic atrophy, one
of the late stages of AMD, while TIMP-3 and TIMP-3/MMP-2 ratios are lowered in subjects
with AMD with choroidal neovascularization [95].

3.3. Diabetic Retinopathy

Diabetic retinopathy (DR) is a form of microangiopathy that affects retinal blood
vessels, arising as a complication of diabetes mellitus. It remains one of the leading causes
of sight loss worldwide. Its prevalence is expected to increase to over 190 million cases
by the year 2030. There are two main types of DR: non-proliferative and proliferative
associated with the formation of pathological new vessels and vitreous hemorrhage [96].
MMPs and TIMPs are believed to be associated with vascular complications in patients
with diabetes mellitus and DR. For example, the severity of DR is significantly associated
with a higher level of MMP-2 in plasma [97]. Hyperglycaemia associated with DR causes
a number of biochemical, structural, and functional changes in the retina and vascula-
ture [4]. An increase in MMP-2 protein expression and MMP-9 activity was demonstrated
in glucose-induced rhesus macaque choroid-retinal endothelial cells and bovine retinal
endothelial cells, and these effects seem to be mediated by the activation of the Akt and
ERK pathways [98,99]. Additionally, MMP-2 and MMP-9 upregulation was observed in
the retinal pigment epithelium in streptozocin-stimulated Sprague-Dawley rat DR models
in vivo [100,101]. The action of MMPs in DR is complex. A number of MMPs, especially
MMP-2, MMP-9, and MMP-14, take part in the breakdown of the blood–retinal barrier
(BRB) by degrading proteins, mainly occludin and cadherin, responsible for maintaining the
BRB integrity; this results in increased vascular permeability and BRB disruption [102,103].

The breakdown of the BRB is associated with the occurrence of diabetic macular edema,
a critical hallmark of DR [104]. Patients with diabetic macular edema are characterized
by higher levels of MMP-1 and MMP-9 in the aqueous humor compared to patients
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without, suggesting that these two enzymes promote the prevalence of diabetic macular
edema [105]. Further, MMPs may regulate the inflammatory response in DR. Increased
levels are observed in diabetes mellitus, and MMPs are known to cleave the monocyte
chemoattractant protein that regulates the inflammatory condition [106]. In addition, MMPs
participate in the recruitment and diapedesis of leukocytes occurring in the retina during
DR [107]; MMPs, especially MMP-2 and MMP-9, are also responsible for ECM component
degradation, a key process of angiogenesis [108]. In addition, in DR, hypoxia is observed
in the retinal tissue; this contributes to the upregulation of hypoxia-inducible factor 1 alpha
(HIF-1α) expression, promoting the production of VEGF [109]. In turn, VEGF stimulates
the expression of MMPs, mainly MMP-2, as observed in Müller cells [110]. Additionally,
MMP-9 facilitates the apoptosis of retinal Müller cells by mitochondrial damage, increased
pro-apoptotic Bax protein expression, and decreased anti-apoptotic Bcl-2 protein expression,
resulting in the progression of DR [111].

Clinically, increased levels of MMP-1, MMP-7, MMP-9, MMP-14, TIMP-1, and TIMP-4
were noted in human vitreous. Interestingly, the levels of MMP-1, MMP-9, MMP-14, TIMP-
1, or TIMP-4 were found to significantly correlate with VEGF level, an angiogenic factor
promoting the development of proliferative DR, in the vitreous fluid, indicating that MMPs
modulate the angiogenesis and promote the progression of DR [29,112,113]. Additionally,
higher concentrations of TIMP-1 were detected in the aqueous humor of the subjects with
advanced non-proliferative and proliferative DR compared to the control subjects, or those
with mild or moderate non-proliferative DR, indicating that TIMP-1 may play an important
role in later stages of the disease [114]. TIMP-1 and -4 are both MMP inhibitors. Elevated
TMIP-1 levels enhance angiogenesis and VEGF expression, while the increase in TIMP-4,
the inhibitor of MMP-9 and controller of angiogenesis, occurs in response to angiogenic
activity and elevation of TIMP-1 and MMP-9 [113].

Interestingly, TIMP-3 had strong anti-inflammatory and anti-angiogenic properties
in DR. An intravitreal injection of recombinant TIMP-3 in streptozocin-induced Sprague-
Dawley rats contributed to an attenuation of BRB breakdown by downregulating the
protein expression of NF-κB p65 subunit and VEGF in the retinas. Additionally, TIMP-
3 significantly decreased the protein expression of VEGF and phospho-ERK1/2 in high
glucose-induced human retinal Müller glial cells, and reduced migration, proliferation, and
chemotaxis of human retinal microvascular endothelial cells stimulated by VEGF [115].

3.4. Cataract and Posterior Capsule Opacification

Cataracts are a major cause of blindness and visual impairment worldwide [116].
The lens of the eye becomes clouded, resulting in visual impairment consisting of blurry
vision, vision problems at night, halos around light, and impaired visual acuity, and their
occurrence and extent depend on the localization and range of changes in the lens. It
should be emphasized that if untreated, cataracts can lead to blindness. Cataracts can be
inborn, age-related, traumatic, metabolic, and toxic in origin [117], and can be subcapsular,
nuclear, or cortical depending on localization in the lens [118]. Recent studies indicate that
MMPs can also participate in the pathogenesis of cataracts [119–121]. One study of MMP-9
found the highest expression in patients with cortical cataracts (12.14 ng/µg proteins)
compared to subcapsular, (5.53 ng/µg) and nuclear cataracts (4.52 ng/µg). MMP-9 activity
was determined in lens epithelial cells (LECs), obtained during phacoemulsification from
patients with cataracts, by succinylated-gelatin assay. Importantly, the mean activity of
MMP-9 increased with age, peaking in patients over 60 years of age. The detailed cause of
the above-described dependences is not fully known. However, the occurrence of diabetes
mellitus, vascular diseases, prolonged UV exposure to sunlight, and UV radiation, i.e., the
risk factors of cortical cataract, increase with aging; they are associated with oxidative stress
and may enhance the activity of MMP-9 [119].

It is possible that MMPs may also have a potential role in posterior subcapsular
cataracts, as indicated by their activity in both serum and LECs in patients with
glucocorticosteroid-induced posterior subcapsular cataracts. Higher activities of MMP-9
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and MMP-2 in both serum and LECs were observed in comparison to the patients with
non-glucocorticosteroid-induced posterior subcapsular cataracts. It indicates the potential
significance of gelatinases in steroid-induced cataracts. In addition, the mRNA expres-
sion of MMP-2 and MMP-9 was in LECs over 121 times higher for MMP-2 and 274 times
higher for MMP-9 in patients with glucocorticosteroid-induced cataracts than in those
with non-glucocorticosteroid induced cataracts [122]. Additionally, MMPs may play an
important role in anterior subcapsular cataracts. Rats with TGF-β-induced anterior sub-
capsular cataracts demonstrated elevated protein expression of MMP-2 and MMP-9 in
lenses, and increased activity in conditioned medium from cultured lenses, indicating
they may play a role in the formation of an ocular disorder. Moreover, the use of a broad-
spectrum MMP inhibitor (GM6001) and an MMP-2/9 specific inhibitor suppressed the
development of cloudy plaques in lenses. This may result from the inhibition of epithelial-
mesenchymal transition of LECs, an important process in subcapsular cataracts [123].
During epithelial-mesenchymal transition, epithelial cells transform into motile mesenchy-
mal cells, consequently, the epithelium loses polarity and specialized cell–cell contacts. In
addition, changes in cell behavior, differentiation, and survival occur, resulting from inter
alia the downregulation of epithelial markers e.g., E-cadherin, and the upregulation of
mesenchymal markers, MMPs, or cell migration [124,125].

Dwivedi and co-researchers report that MMP-inhibitor treatment attenuated the
mRNA expression of the mesenchymal marker alpha-smooth muscle actin (α-SMA), and
the upregulation of the gene expression of E-cadherin, an epithelial marker, in rats with
TGF-β-induced anterior subcapsular cataract [123]. Further, in a mouse model of ante-
rior subcapsular cataracts, MMP-9 played a significant role in mediating the epithelial-
mesenchymal transition of LECs in anterior subcapsular cataracts. However, MMP-2
expression was not found to be necessary for this process [126]. MMP-9 also appears to
play a role in diabetic cataracts. In streptozotocin-stimulated rats, demonstrated elevated
protein expression of MMP-9 in LECs compared to controls, and the effect was mediated
by increased expression of TGF-β. This suggests that MMP-9 may affect the occurrence
and development of diabetic cataracts [121]. In addition, MMP-2 has been found to demon-
strate increased immunoreactivity in LECs of patients with cataracts and diabetes mellitus;
MMP-2 may hence play role in the pathogenesis of cataracts in subjects with diabetes
mellitus [127].

TIMPs inhibit the activity of MMPs and protect the ECM from excessive degradation.
Their inhibitory action is associated with blocking access to the MMPs catalytic space [128].
Increased TIMP levels were observed in the aqueous humor of patients with cataracts,
possibly to compensate for the elevated level of MMP-2 [129]. It may thus be suggested
that the disorders in the synthesis and the regulation of the activity of TIMPs can increase
the risk of cataracts.

Posterior capsular opacification (PCO) is an ophthalmic disorder that is a late com-
plication of cataract surgery. Its mechanism is complex. Residual LECs after surgical
removal of cataracts proliferate, undergo EMT stimulated by TGF-β, migrate from the
equatorial region of the lens capsule, and express extracellular components, such as α-SMA,
fibronectin, and type I collagen [130]. These changes seem to be accompanied by an increase
in MMPs. For example, type I collagen, whose production is elevated in PCO, promotes
the expression and activity of MMP-2 and MMP-9 [131]. In addition, MMP-2 activity was
elevated in the aqueous humor of the eyes of New Zealand White rabbits following cataract
surgery [132]. Furthermore, the inhibition of MMP-2 and -9 production was shown to
reduce the migration of LECs, indicating that posterior capsular opacification can be limited
by MMP regulation [131]. It has been observed that downregulation of MMP-2 and -9 by
proteasome inhibition decreased cell migration in TGF-β2-induced LECs (HLE-B3), sug-
gesting that gelatinase inhibition may prevent PCO [133]. These effects, including MMPs
action, are mediated by Smad2/3, ERK/MAPK, and Wnt/β-catenin signaling pathways,
and their downregulation results in the limitation of MMP expression and the development
and progression of PCO [134–136].
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3.5. Dry Eye Syndrome

Dry eye syndrome (DES) is a multifactorial eye disorder of the ocular surface caused by
a loss of tear film homeostasis; it is generally, caused by disturbed tear production, excessive
evaporation, or altered composition by inducing tear hyperosmolarity [137]. This, in turn,
triggers the inflammatory response, damages the ocular surface, and causes neurosensory
abnormalities by activating some signaling pathways, mainly NF-κB, JNK, and MAPK;
this initiates the transcription of genes encoding inflammatory MMPs [138]. A positive
correlation has been found between greater osmolarity and the expression of MMP-1,
MMP-3, MMP-9, and MMP-13 in human corneal epithelial cells [138]. Nevertheless, MMP-9
is considered to play a key role in the response to hyperosmolar stress in DES [139,140];
it influences the remodeling of the damaged corneal surface and digests elements of the
corneal epithelial barrier, resulting in its disruption [141]. An increase in MMP-9 expression
and activity in the cornea is associated with mainly occludin lysis in the apical corneal
epithelium [142]. Additionally, a disturbed MMP: TIMP ratio was observed in the eyes
with tear dysfunction caused by hyperosmolarity and inflammatory response [143].

Hyperosmotic stress elevated MMP-2 and MMP-9 mRNA expression and activity
in human corneal epithelial cells in vitro [144]. In addition, several animal models of
experimental DES, including NOD.B10.H2b mice exposed to desiccation stress, Wistar rats
with excised lacrimal glands, and New Zealand white rabbits simulated by concanavalin A
found that MMPs had a pathological role in DES. In these studies, DES induction resulted
in enhanced MMP-2 and MMP-9 expression and inflammatory response, as well as reduced
tear production, corneal epithelium damage, irregularities, and detachment [145–148].

Generally, clinical studies support the use of MMP-9 as a biomarker of DES, and
elevated concentrations in tears are directly correlated with the diagnosis of the disease.
Detection of elevated MMP-9 levels may contribute to earlier diagnosis, more adequate
therapy, and better management of DES [149,150]. Furthermore, a direct association has
been found between tear concentrations of MMP-9 and tear osmolarity, and an inverse
concentration between MMP-9 level and Schirmer’s test value, measuring tear produc-
tion [151]. Interestingly, a combination of tear osmolarity assessment and MMP-9 detection
in tears may be helpful for determining the severity of Sjögren’s Syndrome-related dry eye,
a special form of DES affecting the lacrimal glands, occurring in the course of autoimmune
disease [152]. Further, MMP-9 activity in tears was found to have a direct correlation with
conjunctival corneal fluorescein staining, sign severity, and topographic surface regularity
index in patients with DES. In addition, high MMP-9 activity was related to the reduced
tear break-up time (TBUT) and visual acuity scores [153,154].

The positive association between MMP-9 activity in tears and the severity of DES
results from the fact that MMP-9 is a late-stage sign and is rarely overexpressed in mild-type
DES [155]. Interestingly, increased MMP-2 and MMP-9 activity has been demonstrated in
the tears of postmenopausal women with DES. It is widely known that hormonal changes
in women occurring during menopause contribute to a higher prevalence of DES. Moreover,
it is considered that 17β-estradiol is responsible for upregulating the production of MMP-2
and MMP-9 in lacrimal glands and the conjunctival epithelium, with a consequently raised
activity in tears [156]. In addition, MMP-9 and MMP-2 may impede the healing of the
corneal epithelium [157]. Therefore, it is desirable to inhibit MMPs in treating DES.

3.6. Glaucoma

Glaucoma is a progressive ocular disorder leading to irreversible blindness, and its
global prevalence in adults aged 40 to 80 years is assessed to be 3.5%. Generally, it has
an asymptomatic course, and its diagnosis is frequently delayed. It is characterized by
neurodegeneration of the optic nerve and the loss of retinal ganglion cells. There are two
main types of the disease: open-angle and closed-angle glaucoma. Although they have
different pathogeneses, both have intraocular pressure (IOP) as the major modifiable risk
factor for disease progression. IOP is regulated by the production and outflow of aqueous
humor secreted through the ciliary body. The majority of aqueous humor flows through
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the pupil into the anterior chamber and then drains by a trabecular meshwork, the lumen
of Schlemm’s canal, into aqueous veins, and the episcleral venous system [15,158,159]. The
trabecular meshwork is a porous tissue consisting of trabecular meshwork cells that secrete
components of the extracellular matrix, such as type I, III, and IV collagen. Inadequate
and disproportionate accumulation of ECM components impedes the outflow of aqueous
humor, contributing to an elevation of IOP. In turn, an increase in IOP stimulates the
expression of MMPs by trabecular meshwork cells, suggesting that MMPs may play an
important role in glaucoma [160].

Patients with primary open-angle glaucoma are characterized by levels of MMP-1,
MMP-2, MMP-3, MMP-9, and MMP-12 protein in aqueous humor, and by upregulated
mRNA expression of MMP-1, MMP-9, and MMP-12 in the blood (peripheral blood lym-
phocytes) compared to the subjects without any type of glaucoma, suggesting that these
changes may be considered as a risk factor for the development of primary open-angle
glaucoma. Interestingly, the elevated expression of these MMPs is associated with changes
in the promoter sequences of the genes [161,162]. In addition, increased activity of MMP-9
has been detected in the patient’s tears with both open-angle and closed-angle glaucoma
at the early stage of the disease. In turn, overwhelming the MMP-9 activity was observed
in advanced stages. These changes may result from the decrease in viable trabecular
meshwork cells, which may occur in the course of glaucoma, leading to a reduction of
regulatory functions by limiting MMP-9 expression in advanced disease [163]. An in vivo
study in a mouse model indicates that MMP-9 takes part in regulating IOP, and animals
with deficiency of MMP-9 expression have elevated IOP [164].

Changes in the expression and activity of MMPs occurring in glaucoma may have
a significant influence on the course of the disease. It is widely known that alterations
ongoing in the extracellular matrix affect aqueous humor outflow and modulate the devel-
opment of glaucoma [165]. MMP-9, whose expression and activity in glaucoma are mainly
upregulated during the early stages of the disease, helps maintain the ultrastructural orga-
nization of the trabecular meshwork. This enzyme digests IV-type collagen, laminin, and
fibronectin; their incorporation into the trabecular meshwork is disrupted in glaucoma,
facilitating the outflow of aqueous humor and decreasing IOP [166,167]. Moreover, it has
been demonstrated that the MMP-9 null mice had aberrant collagen composition of the
trabecular meshwork, as well as lowered aqueous humor turnover and ocular hypertension,
indicating that MMP-9 may be an important remodeler of trabecular meshwork mitigating
the course of glaucoma [166].

MMP-2, known as gelatinase-A, may play a similar role as MMP-9. However, the level
of MMP-2 in aqueous humor in patients with glaucoma remains unclear. Higher levels
were revealed in the aqueous humor of subjects with acute primary angle-closure [168]
but significantly lower levels were noted in aqueous samples in subjects with primary
open-angle glaucoma compared to control cataract patients, with no change in TIMP-2
levels [169]. Generally, MMP upregulation is accompanied by a reduction in TIMP level. In
addition, the TIMP-2 level was also found to be elevated in the aqueous humor of patients
with primary open-angle glaucoma compared to the cataract controls [170]. Interestingly,
these findings may indicate that MMP-2 expression is not independent, and imbalances in
the MMP-2/TIMP-2 ratio may be significant in the pathogenesis of ocular hypertension
in glaucoma [171]. For example, a lower MMP-2/TIMP-2 ratio in the aqueous humor is a
risk factor for trabeculectomy failure in patients with acute primary angle-closure [172].
On the other hand, elevated concentrations of TIMP-4, a known inhibitor of MMP-9, have
been confirmed in the aqueous humor of the patients with primary open-angle glaucoma,
which would also disrupt the MMP/TIMP molar ratio [173,174]. Currently, there is no clear
finding on whether the increase in TIMPs is caused by altered production of MMPs or vice
versa, and the causal relationship with glaucoma.

Another MMP that seems to play a significant role in the outflow of aqueous humor
and glaucoma is MMP-1. Viral vector-mediated delivery of MMP-1 has been found to
reverse elevated IOP in the trabecular meshwork of sheep with steroid-induced glau-
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coma [175,176]. This effect could result from the fact that the MMP-1 is expressed in tissues
associated with the unconventional (uveoscleral) outflow pathway in normal human eyes,
such as ciliary muscle, iris root, and sclera. The MMP-1 in the sclera is likely responsible for
the remodeling of scleral ECM-enhancing uveoscleral turnover [177]; this would account
for the observed upregulation of MMP-1 expression in glaucoma.

It is also important to note that MMP-3 activity was found to be lower in the aque-
ous humor in patients with glaucoma compared to age-matched ocular normotensive
controls [178]. MMP-3, known also as stromelysin-1, has a broad spectrum of proteolytic
activity, and it has a number of substrates present in the trabecular meshwork, including
the juxtacanalicular tissue, the outer layer of the trabecular meshwork: inter alia type IV
collagen, elastin, fibronectin, and laminin. Moreover, MMP-3 is able to activate other MMPs,
such as MMP-1 and MMP-9, which facilitate the turnover of aqueous humor [165,179–181].
Therefore, the lowered MMP-3 expression and activity may cause the progression of glau-
coma by the impediment of aqueous humor outflow. Furthermore, intracameral inoculation
of AAV-2/9 containing a CMV-driven MMP-3 gene into wild-type (C57BL/6) mice elevated
the aqueous concentration and activity of MMP-3 secreted from the corneal endothelium;
interestingly, this elevated MMP-3 expression enhanced outflow facility and reduced IOP,
suggesting that MMP-3 plays a significant role in mitigating glaucoma [178].

As described above, the elevations of MMPs expression and activity in the aqueous
humor in glaucoma prevent disease progression, as indicated by changes occurring in
steroid-induced glaucoma. Long-term corticosteroid treatment is associated with structural
changes in the trabecular meshwork, particularly enhanced extracellular matrix deposi-
tion in the juxtacanalicular region [182]. In addition, corticosteroids treatment has been
associated with a reduction of the activity of stromelysins, type IV collagenases, and tissue
plasminogen activators in trabecular meshwork organ and human corneoscleral explant
cultures containing both ciliary body and trabecular meshwork [183,184]. Furthermore, in-
tracameral gene therapy with a vector carrying an inducible MMP-1 human gene prevented
further IOP increase in sheep with corticosteroid-elevated IOP [175].

One form of glaucoma treatment involves the modulation of the MMP expression
and activity; prostaglandin analogs, such as latanoprost, bimatoprost, unoprostone, lower
IOP by enhancing uveoscleral outflow. It is believed this takes place by increasing the
protein expression of MMP-1, MMP-9, and TIMP-4 in the trabecular meshwork. In addition,
bimatoprost and latanoprost are known to enhance MMP-3 and TIMP-2 protein expression,
as well as MMP-1 and MMP-9 activity, facilitating aqueous humor outflow. The observed
increase in TIMP-2 and TIMP-4 after therapy probably occurs as a response to an elevation
in MMP level; however, the rise in TIMP level would increase the effectiveness of individual
prostaglandin analogs [185].

The above data clearly indicate that the elevated MMP concentration and activity
observed in the aqueous humor of patients with glaucoma has a protective role. However,
studies suggest that MMPs may also have a harmful effect on glaucoma. Glaucoma is a
progressive neurodegeneration of the optic nerve, which is accompanied by loss of the
retinal ganglion cells caused by elevated IOP [158]. Zalewska et al., (2016) indicated that
MMP-9 may be responsible for the damage to the optic nerve and retinal ganglion cells.
Significant MMP-9 overexpression has been demonstrated in retinal ganglion cells, the
internal nuclear layer of the retina, and glial cells surrounding optic nerve axons in absolute
angle-closure glaucoma. In addition, MMP-9 may promote pathological apoptosis by the
activation of cell death receptors and pro-apoptotic proteins in absolute glaucoma [186].
In addition, MMP-9 expression and activity were found to be upregulated in the retinal
neurons of rats injected with N-methyl-D-aspartate and glycine into the vitreous humor;
this suggests that an extracellular proteolysis pathway in the retina results in the death of
retinal ganglion cell through MMP-9 activation [187]. A key role in the activation of MMP in
the retina in glaucoma may be played by tissue plasminogen activator (tPA) and urokinase
plasminogen activator (uPA): both levels were increased in the retinas of C57BL/6 mice
after injection of staurosporine into the vitreous humor, and this accompanied increased
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MMP-9 activity and retinal ganglion cell death [188]. It is widely known that uPA and tPA
activate plasminogen to form plasmin: a protease responsible for promoting the death of
retinal ganglion cells via tissue remodeling or MMP activation [189–191]. It is also possible
that MMP-2 may contribute to retinal ganglion cell death: MMP-2 null mice were found to
demonstrate improved retinal ganglion cell survival after intravitreal injection of N-methyl-
D-aspartic acid, a mediator of glaucomatous neuropathy, compared to wild-type mice [192].
The mechanisms (cellular signaling pathways) associated with MMPs and TIMPs in eye
diseases are presented in Figure 2.
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Figure 2. A schematic diagram showing molecular mechanisms involved in stimulation of the
MMPs expression and effects being results of the MMPs action in the eye diseases. Akt—protein
kinase B; COX-2—cyclooxygenase-2; ECM—extracellular matrix; EMT—epithelial-mesenchymal
transition; ERK—extracellular-signal-regulated kinase; HIF1α—hypoxia-inducible factor 1 alpha;
iNOS—inducible nitric oxide synthase; IOP—intraocular pressure; JNK—c-Jun N-terminal kinase;
MEK—mitogen-activated protein kinase; mTOR—mechanistic target of rapamycin; NF-κB—nuclear
factor-kappa B; PI3K—phosphatidylinositol 3-kinase; p38 MAPK—p38 mitogen-activated protein
kinase; Ras—rat sarcoma; subfamily of small GTPases; ROS—reactive oxygen species; TGF-β—
transforming growth factor-beta; TNF-α—tumor necrosis factor-alpha; UV—ultraviolet; VEGF—
vascular endothelial growth factor.

4. Novel Agents Modulating the Expression and Activity of MMPs and TIMPs in
Eye Diseases

Despite the current research, available eye disease therapies are still associated with
side effects and remain not fully effective. As such, there is an ongoing need to develop
new therapeutic options for the treatment of ocular disorders [193,194]. As noted in the
third part of this paper, MMP and TIMP expression and activity could be an attractive
pharmacological target and any modulation may significantly limit the development and
progression of eye diseases. This chapter describes and discusses the efficacy of novel
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therapeutic options aimed at MMPs and TIMPs in eye diseases based on recent pre-clinical
and clinical studies.

4.1. Natural Agents

Polyphenols, natural components of plants and their fruits, are able to regulate
cellular mechanisms, and evidence indicates that they can also modulate the course of
diseases [195,196]. They have also demonstrated an inhibitory effect on eye
diseases [191,197,198]. The flavonoid chrysin may play a role in DR. It was found to
decrease MMP-2 protein expression in glucose-stimulated rhesus macaque choroid-retinal
endothelial cells and reduced the activation of Akt and ERK signaling pathways, thus limit-
ing cell migration [99]. Further, various polyphenols, such as chebulagic acid, chebulinic
acid, gallic acid, epigallocatechin-3-gallate (EGCG), and quercetin, reduced the mRNA
and protein expression and activity of gelatinases in inflamed-choroidal-retinal endothelial
and -retinal pigment epithelial cells, suggesting they may have therapeutic potential in
AMD [199–201].

Pterostilbene, an analog of resveratrol and a natural compound of blueberries, di-
minished the mRNA expression and activity of MMP-2 and MMP-9 in hyperosmotic
stress-induced primary human corneal epithelial cells [144]. In turn, eye drops containing
catechin, a natural flavonoid occurring in tea, downregulated the protein expression of
MMP-2 and MMP-9 in the desiccation stress-stimulated NOD.B10.H2b mice; this change
was accompanied by an increase in the tear production and a decrease in corneal epithelium
irregularities and desquamation [146,148]. In an animal model of UM, curcumin treatment
resulted in lowered expression of MMP-2 and MMP-9 at both the mRNA and protein
level in cancer cells, causing a reduction in tumor size [202]. Eriodictyol, a natural dihy-
droflavonoid, caused significant inhibition of migration and invasion of retinoblastoma
cells; this resulted from downregulation of MMP-2 and MMP-9 protein expression and
blockage of the Akt and PI3K signaling pathways [64].

Resveratrol is believed to offer various pro-health benefits. It was found to increase
MMP-2 production in the aqueous humor, reduce IOP and improve the morphology of the
trabecular meshwork and retina in rats with steroid-induced glaucoma [203,204]. Miyata
and co-workers showed that individual polymethoxylated flavones isolated from Kaempferia
parviflora decreased gelatinase activity and the mRNA expression of MMP-9, and increased
the protein production of TIMP-2 in phorbol 12-myristate 13-acetate-stimulated LECs via
suppression of p38 MAPK, JNK1/2 and ERK1/2 pathway activation [205]. This finding
highlights the efficacy of flavones in the prevention of PCO.

Paeoniflorin, a monoterpene glucoside naturally occurring in the root of Paeonia lac-
tiflora, is able to inhibit the inflammation of microglia within the retina and disrupt the
BRB, which plays a key role in the development of DR. It has been demonstrated that
paeoniflorin reduced the activity of MMP-9, and lowered the activation of p38 and NF-κB
signaling pathways in the microglial cells following high glucose treatment. Addition-
ally, this compound decreased MMP-9 activity, lowered IL-1β protein expression, and
ameliorated diabetic retinal changes in streptozocin-stimulated mice [206].

Theissenolactone C, a fungal derivate extracted from Theisseno cinerea (Xylariaceae),
could be used as a retinoprotectant in glaucoma. This agent lowered the protein level and
activity of MMP-9 in the retinas of rats with IOP-induced ischemia/reperfusion-retinal
injury. Therefore, it offers promise as an adjuvant agent in the therapy of glaucoma;
however, further clinical studies are needed [207].

Zeaxanthin, a natural compound belonging to the xanthophyll subclass of the carotenoids,
has been found to have strong anti-cancer properties against UM. This compound inhibited
the invasion and migration of UM cells in vitro. It is believed to act by lowering MMP-2
secretion and reducing the NF-κB level in nuclear extracts from the UM cells [208].

It is also worth noting the effect of omega-3 long-chain polyunsaturated fatty acids (PU-
FAs), naturally occurring in fish and seafood. They are believed to exert a protective effect
against oxidative stress and inflammation in retinal diseases, such as DR or AMD, mainly
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by inhibiting pro-inflammatory cytokine expression, and by activating signaling pathways
associated with inflammation and ROS production [209,210]. In addition, it was found
that a diet containing PUFAs reduced the expression of gelatinases in choroidal-retinal
explants obtained from mice with experimentally-induced choroidal neovascularization via
adiponectin pathway activation. These effects limited new choroidal vessel formation, sug-
gesting that a PUFA-rich diet may inhibit AMD development [211]. Additionally, omega-3
fatty acids have been found to mitigate the clinical course of DES. The oral supplementation
using re-esterified omega-3 fatty acids, or their re-esterified triglyceride form, contributed
to a decline in tear osmolarity and ocular surface disease index, and an increase in TBUT
and tear production in patients with DES. The changes were accompanied by a decrease in
the MMP-9 level in the tear film; this could be responsible for the observed reduction in
ocular surface inflammation and a general improvement of symptoms and signs [212,213].

4.2. Synthetic Agents

In an in vivo model of DR, oral supplementation with synthetic melatonin diminished
the protein expression of MMP-9, VEGF, and inducible nitric oxide synthase in strepto-
zotocin/nicotinamide induced rats. It revealed that melatonin has inhibiting potential
on angiogenesis in DR, suggesting that this compound offers promise in prophylaxis or
supportive treatment of DR [214].

Interestingly, niclosamide, a salicylanilide with antihelminthic activity, is able to
inhibit the malignant phenotype of UM. Niclosamide treatment limited the invasion and
migration of UM cells, decreased MMP-9 protein expression, and suppressed the NF-κB
and Wnt/β-catenin signaling pathways, indicating its strong anti-cancer properties [215].

Noteworthy are new agents for the treatment of glaucoma. Sodium 4-phenylbutyrate,
a salt of aromatic short-chain fatty acid, decreased IOP in mice with dexamethasone 21-
acetate-induced ocular hypertension; in addition, treatment downregulated the protein
expression of collagen I and fibronectin in the trabecular meshwork tissue, enhancing the
aqueous humor outflow. The treatment also prevented the dexamethasone-stimulated
synthesis of ECM components and endoplasmic reticulum stress markers in primary human
trabecular meshwork cells and upregulated the gene expression and activity of MMP-9 in
the same model, indicating that sodium 4-phenylbutyrate was able to degrade abnormal
extracellular matrix accumulation in glaucoma [216].

Statins also offer promise as agents with beneficial effects for glaucoma. The synthetic
statin atorvastatin suppressed the protein expression and activity of type IV collagenases
in astrocytes of the optic nerve head following TGF-β2 stimulation. This was achieved by
inhibiting the RhoA/ROCK signaling pathway, suggesting that statins have a protective
effect against optic nerve damage in glaucoma [217].

Selected studies investigating the modulation of MMPs and TIMPs by novel agents
are summarized in Tables 1–3.

Table 1. Overview of in vitro studies associated with the modulation of MMPs and TIMPs in
eye diseases.

Agent Cell Line Concentration/Duration Biological
Effects/Findings Reference

Diabetic retinopathy

Chrysin
(5,7-dihydroxyflavone)

Glucose-induced rhesus
macaque choroid-retinal
endothelial cells (RF/6A)

3, 10, 30 µM for 0.5, 16,
24 h

↓MMP-2 protein;
↓VEGFR1, VEGFR2
mRNA and protein;
↓VEGF, HIF1α protein;
↓p-Akt, p-ERK protein;

↓migration

[99]
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Table 1. Cont.

Agent Cell Line Concentration/Duration Biological
Effects/Findings Reference

Paeoniflorin Glucose-induced BV2 cells 0.1. 1, 10 µM for 6 h

↓MMP-9 activity;
↓p-p38 protein;

↓NF-κB translocation
from the cytosol to the

nucleus

[206]

Age-related macular degeneration

Chebulagic acid
TNF-α-induced Rhesus

monkey choroidal- retinal
endothelial cells (RF/6A)

1, 5, 10, 25, 50, 100 µM
for 4, 48 h

↓MMP-9 mRNA, protein,
activity;

↓PDGF-BB, IL-6, IL-8,
MCP-1, MIP-1b,

p-ERK1/2, p-NF-κB,
p-p38 protein;
↓tube formation

[200]

Chebulinic acid
TNF-α-induced rhesus

monkey choroidal- retinal
endothelial cells (RF/6A)

1, 5, 10, 25, 50, 100 µM
for 4, 48 h

↓MMP-9 mRNA, protein,
activity;

↓PDGF-BB, IL-6, IL-8,
MCP-1, MIP-1b,

p-ERK1/2, p-NF-κB,
p-p38 protein;
↓tube formation

[200]

EGCG

H2O2/TPA/
TNF-α-induced human

retinal pigment epithelial
cells (ARPE-19) +

VEGF-induced human
retinal microvascular

endothelial cells

1, 10, 25, 50 µM for 24 h

↓MMP-9 mRNA, protein,
activity;

↓MMP-2 activity;
↓VEGF, VEGFR-2 mRNA;
↓tube formation

[199]

Gallic acid
(3,4,5-Trihydroxybenzoic

acid)

TNF-α-induced Rhesus
monkey choroidal- retinal
endothelial cells (RF/6A)

1, 10, 50, 100 µM for 4,
48 h

↓MMP-9 mRNA, protein,
activity;

↓IL-6, IL-8, MCP-1,
p-ERK1/2, p-NF-κB,

p-p38 protein;
↓tube formation

[200]

Quercetin
(3,3′,4′,5,7-

pentahydroxyflavone)

TNF-α-induced human
retinal pigment epithelial

cells (ARPE-19)

5, 10, 50, 100 µM for 1, 4,
6, 48 h

↓MMP-9 mRNA and
activity;

↓ICAM-1 mRNA and
protein;

↓p-JNK1, p-JNK2, p-ERK1,
p-ERK2, p-p65 protein

[201]

Dry eye syndrome

Pterostilbene
(trans-3,5-dimethoxy-4-

hydroxystilbene)

Hyperosmotic
stress-induced primary

human corneal
epithelial cells

For mRNA expression:
5, 10, 20 µM for 4 h

For protein expression
and MMPs activity:
5, 10, 20 µM for 24 h

↓MMP-2 mRNA and
activity

↓MMP-9 mRNA and
activity

↓IL-1β, IL-6, TNF-α
mRNA and protein
↓COX-2 mRNA and

protein
↑SOD1 mRNA and

protein
↑PRDX4 mRNA

and protein

[144]



Int. J. Mol. Sci. 2022, 23, 4256 17 of 29

Table 1. Cont.

Agent Cell Line Concentration/Duration Biological
Effects/Findings Reference

Ocular cancers

Eriodictyol Y79 cells 25, 50, 100 µM for 24 h

↓MMP-2 and MMP-9
protein;

↓ p-Akt, p-PI3K protein;
↑cleaved caspase-3

protein;
↓invasion;
↓migration

[64]

Niclosamide 92.1, Mel270, Omm1,
Omm2.3 cells

1–10 µmol/L for 24, 36,
48 h

↓MMP-9 protein;
↑active caspase-3 protein;
↓NF-κB activation;

↓p-GSK3β, p-β-catenin
protein;
↓invasion;
↓migration;
↓proliferation

[215]

Zeaxanthin C918 cells 3–10 µM for 0.5, 8, 16,
24 h

↓MMP-2 protein;
↓NF-κB protein;
↓invasion;
↓migration

[208]

Posterior capsule opacification

Flavones isolated from
Kaempferia parviflora

(5,7-dimethoxyflavone;
3,5,7-trimethoxyflavone;

3,5,7,4′-
tetramethoxyflavone;

3,5,7,3′,4′-
pentamethoxyflavone)

Phorbol-ester-stimulated
human lens epithelial cells

(SRA01/04)

0.25, 1, 4, 16, 64 µM for
24 h

↓pro-MMP-2, pro-MMP-9
activity;

↓MMP-9 mRNA;
↑TIMP-2 protein;
↓p-JNK1, p-JNK2,

p-ERK1/2, p-p38 protein

[205]

Glaucoma

Sodium 4-phenylbutyrate

Dexamethasone-
stimulated human
primary trabecular

meshwork cells

5 mM for 24 h/7d

↑MMP-9 mRNA and
activity;

↓fibronectin, collagen I,
laminin protein;

↓GRP-94, GRP-78, CHOP
protein

[216]

Statins (simvastatin,
lovastatin, atorvastatin)

TGF-β2-stimulated
human primary astrocytes

of optic nerve head
5 µg/mL for 1 h

↓MMP-2 and MMP-9
protein;

↓MMP-2 and MMP-9
activity;

↓p-MYPT1, p-mic protein

[217]

Legend: ↑ activation or increase; ↓ inhibition or decrease; CHOP—CCAAT-enhancer-binding protein homolo-
gous protein; COX-2—cyclooxygenase 2; GRP-78—glucose regulated protein 78; GRP-94—glucose regulated
protein 94; HIF1α—hypoxia inducible factor 1 alpha; ICAM-1—intercellular adhesion molecule 1; IL—interleukin;
MCP-1—monocyte chemoattractant protein 1; MIP-1b—macrophage inflammatory protein 1; MMP-2—matrix met-
alloproteinase 2; MMP-9—matrix metalloproteinase 9; NF-κB—nuclear factor kappa B; p-Akt—phosphorylated
protein kinase B; p-ERK—phosphorylated extracellular-signal regulated kinase; p-GSK3β—phosphorylated
glycogen synthase kinase 3 beta; p-JNK—phosphorylated c-Jun N-terminal kinase; p-MYPT1—phosphorylated
myosin phosphatase target subunit 1; p-NF-κB—phosphorylated nuclear factor kappa B; p-p38—phosphorylated
p38 mitogen-activated protein kinase; p-PI3K—phosphorylated phosphatidylinositol 3-kinase; PDGF—platelet-
derived growth factor; PRDX4—peroxiredoxin 4; SOD1—superoxide dismutase 1; TIMP-2—tissue inhibitor of
metalloproteinases 2; TNF-α—tumor necrosis factor alpha; VEGF, vascular endothelial growth factor; VEGFR1—
vascular endothelial growth factor receptor 1; VEGFR2—vascular endothelial growth factor receptor 2.
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Table 2. Overview of in vivo studies associated with the modulation of MMPs and TIMPs in
eye diseases.

Agent Animal Model Dose/Duration Biological
Effects/Findings Reference

Diabetic retinopathy

Melatonin
Streptozotocin/nicotinamide-

induced
Wistar rats

85 µg/d orally for
14 days

↓MMP-9 protein;
↓VEGF, iNOS protein;
↓advanced oxidation

protein products

[214]

Paeoniflorin Streptozocin-stimulated
CD-1 mice

20, 40 mg/kg/d for
5 weeks

↓MMP-9 activity;
↓IL-1β protein; [206]

Age-related macular degeneration

Dietary Omega-3
Long-Chain

Polyunsaturated
Fatty Acids

Laser-induced C57BL/6J and
Apn−/− mice

Defined rodent diets
with 2% omega 3-long-
chain-polyunsaturated-

fatty-acids (1%
docosahexaenoic acid

and 1%
eicosapentaenoic acid)
for 7 days before and

after laser
photocoagulation

↓MMP-2 and MMP-9
mRNA

↓choroidal neovessels
[211]

Dry eye syndrome

Catechin
(flavon-3-ol)

Desiccation stress-induced
NOD.B10.H2b mice

1% catechin or 1%
nanocomplex

PEG/catechin as eye
drops for 10 days

↓MMP-2 protein
↓MMP-9 protein

↓IL-1β, IL-6, IL-17 protein
↓TNF-α protein
↓ICAM-1 protein
↓VCAM-1 protein
↑goblet cell density
↑tear production
↓corneal epithelium

irregularities and
desquamation

[146]

Catechin Desiccation stress-induced
NOD.B10.H2b mice

1% catechin or 11%
hydrogen nanocomplex

PEG/catechin as eye
drops for 10 days

↓MMP-2 protein
↓MMP-9 protein

↓IL-1β, IL-6, IL-17 protein
↓TNF-α protein
↓ICAM-1 protein
↓VCAM-1 protein
↑goblet cell density

[148]

Ocular cancers

Curcumin
C57/BL mice with the
subretinal injection of

melanoma B16/F10 cells

100 mg/kg
intraperitoneally for

18 days

↓MMP-2, MMP-9 mRNA
and protein;

↓PI3K, EphA2 mRNA and
protein;
↓tumor size

[202]

Glaucoma

Resveratrol Steroid-stimulated
Sprague-Dawley rats

Topical, 0.2% twice-daily
for 3 weeks

↑MMP-2 protein;
↑improvement of

morphology of trabecular
meshwork and retina;

↓IOP

[203]
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Table 2. Cont.

Agent Animal Model Dose/Duration Biological
Effects/Findings Reference

Resveratrol Steroid-stimulated
Sprague-Dawley rats

Topical, 0.2% twice-daily
for 1 week

↑MMP-2 protein;
↑uPA, tPA protein;

↓IOP
[204]

Theissenolactone C
Sprague-Dawley rats with
normal saline injection into

the anterior chamber

Single intraperitoneal
injection of 10 mg/kg

↓MMP-9 protein and
activity;

↓IL-1β, MCP-1 protein
[207]

Sodium
4-phenylbutyrate

Dexamethasone-stimulated
C57BL/6J

1% sodium
4-phenylbutyrate as eye

drops twice daily for
5 weeks

↓IOP;
↓fibronectin, collagen

I protein
[216]

Legend: ↑ activation or increase; ↓ inhibition or decrease; EphA2—EPH Receptor A2; ICAM-1—intercellular
adhesion molecule 1; IL—interleukin; iNOS—inducible nitric oxide synthase; IOP—intraocular pressure; MCP-1—
monocyte chemoattractant protein 1; MMP-2—matrix metalloproteinase 2; MMP-9—matrix metalloproteinase 9;
PI3K—phosphatidylinositol 3-kinase; TNF-α—tumor necrosis factor alpha; tPA—tissue plasminogen activator;
uPA—urokinase plasminogen activator; VCAM-1—vascular cell adhesion protein 1; VEGF, vascular endothelial
growth factor.

Table 3. Overview of clinical studies associated with the modulation of MMPs and TIMPs in
eye diseases.

Agent
ClinicalTrials.gov
Identifier/Phase

(if Specified)
Participants/Enrollment Dosage/Duration Biological

Effects/Findings Reference

Dry eye syndrome

Re-esterified
omega-3

fatty acids

multicenter,
prospective,

interventional,
placebo-controlled,

double-masked
study

105 patients with DES;
the omega-3 group
(n = 54) or placebo

group (n = 51)

4 softgels daily with
meals containing a

total of either 1680 mg
of eicosapentaenoic

acid/560 mg of
docosahexaenoic acid
re-esterified omega-3

group or 3136 mg
linoleic acid safflower

oil as the control
group for 12 weeks

↓tear MMP-9
↓OSDI score
↑TBUT
↓tear

film osmolarity

[212]

Re-esterified
triglyceride form

of omega-3
fatty acids

prospective
comparative
cohort study

66 patients complaining
of new-onset

non-specific typical dry
eye 1 month after

uncomplicated cataract
surgery;

the omega-3 group
(n = 32) or placebo

group (n = 34)

2 tablets containing a
total of 1680 mg of
eicosapentaenoic
acid/506 mg of

docosahexaenoic acid
re-esterified

triglyceride form of
omega-3 two times

per day for 2 months
along with

artificial teardrops

↓tear MMP-9
↓OSDI score
↑tear production
↓Dry Eye

Questionnaire score

[213]

Legend: ↑ activation or increase; ↓ inhibition or decrease; OSDI—ocular surface disease index; MMP-9—matrix
metalloproteinase 9; TBUT—tear break-up time.

5. Conclusions

Both MMPs and TIMPs play important roles in the pathogenesis of a number of eye
diseases, including AMD, DR, UM, retinoblastoma, DES, PCO, cataract, and glaucoma,
and the regulation of eye health. In addition, their expression and activity are influenced
by other cellular pathways and thus play a role in the development and progression of
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ocular disorders. Although the exact mechanisms of MMP and TIMP activity depend on
the type of disease, they are both known to influence angiogenesis, invasion, migration,
epithelial-mesenchymal transition, inflammation, and apoptosis. Moreover, it seems that
the ratio of MMP/TIMP levels is more important in the development of eye diseases than
the individual levels of these molecules. With the evolving use of target treatment, we
recommend further studies investigating the role and potential use of MMPs and TIMPs
in the diagnosis, prognosis, and treatment of eye diseases. In addition, further studies are
needed to identify novel, therapeutic options modulating MMP and TIMP expression and
activity, and these may slow the prevalence, development, and progression of eye diseases.
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