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ABSTRACT Research on the genetics of natural populations was revolutionized in the 1990s by methods for genotyping noninvasively
collected samples. However, these methods have remained largely unchanged for the past 20 years and lag far behind the genomics
era. To close this gap, here we report an optimized laboratory protocol for genome-wide capture of endogenous DNA from
noninvasively collected samples, coupled with a novel computational approach to reconstruct pedigree links from the resulting low-
coverage data. We validated both methods using fecal samples from 62 wild baboons, including 48 from an independently
constructed extended pedigree. We enriched fecal-derived DNA samples up to 40-fold for endogenous baboon DNA and
reconstructed near-perfect pedigree relationships even with extremely low-coverage sequencing. We anticipate that these methods
will be broadly applicable to the many research systems for which only noninvasive samples are available. The lab protocol and
software (“WHODAD”) are freely available at www.tung-lab.org/protocols-and-software.html and www.xzlab.org/software.html,
respectively.

KEYWORDS capture-based enrichment; noninvasive samples; baboons; paternity analysis; pedigree; genome resequencing

THE capacity to generate genetic data from low-quality or
noninvasively collected samples, first developed in the

1990s, revolutionized the study of genetics, evolution, behav-
ior, and ecology in natural populations. Thesemethodological

advances facilitated phylogenetic and phylogeographic anal-
yses of difficult-to-sample taxa; helped define the role of
admixture in mammalian evolution (Pérez et al. 2010; Sacks
et al. 2011; Charpentier et al. 2012); and enabled theoretical
expectations about paternal investment, kin recognition, and
reproductive skew to be empirically tested, sometimes for the
first time (Buchan et al. 2003; Smith et al. 2003; Archie et al.
2007; Gottelli et al. 2007). They also yielded important in-
sights into the genetic viability and future prospects of threat-
ened or endangered populations from which invasive samples
are impossible to obtain (Idaghdour et al. 2003; Valière et al.
2003; Nagata et al. 2005; Rudnick et al. 2007; Mondol et al.
2009). Noninvasive genetic analysis has thus changed the ways
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we study population, ecological, and conservation genetics, and
we would know far less about many species without it.

However, techniques for noninvasive genetic analysis have
changed little in the past 20 years. Collection of genetic data
from noninvasively collected tissues (e.g., feces, hair, and
urine) continues to be labor intensive, time intensive, and
vulnerable to technical artifacts such as allelic dropout and
cross-contamination (Gagneux et al. 1997; Taberlet et al.
1999). Further, current methods ultimately yield very small
amounts of data by today’s standards. Typical studies geno-
type up to several dozen microsatellite loci per individual—a
trivial amount compared to the data sets now routinely gen-
erated using standard high-throughput sequencing ap-
proaches. Thus, while existing methods are sufficient for
basic pedigree construction and estimating some population
genetic parameters (although usually with substantial uncer-
tainty), they are severely underpowered for many other types
of analyses (Sabeti et al. 2002; Price et al. 2009; Li andDurbin
2011), including any that require local (i.e., gene- or region-
specific) information instead of genome-wide averages
(Huang et al. 2007; Li et al. 2007; Sankararaman and Sridhar
2008; Yang et al. 2011; Ma et al. 2014). Further, because
noninvasively collected genotype data are most often based
on microsatellites, they cannot take advantage of new tools
designed specifically for single-nucleotide variants (Purcell
et al. 2007; Visscher 2009; Durand et al. 2011).

Generating genome-scale data sets from noninvasive sam-
ples is challenging for two reasons. First, in many cases, the
DNA extracted from these samples is low quality and highly
fragmented. Second, it contains large proportions of nonhost
DNA. For example, only �1% of DNA extracted from fecal-
derived samples is endogenous to the donor animal [most is
microbial (Perry et al. 2010)]. Sequence capture methods, in
which synthesized baits are used to enrich for prespecified
target sequences from a larger DNA pool (Gnirke et al. 2009),
present a potential solution to both of these problems. Be-
cause shearing is a required step in library preparation, the
problem of working with highly fragmented samples is obvi-
ated. Indeed, Perry et al. (2010) were able to use a modified
version of sequence capture to target and sequence 1.5 Mb of
the chimpanzee genome from fecal-derived DNA, with very
low genotyping error rates relative to blood-derived DNA.
More recently, Carpenter et al. (2013) reported a method
for performing genome-wide sequence capture from low-
quality ancient DNA samples, which recapitulate many of
the challenges posed by noninvasive samples (e.g., highly
fragmented DNA and low proportions of endogenous DNA).

However, while considerable investment in single samples
often makes sense in ancient DNA studies, the low levels of
postcapture enrichment associated with currently available
protocols are not cost effective for population studies of non-
invasive samples. Substantially higher rates of enrichment,
particularly in nonrepetitive regions of the genome, will
be essential to overcome this limitation. In addition, compu-
tational methods for analyzing the resulting data are also
required, especially given that genome-scale sequencing

efforts for such samples are likely to produce low-coverage
data. For example, current paternity assignment approaches
(Chakraborty et al. 1974; Marshall et al. 1998; Kalinowski
et al. 2007) were not designed to deal with uncertain geno-
types, an inevitable component of analyzing low-coverage
sequencing data. Thus, for capture-based methods to be-
come broadly accessible, the development of appropriate
new computational approaches is also essential.

Here, we report an optimized laboratory protocol for
genome-widecaptureof endogenousDNAfromnoninvasively
collected samples, combined with a novel computational
approach to reconstruct pedigree links from the resulting data
(implemented in the program WHODAD). We validate both
our laboratory methods and computational tools, using non-
invasively collected samples from 54 members of an inten-
sively studiedwildbaboonpopulation in theAmboseli basinof
Kenya (Alberts and Altmann 2012). We also demonstrate the
generalizability of our methods to noninvasive samples col-
lected using different methods from a different baboon spe-
cies from West Africa. Our protocol is cost effective, has
manageable sample input requirements, yields good capture
efficiency for high complexity, nonrepetitive DNA, and mini-
mizes the need for extensive PCR amplification. Importantly,
we find that genotype data generated from fecal samples
closely match data from high-quality blood-derived DNA
samples from the same individuals, and provide near-perfect
information on pedigree relationships even with extremely
low per-sample sequencing coverage (mean = 0.493 ge-
nome coverage). Together, these methods will enable popu-
lation, conservation, and ecological genetic analyses of
natural populations to again take a major leap forward, into
the genomic era. At the same time, they will also introduce
new systems to the genomics community.

Results

DSN digestion during bait construction increases
library complexity

Our protocol relies on in vitro transcription of biotinylated
RNA baits to capture host-specific DNA from the mixed pool
of host, environmental, and microbial DNA extracted from
noninvasive samples. Similar to Carpenter et al. (2013), RNA
baits are generated from DNA templates obtained from a
high-quality DNA sample (here, DNA extracted from blood).
This approach avoids the high cost of custom bait synthesis
(as in Perry et al. 2010 and Gnirke et al. 2009), but can also
produce a bait set that includes a large proportion of low-
complexity, repetitive regions. Consequently, many reads
generated from captured DNA cannot be uniquely mapped,
lowering the protocol’s efficiency. To address this concern, we
incorporated a novel duplex specific nuclease (DSN) diges-
tion in the bait construction step (Supplemental Material,
Figure S1A; see Methods). Sequencing the DNA bait tem-
plates prior to in vitro amplification demonstrates that in-
cluding the digestion step reduces the percentage of baits
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synthesized from low-complexity/highly duplicated regions.
Specifically, a 4-hr incubation of sheared DNA at 68� followed
by a 20-min DSN digestion in the presence of human Cot-1
produced the highest-complexity bait library of the five con-
ditions we tested. Compared to DNA templates from a non-
DSN-digested library, bait templates produced using these
conditions reduced the number of reads mapping to multiple
locations by 2.6-fold (from 19.2% to 7.5%; Figure S2).

Capture-based enrichment

We validated our full capture protocol (bait construction
followed by capture of endogenous DNA and sequencing of
captured fragments), using fecal-derived DNA (fDNA) sam-
ples collected from54 individually recognizedyellowbaboons
(36 males and 18 females; Figure 1) from the Amboseli ba-
boon population, an intensively studied population in which
maternal and paternal pedigree relationships are known for a
large set of individuals (Buchan et al. 2003; Alberts et al.
2006; Alberts and Altmann 2012). We produced data for
52 of the samples in two successive capture efforts: “capture
1”was conducted on fDNA from 24 baboons, and “capture 2”
was conducted on fDNA from 28 additional baboons after
making multiple improvements to our initial protocol
(changes to the protocol between capture efforts are de-
scribed in detail in Table S1 and File S1; see Table S2 for
information on sequencing coverage and mapping statistics).
Data from the remaining two individuals, “LIT” and “HAP,”
were generated to compare the captured fDNA sample with
data derived from sequencing blood-derived genomic DNA
(gDNA) samples from the same individuals.

Our protocol (Figure S1) resulted in substantial enrich-
ment of baboon DNA in the postcapture vs. precapture sam-
ples (see Table S2 for sample-specific details). A mean of
44.56% (range: 10.28–83.17%) of postcapture fragments
mapped to the yellow baboon genome (Pcyn1.0), despite
starting with precapture samples that contained a mean of
only 2.04% endogenous baboon DNA, as estimated by quan-
titative PCR (qPCR) (range 0.19–8.37%). However, in cap-
ture 1 a large proportion of the mapped fragments were
identified as PCR duplicates (meancapture1 = 71.97% of
mapped fragments, rangecapture1 = 51.43–88.46%; Figure
2A). After removing PCR duplicates, a mean of 9.16% of
the postcapture reads in capture 1 were nonduplicate map-
pable fragments (rangecapture1 = 2.23–23.75%), producing a
mean coverage of 0.203 per sample relative to the mappable
baboon genome (mean sequencing depth of 5.8 Gb per sam-
ple; rangecapture1 = 0.04–0.493; Figure 2B). These numbers
translated to an overall mean fold enrichment of 39.83 for
mapped reads (rangecapture1 = 8.0–111.8-fold, SD = 25.2)
and 9.63 enrichment of non-PCR duplicate mapped reads
(rangecapture1 = 3.9–22.4-fold, SD = 5.0; Figure 2C).

Based on our results for capture 1, we made multiple
protocol improvements prior to conducting capture 2 (Table
S1 and File S1). The improved protocol was twice as effective
on average, resulting in a mean 18-fold enrichment of high-
quality, analysis-ready reads and amaximum fold enrichment

of close to 40-fold [rangecapture2 = 8.0–39.2-fold, Figure 2C;
by comparison, methods optimized for ancient DNA achieved
a mean of 5.5-fold enrichment of non-PCR duplicate frag-
ments (Carpenter et al. 2013), Figure 2A]. Specifically, the
protocol changes improved the proportion of nonduplicate
mapped fragments by .4-fold, from a mean proportion of
9.16% in capture 1 to a mean proportion of 37.74% in cap-
ture 2 (rangecapture2 = 6.16–68.61%), and reduced the pro-
portion of PCR duplicates among mapped reads 2-fold (from
71.97% in capture 1 to 36.97% in capture 2). This improve-
ment translated to an increase in overall genomic coverage
from a mean of 0.203 in capture 1 to 0.733 in capture 2
(mean total sequencing of 5.7 Gb per sample; rangecapture2 =
0.19–1.243; Figure 2B). This improvement in coverage was
not explained by increased sequencing depth in capture 2
(Table S2). Thus, while we would need to sequence a pre-
capture fDNA sample 50–100 times as deeply as a blood- or
tissue-derived sample to produce the same level of coverage,
our capture method reduces this difference to �2 times the
sequencing effort. Importantly, our method was also success-
ful in enriching fDNA samples (n = 8) from independent
samples collected from Guinea baboons (Papio papio; Figure
2A, Table S2), suggesting that our results are highly gener-
alizable across different species and storage and extraction
methods.

Sample attributes influencing capture efficiency

The amount of baboon DNA in the precapture fDNA sample
was the strongest predictor of enrichment success. Specifi-
cally, the percentage of baboon DNA precapture, as assessed
via qPCR, was positively correlated with the percentage of
nonduplicate fragments mapped postcapture (Figure 2D; T=
6.88, P = 1.72 3 1028). Samples from capture 2 had more
precapture baboon DNA than samples used in capture 1 be-
cause we attempted to optimize the input samples based on
our initial analyses in capture 1 (capture 1 mean = 1.21%,
range = 0.19–4.90%; capture 2 mean = 2.80%, range =
0.25–8.37%). However, even when controlling for this differ-
ence, enrichment of samples from capture 2 was improved
over that of capture 1. This pattern is observable whether
assessed using the percentage of baboon DNA fragments se-
quenced postcapture (Tcapture2 = 10.00, P=6.763 10213) or
assessed using fold enrichment relative to precapture
amounts (Tcapture2 = 6.89, P = 1.69 3 1028) and could not
be explained by differences in the length of sequence frag-
ments or overall sequencing depth (Figure S3, Table S2). The
amount of fDNA library used in the capture reaction was also
weakly positively correlated with the percentage of baboon
DNA fragments sequenced postcapture, after controlling for
the amount of baboon DNA in the precapture sample
(Tng_fDNA_library = 2.09, P = 0.042; Table S2).

Library complexity, distribution of reads, and
GC content

The postcapture libraries included a higher proportion of
PCR duplicates relative to reads generated from high-quality
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genomic DNA samples, for which fewer rounds of PCR
amplification were required (PCR duplicate proportion:
meanfDNA_capture1 = 69.6%, meanfDNA_capture2 = 36.8%,
meangDNA = 11.3% of mapped reads; 18 rounds of PCR
in the capture protocol vs. 6 rounds for the high-quality
samples). For comparison, this proportion is much lower
than reported for ancient DNA (aDNA) samples, which go
through more rounds of PCR amplification (meanaDNA =
94.6%; Figure 2A and Figure S4; Carpenter et al. 2013).
Despite increases in clonality, the number of nonduplicate
reads continued to increase with increasing sequencing
depth, with the slope of this relationship especially favorable
for capture 2 (Figure 3). Thus, deeper sequencing of postcap-
ture libraries should continue to increase genome-wide cov-
erage, albeit not as efficiently as sequencing blood-derived
gDNA samples.

As with other capture-based methods (Carpenter et al.
2013; Samuels et al. 2013), a modest fraction of the mapped
fragments mapped to the mitochondrial genome (mtDNA).
Whenwe included all mapped reads, this fraction was similar
in libraries from capture 1 and capture 2 (meancapture1 =
6.55%; meancapture2 = 6.73%; Figure S5A). However, cap-
ture 2 resulted in significantly more unambiguously nondu-
plicate mtDNA-mapped reads than capture 1, largely due to
the paired-end sequencing used in capture 2 (meancapture1 =
0.47% of all mapped reads; meancapture2 = 6.46%; Figure
S5B). The higher number of nonduplicate mtDNA reads in
capture 2 thus produced much deeper overall coverage of the
mitochondrial genome (Figure S5C), despite the fact that the
ratio of mtDNA to nuclear DNA mapped reads was compara-
ble between the two captures (Figure S5D). Finally, the dis-
tributions of read GC content for postcapture reads using our
protocol, the DNA template for the RNA baits, and aDNA
libraries were highly similar (Figure S6). This observation
suggests that any GC bias relative to the genome appears
during bait construction and/or sequencing, not during the
hybridization step.

Postcapture fDNA-derived genotype data are consistent
with individual identity and independently established
pedigree relationships

To assess the accuracy of genotypes called from postcapture
fDNA libraries, we compared genotype data from paired

blood-derived gDNA(without capture) andpostcapture fDNA
libraries for two individuals, LIT andHAP.Usinggenotypes for
sites that were called with a genotype quality (GQ) . 20 in
both the fDNA and gDNA data sets for either LIT or HAP, we
found that the majority of the genotypes called in both data
sets were concordant (86.5% of 312,739 sites for the LIT
paired samples; 77% of 40,132 sites for the HAP paired sam-
ples, for whom we had much lower coverage for the fecal-
derived sample). As expected, the majority of the discordant
sites occurred when the low-coverage fDNA sample was
called as homozygous and the high-coverage gDNA sample
was called as heterozygous (77.7% and 74.4% of discordant
sites in LIT andHAP, respectively; Figure S7). Further, among
all sites, the fDNA genotype captured at least one of the
alleles from the gDNA genotype in 99.8% (LIT) and 99.6%
(HAP) of cases (Figure S7). Thus, even when genotypes
called in fDNA and gDNA samples from the same individual
were discordant, they were almost always compatible.

Further, we found that genotypes called from the post-
capture fDNA libraries were more similar to the genotypes
called from their high-quality gDNA counterparts than they
were to those from other postcapture fDNA libraries. Specif-
ically, k0 values from lcMLkin (Lipatov et al. 2015), which
estimate the probability that two samples share no alleles
that are identical by descent, were much smaller for the
LITfDNA–LITgDNA paired samples (0.487) and HAPfDNA–
HAPgDNA paired samples (0.243) than for k0 values calcu-
lated for the two blood-derived samples when compared to
any other fDNA sample (k0 range LITfdna vs. other fDNA sam-
ples = 0.996–1.000; Z=849.2, P, 10220; k0 range HAPfDNA
vs. other fDNA samples = 0.786–0.999; Z= 10.6, P, 10220;
Figure 4A).

For the 48 extended-pedigree individuals (Figure 1, in-
cluding 8 Amboseli baboons with no known relatives in the
pedigree), we then tested whether the estimated coefficient
of relatedness values, r, from lcMLkin (Lipatov et al. 2015) in
the postcapture data (range: 0–1, or 23 the kinship coeffi-
cient) were correlated with coefficient of relatedness values
obtained from the independently constructed pedigree
(based on known mother–offspring relationships and micro-
satellite-based paternity assignments: see Methods). Using
a filtered set of 127,654 single-nucleotide variants (see
Methods), we found a strong correlation between the two

Figure 1 Pedigree of a subset of baboons monitored
by the Amboseli Baboon Research Project. Samples
from both males (squares) and females (circles) were
enriched in capture 1 (green) or capture 2 (purple).
Open circles and squares represent baboons that con-
nect individuals in our pedigree, but who were not
sequenced as part of this study. Each sequenced indi-
vidual is represented by a unique number (below the
circles or squares), with some individuals repeated be-
cause baboons often produce offspring with multiple
mates. The paired fDNA and gDNA samples came
from two individuals, HAP (blue) and LIT (orange),
who were members of the study population but are
not connected to this pedigree.
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measures (Pearson’s r = 0.73, P , 10216; Figure 4B). This
correlation improved further if we imposed thresholds for
the minimum number of sites genotyped in both individuals
(“shared sites”) in a dyad (Figure S8). For example, if we
removed all dyads with ,2000 shared sites (84 of 1128
dyads or 7.4%), the correlation between pedigree related-
ness and genotype similarity reached Pearson’s r = 0.86
(P , 10216). Notably, for one individual we prepared and
sequenced capture libraries from two independently col-
lected fecal samples (libraries AMB_018 and AMB_040).
For these biological replicates, the pairwise relatedness value
was 0.774, more than twice as high as for any other pair of
relatives (range of estimates for parent–offspring and full-sib
pairs typed at $2000 sites: 0.10–0.38). Thus, our methods
readily distinguish replicate samples (which can be inadver-
tently collected, especially in unhabituated populations)
from those collected from distinct individuals, even close
relatives.

Paternity inference using WHODAD

Current methods for assigning paternity [e.g., CERVUS
(Marshall et al. 1998; Kalinowski et al. 2007) and exclusion
(Chakraborty et al. 1974)] assume genotype certainty, such
that individuals are assigned a deterministic genotype at each
locus (i.e., 0, 1, or 2 or amicrosatellite repeat number; while a
low level of measurement error due to sample mishandling
can be modeled, this error rate is held constant across geno-
type calls). This assumption is violated in low-coverage se-
quencing data, in which genotypes are not known with
certainty and this uncertainty varies across genotype calls.

However, the relative probabilities of each genotype can be
estimated, given estimated population allele frequencies and
sequencing coverage information. To conduct paternity in-
ference and pedigree reconstruction in this context, we there-
fore developed a novel approach to integrate information
across low-coverage sites, implemented in the program
WHODAD. Our method has two components. The first com-
ponent identifies a top candidatemale and tests whether he is
significantly more related to the offspring than any other
candidate male, using a P-value criterion. The second com-
ponent tests whether the dyadic similarity between the top
candidate and offspring is consistent with a parent–offspring
dyad, using posterior probabilities obtained from a mixture
model (see Methods and Figure S9).

Using WHODAD, we assigned paternity to all father–off-
spring pairs (n=27) represented in the independently estab-
lished extended pedigree in Figure 1. This approach is
conservative because it departs from the usual practice of first
identifying a likely set of candidate fathers based on demo-
graphic and prior pedigree information (the approach used in
producing the pedigree in Figure 1). For 15 of the 27 off-
spring, we produced genotype data from the known mother
with our enrichment protocol. WHODAD identified the same
father as shown in the pedigree in 12 of these 15 trios (80%);
in the other 3 trios (20%), no candidate male satisfied
WHODAD’s paternity assignment criteria (in all 3 of these cases,
sequencing coverage was very low for either the pedigree-
identified father or offspring: 0.04–0.173). For the remain-
ing 12 offspring, we did not generate genotype data using
our enrichment protocol for their mothers. To test all 27

Figure 2 fDNA enrichment results. (A) Percentage of
sequencing reads that mapped to the baboon genome
and were not PCR duplicates (“Mapped,” dark blue),
mapped and were PCR duplicates (“PCR Duplicate,”
blue), or did not map and likely represent environmen-
tal or bacterial DNA in the case of fDNA/aDNA and
unmappable fragments in the case of gDNA (“Other,”
light blue). “gDNA” represents genomic DNA derived
from the blood samples for LIT and HAP; “aDNA”
represents ancient DNA data from capture-based en-
richment reported in Carpenter et al. (2013). Numbers
above each bar show the total number of PCR cycles
used in each protocol. (B) Capture 2 produced signif-
icantly greater genome coverage than capture 1, de-
spite a similar number of reads generated per sample
(two-sample t-test, T = 9.7, P = 3.0 3 10212). On
average in capture 2, we obtained �0.733 coverage
of the genome with 5.76 Gb of sequencing. If all 5.76
Gb mapped to the baboon genome as non-PCR dupli-
cates, we would have produced �2.23 genome-wide
coverage. (C) Capture 2 also produced significantly
greater fold enrichment of baboon DNA (fold enrich-
ment is measured as percentage of nonduplicate ba-
boon DNA postcapture divided by percentage of
baboon DNA precapture: two-sample t-test, T = 4.4,
P = 7.3 3 1025). (D) The amount of baboon DNA in

the sample precapture [percentage of baboon DNA precapture, based on qPCR of the single-copy c-myc gene (Morin et al. 2001)] is strongly correlated
with the percentage of baboon fragments obtained in postenrichment sequencing (Pearson’s r = 0.80, P = 1.0 3 10211). However, even samples with
low amounts of endogenous DNA (,2%) exhibit substantial fold enrichment using our protocol (meancapture1 = 10.603, meancapture2 = 24.823).
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father–offspring dyads together, we therefore reran WHODAD,
excluding maternal genotype information. In this setting,
WHODAD’s paternity assignments agreed with the pedigree
data in 22 of 27 (81%) cases (Figure 5). Notably, when
the pedigree-identified father was included in the data
set, WHODAD never assigned paternity to a different male,
whether or not maternal genotype data were available. Be-
cause our method is highly robust to exclusion of maternal
genotype data, we therefore performed all subsequent analy-
ses assuming maternal genotype data were not available, a
scenario thatmay often occur in studies of natural populations.

Thepresence of close relatives, such as full- or half-siblings,
can influence the accuracy of paternity assignment if these
close relatives are also included as candidate fathers (Thompson
and Meagher 1987; Marshall et al. 1998; Olsen et al. 2001;
Ford andWilliamson 2010). Thus, to examine how the pres-
ence of close male kin influenced the accuracy and confi-
dence of WHODAD’s paternity assignments, we conducted
three additional analyses. First, when all close male kin
were removed from the candidate list of potential fathers

(r $ 0.25), but the father was retained, our method per-
formed equivalently to the case when both father and close
relatives were in the candidate pool. Second, when we re-
moved all close male kin including the father, none of the best
candidate fathers from the conditional probability analysis
(0%) were assigned as fathers based on WHODAD’s assign-
ment criteria (Figure 5). Third, when we removed the father
from the pool of candidate fathers, but included close male
kin, 11% of the best remaining candidates (3 of 27 cases)
were incorrectly assigned as fathers, based on comparison
to the pedigree (Figure 5). All 3 of these false positives were
close male relatives: in two cases WHODAD assigned the
half-brother of the offspring as the likely father, and in one
case WHODAD assigned the son of the offspring as the likely
father. The best balance between maximizing the number of
true positives while minimizing the number of false positives
was achieved by combining both the P-value and mixture
model criteria (see Methods). This approach outperformed
either component used alone (Figure S10). For example,
when all males were included in the candidate pool, the

Figure 3 Increased sequencing effort produces in-
creased numbers of nonduplicate reads. Shown is
the number of mapped reads plotted against the
number of nonduplicate reads mapped [mean 6
SD; plotted using the program “preseq” (Daley
and Smith 2013)]. More complex libraries (i.e.,
those containing more nonduplicate fragments)
have a slope closer to 1 (as in the case of the gDNA
libraries), while less complex libraries have a shal-
lower slope and asymptote at a smaller value. The
main plot shows the first 10 million mapped reads
for each sample. The inset shows the same plot for
the first 1 million mapped reads.

Figure 4 Postcapture genotype data are consistent
with individual identity and pedigree relationships.
(A) The k0 values for the HAP and LIT fDNA–gDNA
paired samples (arrows) were significantly lower than
the range of k0 values for LITfDNA and HAPfDNA vs. any
other fDNA sample (gray distribution). Lower k0 val-
ues reflect increased relatedness (i.e., decreased prob-
ability of no IBD sharing). (B) Estimated dyadic
coefficient of relatedness values (range: 0–1) were
correlated with independently obtained pedigree re-
latedness values calculated using the R package
kinship2 (Sinnwell et al. 2014) (Pearson’s r = 0.73,
P , 10216). The blue line shows the best-fit slope
and intercept from the linear model. Both k0 and
the estimated relatedness values were calculated with
lcMLkin (Lipatov et al. 2015).
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combined approach resulted in an 81% true positive rate and
a 0% false positive rate, while using just the k0 values in a
mixture model resulted in the same true positive rate (81%),
but an additional 11% false positive rate (Figure S10).

Discussion

Our capture-basedmethodstrongly enriches theproportionof
host DNA in low-quality DNA extracted from feces (fDNA).
Ourmethod is the first use of genome-wide enrichment-based
capture methods (Carpenter et al. 2013; Enk et al. 2014;
Ávila-Arcos et al. 2015) for noninvasively collected samples,
which represent a major resource for behavioral, conserva-
tion, and evolutionary genetic studies in natural populations.
Importantly, our protocol increases efficiency and lowers cost
by reducing the input requirements (,1 mg) and number of
PCR cycles relative to previous methods (Perry et al. 2010)
and, in our final protocol, achieves up to 40-fold enrichment
of postcapture endogenous DNA relative to precapture levels.
We also show, for the first time since Perry et al. (2010), that
capture libraries from low-quality samples produce geno-
type data that are highly concordant with genotype data
derived from high-quality, noncaptured samples from the
same individuals.

We anticipate that data generated through this protocol
could be leveraged for a wide variety of applications. To
illustrate this point for paternity analysis, we present an
accompanying method, WHODAD, that produces results in
near-perfect concordance with an independently constructed
pedigree, using low-coverage data generatedwith our enrich-
ment protocol. By incorporating prior information about ped-
igree links or other demographic and behavioral data, or by
sequencing very low-coverage samples to additional depth
(similar to typingmoremarkers in conventionalmicrosatellite
analysis), its performance would be improved even further.
For instance, in reconstructing pedigree links in the Amboseli
population,we generally include only plausible candidates (e.g.,
we exclude males who were immature or not yet born at the
offspring’s conception), not all males with genotype data, as we
did here.

Together, these results provide valuable, accessible wet
laboratory and computational tools for moving studies of
difficult-to-sample natural populations forward into the ge-
nomics era. Importantly, our methods can be generalized to
produce low-complexity DNA-depleted RNA baits for any
species in which at least one high-quality DNA sample is
available [or potentially a closely related species (Enk et al.
2014)]. Further, our results show that WHODAD is highly
accurate for pedigree reconstruction evenwhen the reference
genome is not a high-quality chromosomal assembly (here,
we used 33,120 contigs from Pcyn1.0) or, based on explor-
atory analyses, even from the same species. Specifically,
when mapping to the reference genome for the rhesus ma-
caque [MacaM (Zimin et al. 2014)] instead of baboon, which
diverged from baboons 6–8 MYA (Steiper and Young 2006),
WHODAD produced similarly accurate paternity assignments
(21 of 27 fathers were correctly assigned using our recom-
mended statistical thresholds compared to 22 of 27 when
mapping to Pcyn1.0; there were no false positive assignments
in either case).

Costs of performing the protocol

At the time of publication, using the same reagents aswe used
here and sourced from the same locations, the costs of gen-
erating these data are �$60 per sample (excluding se-
quencing costs). Because our method does not require the
commercial synthesis of targeted capture probes, the major-
ity of the costs are accounted for by the streptavidin-coated
Dynalbeads ($11 per preparation), RNA baits ($5 per sam-
ple) and high-sensitivity Bioanalyzer chips for quality control
($9 per sample). Replacing Ampure XP beads with home-
made SPRI beads would reduce the per-sample costs consid-
erably, as would pooling adapter-ligated fDNA samples prior
to hybridization (instead of posthybridization, as reported
here). For a multiplexed pool of 10 samples, we estimate that
using these two strategies would result in a per-sample cost of
�$29. Indeed, we have verified that multiplexing samples
prior to hybridization does not result in loss of capture effi-
ciency and actually resulted in improved yield of mapped,
non-PCR duplicate reads (�61% of reads; mean of 117-fold

Figure 5 Paternity inference with WHODAD using
low-coverage genotype calls. (1) When all males (n =
34) were included in the pool of candidate fathers (top
bar), WHODAD assigned paternity to the same father
identified in the pedigree for 22 of 27 (81%) of off-
spring (dark blue; see assignment criterion in Meth-
ods). The remaining offspring were not assigned a
father based on WHODAD’s assignment criteria, most
likely due to low sequencing coverage (5 of 27; light
blue). (2) WHODAD’s accuracy was identical when we
removed all close male relatives of the offspring (r $
0.25) from the pool of candidate fathers. (3) When we
removed all close relatives, including fathers, from the
candidate pool, no fathers were assigned, as expected.

(4) Finally, when we removed the father from the candidate pool but retained close relatives, our method incorrectly assigned paternity to 11% of
offspring (3 of 27; bottom bar). All three incorrectly assigned fathers were closely related to the offspring (in two cases the assigned father was the half-
brother of the offspring and in one case the assigned father was the son of the offspring).
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enrichment, range = 54.8–257.2-fold; Figure S11A), al-
though it did result in more uneven coverage of samples
sequenced within a pool (Figure S11B) and raises the possi-
bility of barcode swapping [which can bemanaged using dual
barcoding approaches (Kircher et al. 2012)]. Multiplexing
also has the advantage of reducing the amounts of input
DNA per sample and the number of PCR cycles required for
the initial library preparation step. We are currently pursuing
improvements to the protocol along these lines.

Based on achieving 40%non-PCRduplicate,mapped reads
after capture (the mean result for capture 2 samples), we
estimate that the sequencing costs of a 13 genome for baboon
(�2.9 Gb) would be �$200 (based on paired-end, 125-bp
sequencing at $2000 per lane and exclusion of PCR dupli-
cates). This cost per sample is approximately twice the cost of
genotyping 14 microsatellites from the same fDNA sample—
the previous strategy for the main study population, the
Amboseli baboons (Van Horn et al. 2008)—but provides sub-
stantially more genetic information. These estimates will
drop farther as the cost of high-throughput sequencing con-
tinues to fall, making application of our approach to whole
populations increasingly feasible. Our finding that useful se-
quencing reads do not asymptote with deeper sequencing
(Figure 3) also suggests the feasibility of producing a high-
quality, high-coverage genome from such samples if one were
to sequencemore deeply. This approachwould alleviate cases
in which both alleles at a truly heterozygous site were not
observed due to low sequencing depth (for example, with 13
coverage, only one of the two alleles can possibly be ob-
served). Notably, however, it would not fix “allelic dropout”
problems in which an allele was not represented in the pool
of sequenceable fragments (Pompanon et al. 2005). Analo-
gous to the solution in noninvasive microsatellite typing,
multiple, independent PCR reactions could be used to solve
this problem.

Finally, to make the current protocol as cost effective as
possible, we recommend that researchers use qPCR to choose
DNA samples with the highest proportion of host DNA pos-
sible—the strongest predictor of the fold-change enrichment
in endogenous DNA postcapture vs. precapture (Figure 2D).

Assigning paternity using WHODAD

The lack of available tools for working with low-coverage
genomic data—realistically, one of the most likely data types
to be produced for studies of natural populations—represents
a major barrier to moving from low-throughput marker geno-
typing to genome-scale analyses. The pedigree structure of a
study population is fundamental to understanding its genetic
structure and social organization. However, current methods
for pedigree reconstruction are unable to cope with high lev-
els of genotype uncertainty. The approach we have imple-
mented in WHODAD takes this uncertainty into account,
suggesting one simple application for the wet laboratory
methods presented here. Indeed, our method performed well
when compared to an independently constructed extended
pedigree, with its major challenges—differentiating between

close relatives in a candidate pool—comparable to those re-
ported for existing software (Marshall et al. 1998; Olsen et al.
2001; Kalinowski et al. 2007; Ford and Williamson 2010).
Importantly, while analyses of pedigree structure using pre-
viously available methods are greatly aided by prior knowl-
edge of mother–offspring relationships (Kalinowski et al.
2007), maternal links do not appear to be necessary for
WHODAD analyses, which perform well even when no ma-
ternal information is available (Figure 5, Figure S9).

Conclusions

High-throughput sequencing approaches solve one problem
ofworkingwith low-quality, noninvasive samples: the sheared
nature of the original samples. Capture approaches have
demonstrated great promise for solving the second major
problem—large proportions of nonendogenous DNA—since
the results published by Perry et al. (2010). Our results help
to fulfill this promise by providing methods to perform cost-
effective sequence capture from noninvasive samples on a
genome-wide scale, coupled with analytical methods to deal
with the resulting data (we note that our protocols could also
be explored for broader application to aDNA samples). For
questions in which investigators are specifically interested in
variants in a priori-defined subsets of the genome [e.g., the
exome (Vallender 2011; George et al. 2011)], targeted cap-
ture with synthesized baits may still be the best option. How-
ever, for the many types of analyses that use genome-scale
data [e.g., local ancestry analysis, genome-wide scans for
selection, and reconstruction of population demographic his-
tory (Sabeti et al. 2002; Huang et al. 2007; Li et al. 2007;
Sankararaman and Sridhar 2008; Price et al. 2009; Durand
et al. 2011; Li and Durbin 2011; Yang et al. 2011; Ma et al.
2014)], our approach will be more useful, especially as the
costs of high-throughput sequencing continue to fall.

Here, we focused specifically on DNA obtained from fecal
samples, which are one of the most commonly collected types
of noninvasive samples: they contain information not only
about host genetics, but also about endocrinological param-
eters (Palme 2005), gut microbiota (Ley et al. 2008), parasite
burdens (Gillespie 2006), and gene expression levels (Knight
et al. 2014). The sample banks already available for many
natural populations thus open the door to population and
evolutionary genomic studies in species in which such anal-
yses were previously impossible. As the costs of data gener-
ation continue to fall, and the limiting factor for many studies
becomes high-quality phenotypic data, we envision that such
studies will rapidly move far beyond the simple analyses of
paternity and pedigree structure reported here.

Methods

Bait generation

Similar to Carpenter et al. (2013), we use a cost-effective
in vitro synthesis method based on T7 RNA polymerase am-
plification of sheared DNA from a high-quality sample (Fig-
ure S1A). We extracted genomic DNA from a blood sample
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collected from an olive baboon (P. anubis) that was unrelated
to any of the individuals in the samples we wished to enrich.
To generate baits, we sheared 5mg of purified DNA to amean
fragment size of 150 bp and then end repaired and A-tailed
the fragments, using the KAPA DNA Library Preparation Kit
for Illumina Sequencing. We purified the resulting reaction,
using a 1.83 ratio of AMPure beads to sample volume.

We annealed custom adapters to the A-tailed library by
incubating the following reagents for 15min at 20�: 10ml 53
ligation buffer (KAPA Biosystems), 5 ml DNA Ligase (KAPA
Biosystems), 1 ml 25 mM custom adapter, #34 ml of A-tailed
DNA, and H2O up to 50 ml total volume. The custom adapt-
ers we used (EcoOT7dTV, Fwd 59-GGAAGGAAGGAAGA
GATAATACGACTCACTATAGGGCCTGGT; EcoOT7dTV, Rev
59-/5Phos/CCAGGCCCTATAGTGAGTCGTATTATCTCTTCC
TTCCTTCC) differ from those used in other protocols
(Carpenter et al. 2013; Enk et al. 2014; Ávila-Arcos et al.
2015). Specifically, they contained (1) a T7 RNA polymerase
recognition site, (2) flanking sequence that improves T7 tran-
scription efficiency (Moll et al. 2004), and (3) an EcoO109I
restriction enzyme cut site that allowed us to later cleave off
the adapter sequence from T7 amplified RNAs (rather than
blocking it, as in Carpenter et al. 2013).

We then digested the purified, adapter-ligated DNA with
DSN (Axxora). DSN is a Kamchatka crab-derived enzyme that
specifically degrades double-stranded DNA but not single-
stranded DNA, allowing us to take advantage of DNA reasso-
ciation kinetics to reduce the representation of repetitive
regions in the bait set (Figure S2; Shagina et al. 2010). We
performed DSN digestion in 15 2-ml aliquots, each mixed
with 1 ml 43 hybridization buffer [200 mM HEPES (pH
7.5), 2 M NaCl, 0.8 mM EDTA] and 1 ml human Cot-1 DNA
(1 mg/ml). We denatured the DNA by heating to 98� for
3 min; held the reaction at 68� for 4 hr; and then added
4 ml H2O, 1 ml 103 DSN buffer, and 1 ml DSN (1 unit/ml)
to the reaction. After 20 min of digestion, we stopped the
reaction by adding 5 ml 23DSN Stop Solution (10mM EDTA)
and purified it with 2.43 AMPure beads.

Next, we used Klenow DNA polymerase to blunt end the
nondigested DNA, size selected for 200- to 300-bp fragments
on a 2% agarose gel, and purified the size-selected fraction
using the Zymoclean Gel DNARecovery Kit (ZymoResearch).
After purification the aliquots were PCR amplified for 16
cycles, using 25 ml 23 HiFi Hot Start ReadyMix (KAPA Bio-
systems) and 1 ml each of 25 mΜ primers EcoOT7_PCR1
(59-GGAAGGAAGGAAGAGATAATACGACTCACT) and EcoOT7_
PCR2 (59-TACGACTCACTATAGGGCCTGGT). Following amplifi-
cation the bait DNA libraries were purified using 1.83 AMPure
beads and the resulting product was visualized on a Bioanalyzer
DNA 1000 chip (Agilent Technologies).

Finally, we in vitro transcribed the DNA libraries to con-
struct biotin-tagged RNA baits, using the MEGA Shortscript
Kit (Life Technologies) and Biotin-UTP (Illumina). Briefly,
125–150 nM of DNA baits were incubated at 37� for 4 hr in
the following reaction: 2ml T7 103 reaction buffer; 2ml each
of T7 ATP, GTP, CTP, andUTP solutions (75mM); 1ml Biotin-

UTP (50 mM); 2 ml T7 enzyme mix; and water to 20 ml total
volume. We then digested the DNA template by adding 1 ml
TURBO DNase (Life Technologies) to the reaction and incu-
bating it at 37� for 15 min. We purified the resulting reaction
with the MEGAClear Transcription Clean-Up Kit (Life Tech-
nologies) and eluted it in a final volume of 70ml. To cleave off
the adapter sequence, we digested the RNA baits with the
EcoO1091 enzyme (NEB). Finally, the baits were again puri-
fied with the MEGAclear Clean-Up Kit, eluted in 70 ml, and
quantified on a Bioanalyzer RNA 6000, Eukaryote Total RNA
chip (Agilent Technologies).

Samples, DNA extraction, and qPCR quantification

Baboon samples from Amboseli (the main study population)
or West Africa (8 unhabituated Guinea baboons) were col-
lected, stored, and extracted as detailed in Table S2. For LIT
and HAP, gDNAwas extracted from blood samples, using the
QIAGEN (Valencia, CA) Maxi Kit. The majority of the sam-
pled Amboseli individuals (48 of 54) were either members
of a single extended pedigree or unrelated males living in the
same study population (Figure 1). We assessed the proportion
of endogenous DNA in each fDNA sample, using qPCR against
the c-myc gene, as described in Morin et al. (2001).

Library preparation

All samples were fragmented to the desired size (200 or 400
bp; see Table S1), using a Bioruptor instrument (Diagenode).
Illumina sequencing libraries were then generated from the
fragmented DNA, using either the KAPA DNA library kits for
Illumina (capture 1) or the NEBNext DNA Ultra library kit
(capture 2; see Table S1). Libraries were amplified for 6 PCR
cycles prior to capture-based enrichment. Sample-specific de-
tails of library preparation and sequencing results are de-
scribed in Table S1. Note that we changed several steps
between capture 1 and capture 2 based on interim improve-
ments in the protocol (also detailed in Table S1). Because the
methods used in capture 2 were ultimately more effective,
the updated capture 2 protocol is described in the Methods
section except where explicitly noted.

Capture-based enrichment

We modified the capture methods from Gnirke et al. (2009)
and Perry et al. (2010) (Figure S1B). For each capture, we
hybridized 121–626 ng of the fDNA libraries generated as
described above to the RNA baits. First, we mixed each fDNA
library with 2.5 ml human Cot-1 DNA (1 mg/ml), 2.5 ml
salmon sperm DNA (1 mg/ml), and 0.6 ml index-blocking
reagent (“IBR”) (50 mM). This mixture was incubated for
5 min at 95� followed by 12 min at 65�. Next, we added 13
ml of hybridization buffer (103 SSPE, 103 Denhardt’s solu-
tion, 10 mM EDTA, 0.2% SDS, preheated to 65�), 7 ml hy-
bridization bait mixture (1 ml SUPERase-In, 750 ng RNA
baits, and water up to a total volume of 7 ml, preheated to
65�) to the fDNA mixture and incubated the complete mix-
ture at 65� for 48 hr (see Figure S12 for comparison of alter-
native bait concentrations and incubation times).
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After incubation, we purified the enriched fDNA sample,
using 50 ml Dynal MyOne Streptavidin T1 beads (Invitrogen,
Carlsbad, CA). To do so, the beads were washed a total of
three times with 200 ml binding buffer [1 M NaCl, 10 mM
Tris-HCl (pH 7.5), 1 mM EDTA] and resuspended in 200 ml
binding buffer. Next, the entire fDNA/RNA hybridization mix
was added to the 200-ml Dynal MyOne Streptavidin T1 bead
and binding buffer slurry. We incubated this mixture at room
temperature for 30 min on an Eppendorf Thermomixer at
700 rpm. The mixture was placed on a magnetic rack, the
supernatant was discarded, and the beads were washed once
with 500 ml low-stringency wash buffer (13 SSC, 0.1% SDS)
followed by a 15-min incubation at room temperature. The
beads were then washed three times with 500 ml high-
stringency wash buffer (0.13 SSC, 0.1% SDS) with a 10-min
room temperature incubation between each wash. After the
final wash, the enriched fDNA fraction was eluted from the
beads with 50 ml elution buffer (0.1 M NaOH), transferred to
a new tube containing 70 ml “neutralization buffer” (1 M Tris-
HCl, pH 7.5), purified with 1.83 AMPure beads, and eluted
in a 30-ml volume. A final PCR was carried out in a 50-ml
reaction volume, using 23 ml of the posthybridization fDNA
and either (1) 25 ml 23 KAPA High Fidelity master mix and 2
ml TruSeq universal primer (capture 1) or (2) 25 ml 23 NEB-
Next High Fidelity PCR master mix, 1 ml universal PCR
primer, and 1 ml NEB indexing primer (capture 2). After 12
PCR cycles the final reaction was purified with 13 AMPure
beads, eluted in 20 mL H2O, and visualized on a Bioanalyzer
High Sensitivity DNA chip.

Sequencing and alignment

All high-throughput sequence generation was conducted on
the Illumina HiSeq platform (see Table S1 for sequencing
details). The resulting sequencing reads were mapped to
a de novo assembly of the P. cynocephalus genome (Wall
et al. 2016) (alignment available at https://abrp-genomics.
biology.duke.edu/index.php?title=Other-downloads/Pcyn1.0),
using the default settings of the bwa mem alignment algo-
rithm v0.7.4-r385 (Li 2013). Reads that mapped to scaffold
10204 of Pcyn1 were assigned to mitochondrial DNA due to
scaffold 10204’s similarity (97% sequence similarity) to a
published P. anubis mitochondrial genome (NCBI GenBank
accession no. KC757406.1). Duplicate reads were marked
and discarded in subsequent analyses, using the “MarkDupli-
cates” function in PicardTools (http://picard.sourceforge.
net). To facilitate comparison across samples of differing cov-
erage, and because coverage of the gDNA samples was much
higher (�303) than for the fDNA samples for LIT and HAP
(1.4 and 0.27, respectively), we downsampled the gDNA li-
braries to 0.733 coverage (the median coverage of samples
in capture 2), using “DownsampleSam” in PicardTools.

Comparison of sequencing data sets

In several analyses, we compared our capture-based enrich-
ment results to two independent data sets: (i) a previously
published capture-based enrichment of aDNA samples [NCBI

SRA accession no. SRP042225 (Carpenter et al. 2013)] and
(ii) shotgun sequencing from six capture 1 fDNA samples
prior to hybridization (“precapture”; Table S1). The aDNA
samples were aligned to the human genome (hg38) and
the precapture fDNA samples were mapped to the de novo
Pcyn1.0 genome assembly.

Library complexity, distribution of reads, and
GC content

We calculated the complexity of each library, using two
methods. First, we used the ENCODE Project’s PCR bottle-
neck coefficient (PBC), which calculates the percentage of
nonduplicate mapped reads from the total number of mapped
reads (Kharchenko et al. 2008; Landt et al. 2012).The PBC
ranges from 0 to 1, where more complex libraries have higher
numbers. Second, we used the function “c_curve” from the pro-
gram preseq (v1.0.2) to plot the number of nonduplicate frag-
ments mapped vs. the number of total mapped fragments
(Daley and Smith 2013). More complex libraries (i.e., those
with fewer duplicate fragments) have a c_curve slope closer
to 1, meaning that increasing sequencing depth continues to
provide novel information. Less complex libraries have a shal-
lower slope and asymptote at smaller values. Finally, we evalu-
ated the GC bias for each sequencing library, using Picard Tools’
“CollectGCBiasMetrics” (http://picard.sourceforge.net).

Sample attributes influencing capture efficiency

To determine the sample attributes that predicted the success
of our capture protocol, we first modeled the relationship
between the proportion of nonduplicate reads thatmapped to
the baboon genome after capture (our primary measure of
protocol success) and (i) the percentage of endogenous ba-
boon DNA in the precapture samples, (ii) the amount of fDNA
library (nanograms) that went into the capture, and (iii)
whether the sample was captured using our initial protocol
or the second version of the protocol (i.e., in capture 1 or
capture 2). Second, we investigated the relationship between
the same three variables and a secondarymeasure of protocol
success, the fold-change enrichment of baboon DNA in the
sample precapture vs. postcapture. Precapture concentra-
tions of endogenous DNA in fDNA samples were measured
as the concentration of baboon DNA estimated using qPCR,
relative to the concentration of total DNA estimated using the
Qubit High Sensitivity fluorometer (Life Technologies). To
ensure that our qPCR-based measures were well calibrated,
we confirmed the relationship between qPCR-based esti-
mates and precapture sequence-based estimates of endoge-
nous DNA in six samples for which both values were available
(R2 = 0.92; Figure S13). All statistical analyses were carried
out in R (R Development Core Team 2015).

Variant calling

We used two different approaches to call variants and geno-
types in our sample: SAMTOOLS (Li et al. 2009; Li 2011)
and the Genome Analysis Toolkit (GATK) (McKenna et al.
2010; DePristo et al. 2011; Van der Auwera et al. 2013). In
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downstream analyses, we retained only variants that were
identified by both methods, a strategy that produces a higher
ratio of true positives to false positives than variants identified
by a single method alone (O’Rawe et al. 2013). Duplicate-
marked alignments were used as input for both methods.
SAMTOOLS multisample variant calling was carried out using
mpileup and bcftools, with a maximum allowed read depth
(-D) of 100. GATK variant calling was carried out using Hap-
lotypeCaller following the GATK v3.0 Best Practices for variant
calling from DNA-seq. To minimize potential batch effects in-
troduced by the two capture efforts, we used the following
strategy. First, we called genotypes using reads from each
capture independently. Second, we recalled genotypes us-
ing reads from both captures together. Third, we extracted
the union set of variants called in steps 1 and 2 for down-
stream analysis.

Because no reference set of genetic variants is currently
publicly available for baboons, we used a bootstrapping pro-
cedure for base quality score recalibration. Briefly, we per-
formed an initial round of variant calling on read alignments
without quality score recalibration. From this variant call set,
we extracted a set of high-confidence variants that passed the
following hard filters: quality score $100; QD , 2.0; MQ ,
35.0; FS . 60.0; HaplotypeScore .13.0; MQRankSum ,
212.5; and ReadPosRankSum,28.0 (as described in Tung
et al. 2015). We then recalibrated the base quality scores for
each alignment, using this high-confidence set as the data-
base of “known variants,” and repeated the same variant-
calling and filtering procedure for three additional rounds.
Finally, we identified the intersection set between the var-
iants called from GATK and SAMTOOLS, respectively, us-
ing the bcftools function isec (Li et al. 2009). To produce
our final call set, we removed all sites that were genotyped
in only one of the capture efforts, had a minor allele fre-
quency of ,0.05, or were within 10 kb of one another,
using vcftools (Danecek et al. 2011). For comparisons be-
tween the paired fDNA and gDNA samples, we used the
above variant-calling pipeline to jointly genotype all sam-
ples sequenced in the study.

Estimating the coefficient of relatedness

Toproduce an estimate of relatedness between samples in our
pedigree and to test for concordance between fecal and blood-
derived samples for the same individuals, we used the program
lcMLkin (Lipatov et al. 2015). lcMLkin uses the genotype likeli-
hoods generated by GATK for each genotype call to calculate
two measures: (i) k0, the probability that two individuals
share no alleles that are identical by descent, and (ii) r, the
coefficient of relatedness (Lipatov et al. 2015) (i.e., twice the
kinship coefficient). Several other methods have been developed
(Manichaikul et al. 2010; Yang et al. 2010) to estimate related-
ness from thousands of SNPs, but lcMLkin yielded the best match
to pedigree-based estimates in our data set (Figure S14).

Wealso compared genotype calls for thematched fecal and
blood-derived samples, using GATK’s GenotypeConcordance
function (DePristo et al. 2011). This tool allowed us to de-

termine concordance rates between data sets for different
classes of variants (e.g., 0, 1, or 2).

WHODAD: paternity inference and
pedigree reconstruction

Our paternity prediction model is based on a naive Bayes
classifier that takes advantage of the rules of Mendelian
segregation within pedigrees. Using data from all sites geno-
typed in a potential father–mother–offspring trio or, when
themother is not genotyped, all sites genotyped in a potential
father–offspring dyad, it estimates the posterior probability
that a potential candidate is the true father of a given
offspring.

Our approach can be broken into three steps (Figure S9).
First, we estimate, for each candidate male, the conditional
probability that he is the true father of a given offspring, given
the genotype data for the candidate, offspring, and mother, if
known (below we show the case in which genotype informa-
tion is available for the mother, but the model is similar when
maternal genotype information is missing). Second, we as-
sign a P-value for the top candidate male from the first step,
for the null hypothesis that he is notmore related to the focal
offspring than the other candidates tested. Third, we calcu-
late the probability that the genotype data for the top candi-
date and offspring are consistent with a true parent–offspring
relationship, using a mixture model. Steps 2 and 3 perform
subtly different functions in our analysis: step 2 tests that the
top candidate is significantly more related to the offspring
than any other candidate, whereas step 3 tests that the dyadic
similarity between the candidate and the offspring looks as
expected for parent–offspring dyads. We have found that
combining both approaches is key to detecting true positive
fathers while minimizing false positive calls that can occur
when true fathers are not in the pool of genotyped candidates
(Figure S10).

Step 1: estimating conditional probabilities for each trio:
For a given offspring or mother–offspring dyad, our goal is to
infer the true genetic father from a pool of n candidates. For
the ith candidate, we use data for the Li variants for which we
have genotype information for the known mother–offspring
dyad and for the candidate father. Assuming the true father is
present in the candidate pool (i.e., he has been genotyped),
the probability that the ith potential candidate is the father is

PðFijM;OÞ ¼ PðFi;M;OÞ
, Xn

k¼1

PðFk;M;OÞ
!
; (1a)

where PðFijM;OÞ denotes the probability that the candidate
is the father, conditional on the (known) mother–offspring
dyad; PðFi;M;OÞ denotes the joint probability of the whole
trio; and

Pn
k¼1PðFk;M;OÞ is the sum of the joint probabilities

of all possible trios evaluated in the analysis. In practice, we
normalize these conditional probabilities to take into account
differences in the number of variants evaluated for each trio
by taking the Lith root:
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PðFijM;OÞ � PðFi;M;OÞ1=Li
, Xn

k¼1

PðFk;M;OÞ1=Lk
!
:

(1b)

Each joint probability can be calculated in turn as

PðFi;M;OÞ ¼
X
f ;m;o

PðFi;M;O; f ;m; oÞ

¼
X
f ;m;o

YLi
j¼1

PðFi;M;O; fij;mj; ojÞ; (2)

where mj, fij, and oj represent the genotype data for the jth
variant of the mother, the candidate father, and the offspring,
respectively. Genotypes take values in {0, 1, 2} (i.e., the num-
ber of copies of the reference allele at each individual–site
combination). Importantly, although Equation 2 unrealisti-
cally assumes independence across loci, this assumption does
not change the relative order of trio joint probabilities.

The probability PðFi;M;O; fij;mj; ojÞ for each locus can be
further decomposed as

P
�
Fi;M;O; fij;mj; oj

�
} P
�
ojjmj; fij

� P� fijjFi�P�mjjM
�
P
�
ojjO

�
P
�
oj
� ;

(3)

where we take genotype uncertainty into account by using
GATK’s genotype probabilities to calculate the conditional
genotype probabilities for PðfijjFiÞ; PðmjjMÞ; and PðojjOÞ over
all possible genotype values at each site–individual combina-
tion (i.e., the probabilities that each genotype is 0, 1, or 2,
which sum to 1). We also ignore the scaling constant
PðFiÞPðMÞPðOÞ because it cancels out in the numerator and
denominator of (1). The marginal probability of the off-
spring’s genotype, P(oj), is calculated from the minor allele
frequency of the variant in the population. Finally, the condi-
tional probability Pðojjmj; fijÞ is based on the rules of Mende-
lian transmission (e.g., Marshall et al. 1998). Due to genotype
uncertainty in low-coverage data, the values of PðFijM;OÞ
are small. However, the highest value is usually assigned to
the most likely father (based on comparison to the pedi-
gree; see Results) and we can directly assess the strength of
the relative evidence for the top candidate vs. other candi-
dates in step 2 by calibrating these values against per-
muted data.

Step 2: calculating resampling-based P-values: To compute
P-values for each paternity assignment, candidates are
ranked based on their conditional probability PðFijM;OÞ of
being the true father. The log ratio of conditional probabilities
between the highest-probability father and the second best
candidate is the test statistic

v ¼ log

 
PðFbestjM;OÞ
PðFsecondjM;OÞ

!
: (4)

To assess significance for v, we then simulate genotype data
for a set of n unrelated candidate fathers based on allele
frequency information for each locus in the analysis and se-
quence coverage information for the real candidates, at each
of the loci for which they were genotyped in the true data set.
Specifically, for each locus-simulated unrelated candidate
combination, fij, where i indexes a (real) candidate male
and j indexes the locus, we simulate a vector of genotype
probabilities for the candidate father, ðfij0; fij1; fij2Þ; which
sum to 1. The number of probability vectors simulated for
each candidate is based on the number and identity of the
loci observed in the real data. For example, if the top candi-
date in the real data were evaluated based on 10,000 sites,
we would simulate an unrelated male with genotype vector
probabilities simulated for each of those 10,000 sites; if the
second-best candidate was evaluated at 9000 sites, we would
simulate an unrelated male with genotype vector probabili-
ties simulated for each of those 9000 sites, and so on. The
variant sets for different simulated candidates need not be
identical and are in fact highly unlikely to be so in practice.

To simulate each vector, we draw values from a Dirichlet
distribution (i.e., a distribution on probability vectors that
sum to one). In principle, the Dirichlet distribution for each
biallelic site could be parameterized by the genotype frequen-
cies for each of the three potential genotype values,
Dirðpj0;pj1;pj2Þ; with genotype frequencies equal to the
Hardy–Weinberg expected values based on the allele fre-
quency of the reference allele [i.e., p2, 2p(1 2 p), (1 2 p)2,
with p estimated from the data]. However, the low coverage
in our data introduces additional noise into this sampling
problem, so we instead draw values from the following
Dirichlet distribution,

ð fij0; fij1; fij2Þ� Dirðkcijðpj0;pj1;pj2ÞÞ; (5)

where cij is the read depth (coverage) for the site in (true)
candidate father i, and k is a concentration parameter com-
mon to all sites and candidate fathers, estimated from the
real data using the method of moments. k can be thought
of as a scaling factor for the effect of coverage on variance in
ðfij0; fij1; fij2Þ: To make the simulations as realistic as possible,
all parameters are estimated from the real data as

pjl ¼ Eð fijlÞ; (6)

where theexpectation isbasedon theallele frequencies for the
reference allele estimated across all individuals, for each locus
j and genotype l combination, and

k ¼
Eð fijlÞ2E

�
f2ijl
�

E
�
cij f2ijl

�
2 E2ðcij fijlÞ

; (7)

where the expectations are based on the allele frequencies (as
above) across all individuals and loci and across all three
possible genotype values (0, 1, and2) for each locus–individual
combination. Our estimates for pij and k are based on the
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observed average values from the data, which approximate the
expected value.

After simulating genotype data for each candidate male as
if hewereunrelated to the focal offspring,we canobtain anew
value of v (Equation 4) from the simulated data. By repeating
this procedure s times, we can compute a P-value for the
hypothesis that the best candidate in the true data is no more
related to the focal offspring than any other candidate in the
data set. This P-value is equal to the proportion of times the
simulated test statistics exceed the observed test statistic. It
intuitively corresponds to the probability of seeing a gap as
large as the true gap between the conditional probabilities for
the best and second-best candidates, if all candidates were in
fact unrelated (or equally related) to the focal offspring.

Step 3: estimating the posterior probability of paternity:
WHODAD’s inference method, like other paternity inference
methods [e.g., CERVUS (Marshall et al. 1998; Kalinowski
et al. 2007)], can falsely assign paternity to a close relative
if the true father is not included in the pool of potential
fathers. Such false positives arise because these methods do
not actually test the hypothesis that the assigned father is the
true father, but rather whether the assigned father is signifi-
cantly more closely related to the focal offspring than other
candidates in the pool. Amore direct methodwould be to test
the probability of observing the data for a father–offspring
dyad (or father–mother–offspring trio) under the alternative
hypothesis that the assigned father is the true father. Test-
ing the alternative hypothesis is nontrivial with low-coverage
data and by itself can also yield incorrect inferences (Fig-
ure S10). However, in combination with the resampling-
based P-values described above, it can improve paternity
assignments.

To estimate the probability of the data given the best
candidate–offspring dyad, we take advantage of the fact that
dyadic measures of genotype similarity or relatedness or
other estimates of identity-by-descent should differ for true
parent–offspring pairs compared to all other dyads (except
for full sibs). By utilizing the many dyadic values in a data set
of mothers, offspring, and candidate fathers, we should
therefore be able to distinguish father–offspring dyads from
dyads involving other relatives or unrelated pairs. Notably,
this method allows us to use dyadic values for mother–off-
spring pairs to maximum effect.

We use a normal mixture clustering approach and the k0
value from the R package lcMLkin, where low k0 values pre-
dict a low probability of sharing 0 alleles. We denote yb as the
vector of logit-transformed k0 measurements for the best
candidate–offspring dyads for all tested father–offspring
dyads; y1 as the vector of logit (k0) measurements for all
known mother–offspring dyads, if any are present (y1 can
be an empty vector if no mother–offspring dyads were sam-
pled); and y0 as the vector of logit (k0) measurements for all
other dyads. Thus, y0 captures the distribution of logit (k0)
values for non-parent–offspring dyads; y1 captures the distri-
bution of logit (k0) values for known parent–offspring dyads;

and yb contains a mixture of logit (k0) values for both true
parent–offspring dyads and non-parent–offspring dyads.

We first work only with y0 and use a mixture model ap-
proach to assign the logit (k0) value for each dyad i into one
of K component normal distributions (fitted using the mix-
tools function in R, with a default value ofK=5; note that our
analyses are robust to reasonable choices of K, see File S1).
Components with lower mean values for k0 can be thought of
as capturing the distribution of logit (k0) values for highly
related dyads (e.g., half-siblings), whereas components with
high mean values capture distantly related or unrelated
dyads (if relatedness coefficients were used instead of k0,
this direction would be reversed: low values would corre-
spond to distantly related dyads instead). For y1, all dyads
are from the same relatedness category (mother–offspring),
so logit (k0) values in y1 can be modeled by a single distri-
bution parameterized by a mean and a variance. Finally, for
yb, values of logit (k0) can be assumed to be drawn either
from the distribution on y1 or from one of the distributions
(likely one with a lowmean value) in the mixture model for y0,

ybi � pN
�
m;s2

�
þ ð12pÞN

�
mi;s

2
i

�
; (8)

where for the ith individual in yb, mi and s2
i are the mean and

variance for one of the distributions in the mixture model of
y0;m and s2 are themean and variance for the distribution on
y1; and p is the probability that a value in yb belongs to the
parent–offspring distribution or one of the distributions fitted
in the mixture model for other dyads. To infer these param-
eters, for each dyad in yb, we assign mi;s

2
i to the mean and

variance of the mostly likely normal component by evaluat-
ing the likelihood under all K components. We then combine
y1 and yb to jointly infer p;m;s2 in Equation 8.

Finally, we introduce a latent indicator variable zbi for each
dyad to indicate whether the ith dyad in yb is a true father–
offspring dyad. The probability of being a true father–off-
spring dyad, or P (zbi = 1), becomes the final statistic used
to assess our paternity assignments. To infer P (zbi = 1), we
use an expectation-maximization algorithm (see File S1 for
detailed information about the EM steps). WHODAD con-
siders a male as the likely true father of a focal offspring if
he was (i) the candidate with the highest conditional proba-
bility of paternity, (ii) assigned a P-value from our simulations
, 0.05, and (iii) P (zbi = 1) . 0.9.

Testing the accuracy of paternity assignment
using WHODAD

Weassignedpaternityusing themethodsdetailedabove forall
previously identified father–offspring pairs (n = 27) in the
Amboseli pedigree (Figure 1). This pedigree was constructed
using a combination of observational life history data on
female pregnancies and infant care (to infer maternal–
offspring dyads), demographic data to identify possible can-
didate fathers, and microsatellite genotyping data analyzed
in the program CERVUS (with confidence.95%; see Alberts
et al. 2006 for additional detail).
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Our data set contained maternal genotype information
derived from the fecal enrichment protocol for 15 of these
individuals (56%).Wefirst usedWHODAD toassignpaternity
for these 15 offspring while incorporating the genotype data
from theirmothers. To assess the accuracy ofWHODAD in the
absence of maternal genotype data, we then repeated the
paternity analysis for the same 15 offspring without including
the mother’s genotype. For this analysis, we were also able to
include the 12 additional offspring for whomwe did not have
genotype data from the mother, but had genotype data from
the known father (n = 27).

To examine how the presence of close male kin influenced
the accuracy and confidence of WHODAD’s paternity assign-
ments, we conducted three additional analyses. First, to as-
sess the accuracy of WHODAD when the pedigree-assigned
father is the only close male relative present, we removed all
close relatives of the offspring except the father (r $ 0.25,
e.g., grandfathers and half-sibling or full-sibling brothers)
from the pool of potential fathers. Second, to test whether
WHODAD assigned a father with high confidence even when
no close relatives were present, we removed all close male
relatives, including the pedigree-assigned father, from the
pool of candidate males. Third, to assess the risk of confi-
dently (but erroneously) assigning a close male relative as
the likely father when the pedigree-assigned father was not
genotyped, we removed the father from the pool of poten-
tial fathers. For all WHODAD analyses we report assignment
accuracy based on whether the father was identified by
WHODAD with a P-value ,0.05 and a P (zbi = 1) . 0.90.
Offspring were not assigned a father (“no assignment”) when
the best candidate male was identified with a P-value .0.05
or a P (zbi = 1) , 0.90.

Data availability

All sequencing data sets reported in this article have been
deposited in the NCBI Short Read Archive (SRA), accession
no. SRP064514. The authors state that all data necessary for
confirming the conclusions presented in the article are rep-
resented fully within the article.
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Figure S1. Schematic of RNA bait generation and hybridization reaction. (A) Schematic of 

RNA bait generation. High-quality genomic DNA from a baboon is fragmented to 150 bp (blue 

fragments). Custom adaptors (purple fragments) with a T7 RNA polymerase site and a 

restriction enzyme cut site are then ligated to the fragmented DNA. DSN treatment is used to 

reduce the representation of repetitive elements (orange fragments). Finally, the library is PCR 

amplified, biotinylated, and transcribed into RNA baits. (B) Schematic of hybridization and 

capture. A genomic library is generated from fecal DNA (fDNA) sheared to 200-400 bp 

fragments. This fragment pool originally contains ~1% endogenous DNA (blue fragments) and 

~99% environmental/microbial DNA (black fragments). Next, the fDNA library is incubated with 

750 ng biotinylated RNA baits. RNA bait-bound DNA (enriched for endogenous DNA fragments) 

is then separated from the supernatant with a magnet. The RNA baits are digested leaving only 

the enriched fDNA sample, which can be PCR amplified for high-throughput sequencing.  

  



 

 

 
Figure S2. Depletion of multiply-mapped regions in DNA used to make RNA baits. Post 

DSN-treated DNA libraries (generated following the protocol used to make RNA baits, but with 

Illumina sequencing adapters ligated to the ends) were sequenced to assess DSN-mediated 

depletion of bait templates that do not uniquely map in the genome (i) with or without the 

presence of Cot-1, and (ii) at 0 or 4 hour incubation times. Bars show the percent of non-PCR 

duplicate mapped reads that mapped to multiple locations (“multiply mapped”). The four-hour 

incubation followed by a 20-minute DSN digestion in the presence of human Cot-1 (lightest blue 

bar) provided the strongest depletion of multiply mapped reads, reducing the proportion of these 

reads 2.6-fold (from 19.2% to 7.4%). 

 

  



 

  

 
Figure S3. Comparison of mapped reads in Capture 1 and Capture 2. Capture 2 data were 

generated using paired-end sequencing; to compare across capture efforts, we truncated the 

Capture 2 reads to recapitulate the single-end, 100 bp reads generated in Capture 1. Capture 2 

significantly improved over Capture 1 when considering both the percent of total reads that 

mapped (“mapped”; two-sample t-test, T=7.50, p=1.0x10-9) or the percent of reads that were 

uniquely mapped and could be distinguished from PCR duplicates (“distinct”; two-sample t-test, 

T=3.41, p=1.4x10-3).  
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Figure S4. Library complexity for different sample preps. Library complexity measured 

using the ENCODE PCR Bottleneck Coefficient, which is calculated as the number of mapped, 

non-PCR duplicate reads divided by the number of mapped reads. Numbers closer to 1 are 

more complex; numbers closer to 0 are less complex. 
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Figure S5. Post-capture coverage of mitochondrial genome (mtDNA). (A) Capture 2 had a 

similar proportion of fragments that mapped to mtDNA as Capture 1. (B) However, Capture 2 

had proportionally more distinct (non-PCR duplicate) mapped reads than Capture 1. Because 

data from Capture 1 were generated using single-end sequencing while data from Capture 2 

were generated using paired-end sequencing, many of the mtDNA mapped reads identified as 

PCR duplicates in Capture 1 probably represent distinct fragments that are indistinguishable 

from PCR duplicates. With a single end sequencing strategy, only ~16,000 reads can be 

identified as “distinct” reads (because mtDNA is ~16 kb in length), whereas with paired end 

sequencing and variable insert lengths, many more distinct reads can be identified. (C) This 

difference in sequencing resulted in much deeper coverage of the mtDNA genome in Capture 2 

when we removed reads that could not be excluded as PCR duplicates. However, mean 

coverage for Capture 1 samples was still high, at ~74x. (D) There was no difference in the ratio 

of mtDNA to nuclear DNA (nucDNA) mapped reads between the two captures. 
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Figure S6. GC content of different library preps. fDNA capture libraries exhibit similar GC 

bias properties as the aDNA libraries sequenced in Carpenter et al, 2013, and the DNA 

fragments used to make RNA baits (“DNA for baits”), but slightly different GC properties 

compared to the blood-derived libraries from HAP and LIT (“gDNA”). (A) GC content vs. 

normalized coverage (the number of fragments per GC content window divided by the average 

number of fragments per window across the whole genome). (B) Distribution of GC content of 

fragments. 
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Figure S7 Genotype concordance between paired fDNA and gDNA samples. (A) The fDNA 

samples captured at least one allele (blue and purple bars) from the paired gDNA samples in 

99.8% (LIT) and 99.6% (HAP) of sites genotyped. Paired samples therefore had completely 

discordant genotypes (0/0 and 1/1 or 1/1 and 0/0; black and dark grey bars) in less than 0.5% of 

genotyped sites. The 9 possible combinations of genotype calls in paired fDNA (first column) 

and gDNA samples (2nd column) are shown to the right of the stacked barcharts; in all cases, 

the reference allele is represented as 0 and the alternate allele as 1. (B) Table of genotype 

concordance/discordance rates between sites genotyped in paired fDNA and gDNA libraries. 

The top table shows the results for LIT fDNA-gDNA and the bottom table for HAP fDNA-gDNA.  
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Figure S8 Correlation between independently established pedigree-based relatedness 

and genotype similarity, by minimum number of shared sites. The value of the correlation 

increased when we only included dyads with a minimum number of shared sites (x-axis). 93% of 

all dyads in our study had over 2,000 shared sites. The correlation coefficient asymptotes at r ≈ 

0.91. 

  



 
Figure S9 Flowchart for paternity inference using WHODAD. A filtered variant call set is 
used as input for both WHODAD and lcMLkin (any other relatedness estimation program can 
also be used). k0 values from lcMLkin are then used to parameterize a mixture model that fits 
different normal distributions on k0 (corresponding intuitively to different levels of relatedness). 
By integrating the estimates from the mixture model with the best candidate father from the 
genotype simulations (used to assign p-values to best candidate fathers), WHODAD then 
calculates P(zbi=1), the posterior probability that the best male-offspring dyad is drawn from the 
distribution of k0 values for parent-offspring pairs. We recommend assigning paternity to 
candidate father-offspring dyads with a WHODAD p-value < 0.05 and P(zbi=1) > 0.90. See 
methods for details. 
   



 

 
Figure S10 Comparison of paternity assignment accuracy. Using both a p-value cutoff of 
0.05 and a P(zbi=1) cutoff of 0.90 maximized the number of correct paternity assignments while 
minimizing the number of incorrect assignments (“p-value plus k0 mixture, with mother-child 
dyads:” top bar in all four panels). Correct assignments (dark blue) reflect cases in which the 
pedigree-assigned father was also assigned as the father using these criteria (with known 
mother-offspring dyads used to inform the mixture model). “k0 mixture with mother-child dyads”: 
P(zbi=1) cutoff of 0.90 and no p-value criterion, while using known mother-offspring dyads to 
inform the mixture model. “p-value”: p-value cutoff of 0.05 and no P(zbi=1) criterion. “p-value + 
k0 mixture without mom-child dyads”: p-value cutoff of 0.05 and P(zbi=1) cutoff of 0.90, without 
using known mother-offspring dyads to inform the mixture model. “k0 mixture without mother-
child dyads”: P(zbi=1) cutoff of 0.90 and no p-value criterion, without using known mother-
offspring dyads to inform the mixture model. “Incorrect” assignments (red) were males 
incorrectly assigned as the father (compared to the previous pedigree-assigned father). All other 
offspring were not assigned a father (“No assignment”; light blue). (A) All males included in the 
candidate pool. (B) Father included in the candidate pool, but all other close male relatives (r ≥ 
0.25) excluded. (C) Pedigree-assigned father excluded from the candidate pool, but other close 
male relatives retained. (D) Father and all close relatives (r ≥ 0.25) excluded from the candidate 
pool. 
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Figure S11 Post-capture mapping of multiplexed libraries. (A) Multiplexing samples prior to 
the hybridization resulted in similar or even better enrichment than single-plexed libraries that 
were pooled for sequencing after hybridization. (B) Pools multiplexed prior to capture (n=2 
pools) contained 4 samples in each pool (the two raw values for each sample, one from each 
pool, are shown as black dots). Although the samples were pooled equally prior to hybridization, 
the resulting data produced uneven coverage per sample, primarily driven by poor sequencing 
of Sample 1.  
 

  



 

 

 
Figure S12 Optimization of probe concentration and hybridization length. (A) Capture 

efficiency is influenced by the duration of hybridization and (B) the amount of bait added to the 

capture reaction. The strongest enrichment of both mapped reads and non-duplicate fragments 

was observed with a 48-hour incubation and 750 ng of bait, so we used these values in the 

capture protocol.  

  



 
Figure S13 Accuracy of qPCR estimates of endogenous baboon DNA prior to capture. 

The qPCR-based measure of endogenous DNA predicted the proportion of non-duplicate 

mapped reads in pre-capture libraries constructed from the same fDNA samples (β=1.00, 

T=6.66, p=2.6x10-3).  



 
Figure S14 Relationship between pedigree relatedness and four measures of genotype 
similarity. (A) The correlation was the strongest between the independently established 
pedigree relatedness and the lcMLkin measure of relatedness. Other measures of genotype 
similarity are also correlated with independently established pedigree relatedness, although not 
as strongly as the lcMLkin measure. (B) Relatedness estimated with vcftools using the method 
of Yang et al. (2010). (C) Relatedness estimated with vcftools using the method of Manichaikul 
et al. (2010). (D) Genotype discordance per site genotyped as measured using the function 
“gtcheck” in the program bcftools (Li et al., 2009). The y-axes in panels B-D are the residual 
relatedness (B and C) or dissimilarity (D) scores after controlling for the batch effect of capture 
effort (Capture 1 or Capture 2) using a linear model with one categorical predictor variable 
where each dyad was categorized as either both from capture 1 (“within capture 1”), both from 
capture 2 (“within capture 2”), or one member of the dyad from each capture effects (“between 
capture”). There was no detectable effect of capture effort on the lcMLkin relatedness measure, 
so the y-axis in (A) shows the raw value of r estimated from lcMLkin. Blue lines show the fit from 
a linear model. 
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Table S1.  Details of library preparation, DNA capture, and sequencing. (.xlsx, 43 KB) 

 

Available for download as a .csv file at 
www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187492/-/DC1/TableS1.xlsx 



Table S2.  Sample-specific collection, extraction, and sequencing data. (.xlsx, 59 KB) 

 

Available for download as a .csv file at 
www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187492/-/DC1/TableS2.xlsx 



File S1. SUPPLEMENTARY METHODS 

 

Expectation-maximization (EM) Algorithm for the WHODAD mixture model  

As explained in the main text methods, we denote yb as the vector of logit(k0) 

measurements for the best candidate father-offspring dyads for all tested offspring; y1 as the 

vector of logit(k0) measurements for all known mother-offspring dyads, if any are present (y1 

can be an empty vector if no mother-offspring dyads were sampled); and y0 as the vector of 

logit(k0) measurements for all other dyads.  

We model the elements in y0 as a mixture of K normal distributions, where different 

distributions capture different degrees of relatedness:  

 
𝑦0𝑖~ ∑ 𝑤𝑘𝑁(𝜇𝑘 , 𝜎𝑘

2)
𝐾

𝑘=1
 (1) 

We model the elements in y1 as a single normal distribution:  

 𝑦1𝑖~𝑁(𝜇, 𝜎2) (2) 

and we model the elements in yb as a mixture of two normal distributions: 

where    

𝜇𝑖 ∈ (𝜇1, ⋯ , 𝜇𝐾), 𝜎𝑖
2 ∈ (𝜎1

2, ⋯ , 𝜎𝐾
2) 

We fit equation (1) using the mixtools function in R, with a default value of K=5. We 

assign 𝜇𝑖 and 𝜎𝑖
2 in equation (3) to the mean and variance of the mostly likely normal 

component inferred for equation (1) by evaluating the likelihood of 𝑦1𝑖 under all K components. 

We then combine y1 and yb to jointly infer the hyper-parameters 𝜋, 𝜇, 𝜎2 in equations (2) and (3). 

 To fit equations (2) and (3), we introduce a latent indicator variable zbi for each dyad to 

indicate if the ith dyad in yb belongs to the first normal component 𝑁(𝜇, 𝜎2) (the component that 

presumably captures true parent-offspring relationships). The probability of being in the first 

component, or P(zbi=1), effectively captures how similar the ith dyad is to the mother-offspring 

dyads (or, if no maternal information is available, distinct from the distribution for the next most 

closely related set of dyads) and thus how likely it is to be a true father-offspring dyad. We use 

this probability as the final statistic to assess our paternity assignments. 

We use an expectation-maximization (EM) algorithm to infer both P(zbi=1) and the hyper-

parameters 𝜋, 𝜇, 𝜎2. Our EM algorithm iterates through the following steps: 

 Step 1: 𝜋𝑡 = ∑ 𝑃𝑡−1(𝑧𝑏𝑖 = 1)𝑖 /𝑛𝑏  

 Step 2: 𝜇𝑡 = (∑ 𝑃𝑡−1(𝑧𝑏𝑖 = 1)𝑦𝑏𝑖𝑖 + ∑ 𝑦1𝑗)/(∑ 𝑃𝑡−1(𝑧𝑏𝑖 = 1)𝑖 + 𝑛1)𝑗   

 𝑦𝑏𝑖~𝜋𝑁(𝜇, 𝜎2) + (1 − 𝜋)𝑁(𝜇𝑖 , 𝜎𝑖
2) (3) 



 𝜎𝑡
2 = (∑ 𝑃𝑡−1(𝑧𝑏𝑖 = 1)(𝑦𝑏𝑖 − 𝜇𝑡)2

𝑖

+ ∑(𝑦1𝑗 − 𝜇𝑡)
2

 )/(∑ 𝑃𝑡−1(𝑧𝑏𝑖 = 1)

𝑖

+ 𝑛1)

𝑗

  

 Step 3: 𝑃𝑡(𝑧𝑏𝑖 = 1) = 𝜋𝑡𝑁(𝑦𝑏𝑖; 𝜇𝑡 , 𝜎𝑡
2)/(𝜋𝑡𝑁(𝑦𝑏𝑖; 𝜇𝑡 , 𝜎𝑡

2) + (1 − 𝜋𝑡)𝑁(𝑦𝑏𝑖; 𝜇𝑖 , 𝜎𝑖
2))  

where nb is the number of dyads in yb, n1 is the number of dyads in y1 and t indicates the 

iteration number.  

 Step 1 updates 𝜋 (the probability that a dyad in yb belongs in the parent-offspring 

distribution) by using the current average estimate of P(zbi=1) across all dyads in 𝑦𝑏. Step 2 

updates 𝜇 and 𝜎2 by using the weighted estimates from 𝑦1 and 𝑦𝑏, with the weights for 𝑦1 

(known mother-offspring dyads) equal to 1 and the weights for 𝑦𝑏 equal to the current estimates 

of P(zbi=1); and Step 3 updates P(zbi=1)  conditional on the updated estimates of 𝜋, 𝜇, 𝜎2 (from 

Steps 1 and 2).  

For all our analyses, we initialized the EM algorithm with values 𝜋 = 0.1, 𝜇 = 0, 𝜎2 = 1 

and performed 50 iterations. The results were robust with respect to different initial values. In 

addition, we used K=5 components to fit equation 1. We could choose an optimal K based 

Akaike information criterion (AIC) or Bayesian information criterion (BIC), but we found that our 

results were robust to reasonable choices of K. Finally, we note that in principle we could 

develop an EM algorithm to fit equations 1-3 jointly. In practice, however, we found that using 

the above two-step procedure (i.e. fitting equation 1 first and then fitting equations 2 and 3 

second) produces more stable results with respect to initial values. This presumably is because 

the joint model has more parameters compared with each of the two separate models; thus, 

fitting the joint model can be more sensitive to initial values than the two-step approach we took. 

With our two-step procedure described above, with any reasonable initial values, our algorithm 

converged to the same results often within a few iterations. 

 

Protocol improvements 

We made a number of changes to the protocol between Capture 1 and Capture 2, which 

are detailed in Table S1. These changes were made to increase the flexibility and decrease the 

cost of the protocol. Specifically: (i) we increased the library insert size from ~200bp to ~400bp 

by changing the Bioruptor shearing settings, which allowed us to generate longer, paired-end 

reads, reduce the per-base pair sequencing cost, and increase read mappability; (ii) we 

switched from gel-based size selection to a SPRI bead-based size selection, which decreased 

the amount of time needed to perform the protocol; (iii) we switched from KAPA and Illumina 

reagents to to NEBNext library preparation reagents (New England Biolabs) because they 

reduced protocol costs.  



Another improvement to the protocol that was not implemented in Capture 2, but is a 

promising direction for the future is pooling samples for multiplexing prior to hybridization 

(instead of post-capture, prior to sequencing). Results from a preliminary test of this approach 

are shown in Fig. S11 and discussed briefly in the main text: they suggest that multiplexing not 

only reduces input and reagent requirements, but may also increase the overall fold-enrichment 

of endogenous DNA in the resulting library. However, bulk amplification of post-capture 

multiplexed samples may increase the possibility of barcode switching. Use of dual-indexing 

approaches to discriminate samples within a pool, and direct assessment of barcode switching 

rates (e.g., using mitochondrial DNA reads) could help alleviate this problem (although 

generating data from pedigrees may mean that many individuals share mtDNA haplotypes 

through maternal descent). Meanwhile, complementary improvements to the computational 

pipeline could explicitly incorporate information on haploid/sex-linked chromosomes (i.e., 

mtDNA and Y), and include statistical approaches that account for the uncertainty introduced by 

allelic dropout. We note that, in this analysis, we did not remove sex-linked loci because they 

are not annotated in Pcyn1.0 (although we did remove mtDNA contigs). Our results thus 

suggest that WHODAD’s performance is robust to the presence of combined autosomal and 

sex-linked reads, and that high quality assemblies are not essential for accurate performance. 
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