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ABSTRACT While genetic diversity can be quantified accurately from high coverage sequencing data, it is often desirable to obtain
such estimates from data with low coverage, either to save costs or because of low DNA quality, as is observed for ancient samples.
Here, we introduce a method to accurately infer heterozygosity probabilistically from sequences with average coverage , 13 of a
single individual. The method relaxes the infinite sites assumption of previous methods, does not require a reference sequence, except
for the initial alignment of the sequencing data, and takes into account both variable sequencing errors and potential postmortem
damage. It is thus also applicable to nonmodel organisms and ancient genomes. Since error rates as reported by sequencing machines are
generally distorted and require recalibration, we also introduce a method to accurately infer recalibration parameters in the presence of
postmortem damage. This method does not require knowledge about the underlying genome sequence, but instead works with haploid
data (e.g., from the X-chromosome frommammalian males) and integrates over the unknown genotypes. Using extensive simulations we
show that a few megabasepairs of haploid data are sufficient for accurate recalibration, even at average coverages as low as 13 : At
similar coverages, our method also produces very accurate estimates of heterozygosity down to 1024 within windows of about 1 Mbp.
We further illustrate the usefulness of our approach by inferring genome-wide patterns of diversity for several ancient human samples,
and we found that 3000–5000-year-old samples showed diversity patterns comparable to those of modern humans. In contrast, two
European hunter-gatherer samples exhibited not only considerably lower levels of diversity than modern samples, but also highly distinct
distributions of diversity along their genomes. Interestingly, these distributions were also very different between the two samples,
supporting earlier conclusions of a highly diverse and structured population in Europe prior to the arrival of farming.
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THE genetic diversity at a particular location in the genome
is the result of its evolutionarypast.Comparing thegenetic

diversity between individuals or regions of the genome thus
gives insight into differences in their respective evolutionary
histories. For a diploid individual, the heterozygosity of a
genomic region (the fraction of sites in a region at which
the individual carries two different alleles) is the result of
mutations that occurred since the two alleles shared a com-

mon ancestor. It is thus a function of the local mutation
rate and the time to the most recent common ancestor,
which, in turn, is reflective of the demographic and se-
lective past at that locus. Variation in local mutation rates
and, due to recombination, also in the strength of selec-
tion and genetic drift leads to variable diversity across the
genome. Comparing heterozygosity between regions can
thus identify locations that were affected differently by
selection, or those with an increased mutation rate. Com-
paring heterozygosity between individuals may further
highlight differences in the demographic histories of pop-
ulations or different levels of inbreeding, which may lead
to long runs of homozygosity.

While heterozygosity is readily obtained from high qual-
ity genotype calls by counting, it is much harder to infer
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accurately from low coverage genomes (i.e., genomes se-
quenced at low depth). This is primarily due to a substantial
probability of observing only one of the two alleles and to
sequencing errors, which occur at rates orders of magnitude
higher than the expected heterozygosity in many species, in-
cluding humans. Additional biases may be introduced by re-
lying on a reference genome or by postmortem DNA damage
(PMD) when working with ancient DNA.

A natural way of circumventing these issues is to infer
genetic diversity probabilistically by taking many of the men-
tioned issues into account, and several such methods have
been developed over the past decade. Johnson and Slatkin
(2006), for instance, developed a method for estimating the
population scaled mutation rate u ¼ 4Nm; where N is the
population size, and m the mutation rate, from large meta-
genomic data sets in the presence of sequencing errors. Shortly
after, multiple moment based estimators were introduced to
infer heterozygosity from a single individual (Hellmann et al.
2008; Jiang et al. 2008). Lynch (2008) then introduced a
likelihood-based estimator that relaxed the assumption of a
known error rate by estimating it jointly with heterozygosity
from the data itself. Despite the additional parameter, this
likelihood-based estimator is generally more accurate, even
if this implementation is ill-behaved at very low coverages
(Lynch 2008).

Several methods to infer genetic diversity that relax the
assumption of a constant error rate have since been proposed.
These methods commonly make use of error rate estimates
provided by the sequencing machines (the quality scores) to
calculate the genotype likelihoods then used in the inference.
A particularly frequently used approach infers the site fre-
quency spectrum (SFS) while integrating over genotype un-
certainty at individual sites (Nielsen et al. 2012). If applied to
data from a single individual, the SFS is a direct estimation of
heterozygosity. However, the current implementation of this
approach in the software package ANGSD (Korneliussen
2014) requires a priori knowledge of the two potentially ob-
servable alleles at each site. While these may be inferred
accurately in the case of multiple samples with decent cover-
age, such an inference from low coverage data are likely
biased.

Here, we present a direct extension of these previous
approaches to inferheterozygositywithina region that relaxes
the assumption of infinitely many sites, does not require any
a priori knowledge of the underlying alleles, and takes addi-
tional biases introduced by PMD fully into account. We
achieve this by explicitly modeling PMD using an extension
of the likelihood framework proposed by Maruki and Lynch
(2015) to infer site allele frequencies by integrating over all
possible genotypes, and by modeling genotype frequencies
using the classic substitution model of Felsenstein (1981),
which allows for back mutations.

A major hurdle for all approaches relying on quality scores
provided by sequencing machines is that these scores are
not reliable and must be recalibrated, particularly when
coverage is low. This is commonly achieved by learning

error rates from sites assumed a priori to be invariant, for
instance, by masking polymorphic sites, repetitive elements,
and large structural variants (DePristo et al. 2011). While we
have extended this approach to tolerate PMD (Hofmanová
et al. 2016), it requires detailed knowledge of the study
species, which is often lacking for nonmodel organisms.
We propose here to circumvent this problem by using a
reference-free recalibration approach that relies on haploid
sequences such as those from the X-chromosome in male
mammals. Our approach does not require any a priori in-
formation on the underlying sequence, as it integrates over
all possible but hidden genotypes while taking PMD and
covariates such as position in read or read context into ac-
count. This renders our approach essentially free of refer-
ence biases, since the reference is only required for aligning
raw reads by mapping and current mapping techniques tol-
erate a sequence divergence of up to 10% (e.g., Lunter and
Goodson 2011).

Using computer simulations, we show that our method
reliably estimates local genetic diversity in single, diploid
individuals even with average coverage below 23 for win-
dows of�1 Mbp. We further show that a fewmegabasepairs
of data at equally low coverage are sufficient to properly
recalibrate distorted quality scores. Finally, we use the
methods here developed to infer the genome-wide pattern
of diversity for several ancient and modern human samples.
We found that these patterns differ between European and
African samples, but that samples from a few thousand years
ago cluster well with modern samples. In contrast, Euro-
pean hunter-gatherer individuals differ strongly from mod-
ern Europeans, but also from each other, illustrating the
high diversity that existed in Europe before the Neolithic
transition.

Theory

Inferring heterozygosity

Here we develop a method to estimate local heterozygosity
in a genomic window from a collection of aligned reads by
integrating out the uncertainty of the local genotype, and
by taking the potential effects of PMD into account. Spe-
cifically, we are interested in inferring the stationary base
frequencies p ¼ fpA;pC;pG;pTg, together with the rate of
substitutions u ¼ 2Tm, along the genealogy connecting
the two alleles of an individual within a genomic region.
Here, T corresponds to the time to the most recent com-
mon ancestor of the two lineages, and m to the mutation
rate per base pair per generation. Notably, it is not possible
to infer T and m independently, and we therefore only
attempt to estimate the compound substitution rate u from
the data.

We extend Felsenstein’s model of substitutions (Felsenstein
1981) to infer u while accounting for the uncertainty in the
genotypes in the region of interest. Let us denote the hidden
genotype at site i by gi, where gi consists of a pair of nucleotides
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kl with k; l ¼ A;G;C;T: Under the substitution model, the
probability of observing a specific genotype gi ¼ kl given the
base frequencies p ¼ fpA;pC;pG;pTg, and the substitution
rate u, is given by

ℙðgi ¼ klju;pÞ ¼
�
pk
�
e2u þ pk

�
12 e2u

��
if   k ¼ l;

pkpl
�
12 e2u

�
if   k 6¼ l:

(1)

To integrate out the uncertainty in observed genotypes, we
adopt a model similar to Lynch (2008), and those commonly
used for genotype calling (e.g., Li 2011). The subsequent
notation will closely follow the notation we recently intro-
duced (Hofmanová et al. 2016).

The observed data di at site i shall correspond to what is
typically obtained when individual reads of next generation
sequencing approaches are mapped to a reference genome.
Here, we will assume that all sequencing reads were accu-
ratelymapped and that reads with lowmapping qualities have
been filtered out. The data di obtained at site i thus consists of
a list of ni observed bases di ¼ fdi1; . . . ; dinig; dij ¼ A;C;G;T:

Wechose tomodel the observed data, di, at site i as a function
of the underlying genotype, gi, as well as the base-specific rates
of sequencing errors eij for j ¼ 1; . . . ; ni: We assume here that
these rates are known (e.g., through quality scores provided by
the sequencing machine). Assuming further that sequencing
errors occur independently, the likelihood of the full data at site,
i, is given by

ℙ dijgi; eið Þ ¼
Yni

j¼1

ℙ dij
��gi; eij� �

;

where ei ¼ fei1; . . . ; einig:
Following Maruki and Lynch (2015), and commonly used

approaches (e.g., Li 2011), we will assume that a sequencing
read is equally likely to cover any of the two alleles of an
individual, and that sequencing errors may result in any of
the alternative bases with equal probability, eij=3: The prob-
ability of observing a base, dij, given the underlying genotype,
gi ¼ kl, is then given by

ℙ dij
��gi ¼ kl; eij

� �
¼

12 eij if   k ¼ l ¼ dij
eij

3
if   k 6¼ dij; l 6¼ dij

1
2
2
eij

3
if   k 6¼ l; k ¼ dij   or  l ¼ dij

:

8>>>>><
>>>>>:

Assuming sites to be independent, the full likelihood of our
model is given by

Lðu;pÞ ¼ ℙðdju;pÞ ¼
YI
i¼1

ℙðdiju;pÞ

¼
YI
i¼1

X
g

ℙðdijgi ¼ gÞℙðgi ¼ gju;pÞ;

where the sum runs over all combinations g ¼ AA;AG; . . . ;TT:

PMD damage: We will next extend this model with the
possibility of PMD. The most common form of PMD is C de-
amination, which leads to a C/T transition on the affected
strand and a G/A transition on the complimentary strand
(e.g., Briggs and Stenzel 2007). These deaminations do not
occur randomly along the whole read, but are observed
much more frequently at the beginning of a read. This is
due to fragment ends being more often single-stranded,
and thus subject to a much higher rate of deamination.
Consequently, the rates of PMD, while specific to the sam-
ple and the sequencing protocol used, generally decay
roughly exponentially with distance from the ends of the
read Skoglund et al. (2014). Since ancient DNA is highly
fragmented, one read can often cover an entire DNA
molecule, and hence C/T and G/A transitions may be
seen in a single read, but they are accumulated at opposite
ends.

Here, we will develop our model for this form of PMD
following the formulation of Skoglund et al. (2014) and
Hofmanová et al. (2016), but we note that it is readily ex-
tendable to incorporate other forms of PMD as well. We feel
that the rationale of the approach taken is best explained
with a specific example. Consider dij ¼ T, given the underly-
ing genotype gi ¼ CT: There are three possible ways to obtain
a T: (i) by sequencing an allele T without error, (ii) by se-
quencing an allele C affected by PMDwithout error, (iii) or by
sequencing an allele C not affected by PMD with error. We
thus have

ℙ dij ¼ T
��gi ¼ CT; eij;Dij

� �
¼ 1

2
12 eij
� �

þ Dij 12 eij
� �

þ 12Dij
� � eij

3

� �
(2)

where Dij denotes the probability that a C/T PMD occurred
at the base of read j covering site i.

The emission probabilities for all combinations of dij and gi
derived following the same logic are found in the Appendix.

Inference using expectation-maximization: In this section,
we will detail how to find the maximum likelihood estimate
(MLE) of themodel parameters u andp in a genomic window
of I sites using an expectation-maximization (EM) algorithm
(Dempster et al. 1977). For this, wewill make the assumption
that base-specific sequencing error rates, eij, and rates of
PMD, Dij, are given constants. For the cases in which they
are not known a priori, we show below how they can be
learned accurately from genome-wide data prior to inferring
u and p: In an effort to unburden the notation, we will thus
refer to the emission probabilities simply as ℙðdijgiÞ in the
following.

The relevant property to develop an EM algorithm is the
complete data likelihood, which, in the case of our model, is
given by

Lcðu;p;d; gÞ ¼
YI
i¼1

ℙðgi; diju;pÞ ¼
YI
i¼1

ℙðdijgiÞℙðgiju;pÞ
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and thus the complete data log-likelihood by

lcðu;p;d; gÞ ¼
XI
i¼1

ðlogℙðdijgiÞ þ logℙðgiju;pÞÞ:

E-step: The expected complete data log-likelihood is calcu-
lated as

Qðu;p; u9;p9Þ ¼ E½lcðu;p;d; gÞjd; u9;p9�

¼
XI
i¼1

X
g

h
logℙðdijgÞ

þ logℙðgju;pÞ
i
ℙðgjdi; u9;p9Þ

where the sum runs over all combinations g ¼ AA;AG; . . . ;TT:
Only the second part Q2 of this sum depends on the param-
eters u;p: We have

Q2ðu;p; u9;p9Þ ¼
XI
i¼1

X
g

logℙðgju;pÞℙðgjdi; u9;pÞ9

¼
X
g

logℙðgju;pÞ
XI
i¼1

ℙðgjdi; u9;pÞ9

¼
X
g

Pglogℙðgju;pÞ

where we use the shorthand notation Pg ¼
XI
i¼1

ℙðgjdi; u9;p9Þ:
We have by Bayes’ Theorem

Pg ¼
XI
i¼1

ℙðdijgÞℙðgju9;p9ÞX
g
ℙðdijgÞℙðgju9;p9Þ

: (3)

Let us write out Q2 explicitly:

Q2ðu;p; u9;p9Þ ¼
X
k

Pkk
h
logpk þ log

�
e2u þ pk

�
12 e2u

��i

þ
X
k

X
l 6¼k

Pkl
h
logpk þ logpl

þ log
�
12 e2u

�i
:

M-step: We have to maximize Q2 subject to the
constraint X

k

pk ¼ pA þ pG þ pC þ pT ¼ 1:

For this reason, we form the Lagrangian

Lðu;p;mÞ ¼ Q2ðu;p; u9;p9Þ2m

 X
k

pk 2 1

!

where m is the Lagrange multiplier. We get the following
partial derivatives of the Lagrangian:

@

@pk
L ¼ Pkk

 
1
pk

þ 12 e2u

e2u þ pkð12 e2uÞ

!
þ
X
l 6¼k

2Pkl
pk

2m;

@

@u
L ¼2e2u

X
k

Pkkð12pkÞ
e2u þ pkð12 e2uÞ

þ e2u

12 e2u

X
k

X
l 6¼k

Pkl;

@

@m
L ¼

X
k

pk 2 1:

Wehave to set these equations to zero and solve forpk; u; and
m. Since this is not possible analytically, we will revert to the
Newton-Raphson algorithm.

To streamline the notation, we will rename our variables
x1 ¼ pA; . . . ; x4 ¼ pT ; x5 ¼ e2u=ð12 e2uÞ, and x6 ¼ m: With
these variable the above system can be simplified to a system

FðxÞ ¼ 0; (4)

where

Fkðx1; . . . ; x6Þ :5 Pkk

 
1þ xk

x5 þ xk

!
þ 2

X4
l¼1

Pkl 2 x6xk ¼ 0

for k ¼ 1; . . . ; 4; and

F5ðx1; . . . ; x6Þ :5 I2
X4
k¼1

Pkkðx5 þ 1Þ
x5 þ xk

¼ 0;

F6ðx1; . . . ; x6Þ :5
X4
k¼1

xk 21 ¼ 0:

To apply the Newton-Raphson algorithm, we determine the
63 6 Jacobian matrix Jij ¼ @Fi=@xj: The nonzeros entries of
the Jacobian with k ¼ 1; . . . ; 4 are:

Jkk ¼
Pkkx5

ðxk þ x5Þ2
2 x6;

J5k ¼ ðx5 þ 1Þ
X4
l¼1

Pll
ðxl þ x5Þ2

;

J6k ¼ 1;

Jk5 ¼ 2
Pkkxk

ðxk þ x5Þ2
;

Jk6 ¼ 2 xk;

J55 ¼
X4
l¼1

Pllð12 xlÞ
ðxl þ x5Þ2

:

(5)

We can now approximate the zero of Equation 4 with the
iteration

xnew ¼ xold 2 J21ðxoldÞFðxoldÞ: (6)

320 A. Kousathanas et al.



After a few iterations, we get the new estimate for the original
parameters by setting pk ¼ xk for k ¼ 1; . . . ; 4; and
u ¼ 2 log½x5=ð12 x5Þ�

Confidence intervals: We calculate an approximate confi-
dence interval for u using the Fisher information. To simplify
the calculations, we consider the pk as constant. The ob-
served Fisher information at the ML value û is

IðûÞ ¼ 2
@2

@u2
logLðû;pÞ

¼ 2
XI
i¼1

@2

@u2
log

"X
g

ℙðdijgi ¼ gÞℙðgi ¼ gjû;pÞ
#
;

and the corresponding derivatives are

@

@u
ℙðgi ¼ klju;pÞ ¼

��
p2
k 2pk

�
e2u if   k ¼ l;

pkple2u if   k 6¼ l:
(7)

Observe that
@2

@u2
ℙðgi ¼ klju;pÞ ¼ 2

@

@u
ℙðgi ¼ klju;pÞ: From

this we easily get that

IðûÞ ¼
XI
i¼1

RiðRi þ 1Þ (8)

where we have set

Ri ¼

X
g
ℙðdijgÞ

@

@u
ℙðgjû;pÞX

g
ℙðdijgÞℙðgjû;pÞ

: (9)

An approximate ð12aÞ confidence interval is now given by

û6 z12a=2   IðûÞ21=2:

Estimating rates of PMD

As mentioned earlier, the method above assumes that rates of
PMD are known a priori. In cases in which they are not
known, they can be readily inferred from genome-wide data
as we outline in this section.

Following Jónsson et al. (2013), we present an approach
to estimate PMD rates directly from genome-wide counts of
C/T and G/A transitions as a function of distance within
the read. For this, we first build the three-dimensional table
T , where each entry T rsp corresponds to the number of
observed bases, s, read at a site with reference base, r, at
position p within a read. While these counts depend on the
divergence between the sequenced individual and the refer-
ence genome used for mapping, we develop here an ap-
proach that takes this divergence into account.

Let us denote by mrs the probability of a true difference
between the sequenced individual and the reference, such
that the reference has base r and the sequenced individual
base s. Since the reference and a sequenced chromosome
form a genealogy on which these mutations occurred, it is

safe to assume that mrs ¼ msr:Wewill further assume that the
observed counts in a cell T rsp not affected by PMD are a direct
function of mrs:

Since the rate of PMD is generally low far away from the
read ends, position-specific estimates may become noisy for
these positions, particularly if data are limited. We thus in-
troduce a method to estimate parameters of a model of
exponential decay with the position in the read. The use of
such a model was first introduced by Skoglund et al. (2014),
and we implement here a slightly more general version of
their function. Specifically, we assume that the probability
of observing base T when the reference sequence is a C at
position p is given by

ℙ dij ¼ T
��gi ¼ C; p

� �
¼ mCT þ ð12mCTÞðaþ be2cpÞ;

where mCT again denotes true differences between the indi-
vidual and the reference.

Note that some of the parameters of this model are non-
identifiable. In the Appendix, we show how to obtain ML
estimates of the parameters of the probability function

ℙ dij ¼ T
��gi ¼ C; p

� �
¼ aþ de2gp: (10)

using the standard Newton-Raphson algorithm.
To then obtain estimates for the original parameters

mCT ; a; b, and c, we assume that mCT ¼ mTC; and obtain a
ML estimate

m̂CT ¼ m̂TC ¼

X
p
T TCpX

p
T TTp

:

Then, a ¼ d

12 m̂CT
; b ¼ g, and c ¼ a2mCT

12mCT
: We use the

analogous logic to infer PMD patterns for G/A damages,
but measuring positions from the opposite end of the read.

Estimating base-specific error rates (recalibration)

The challenge of inferring genetic diversity from next-
generation sequencing data lies in the fact that the per
base error rates are orders of magnitude higher than the
expected heterozygosity of many species (Lynch 2008).
While this issue can easily be overcome with high cover-
ages, accurate inference from low-coverage data relies on
an exact knowledge of base-specific error rates. Crude
estimates of these rates are usually directly provided by
the sequencing machines themselves. However, these es-
timates are often inaccurate, and are recommend to be
recalibrated for genotype calling (DePristo et al. 2011).

The most commonly used approach for recalibration is
BQSR (Base Quality Score Recalibration) implemented in
GATK (McKenna et al. 2010; De-Pristo et al. 2011). This ap-
proach infers new quality scores by binning the data into
groups based on covariates such as the raw quality score,
the position in the read, or the sequence context. All bases
within such a bin are assumed to share the same error rate,
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which can be readily inferred if the true underlying sequence
is known. As an alternative, Cabanski et al. (2012) proposed
to fit a logistic regression to the full data where the response
variable is the probability of a sequencing error and the ex-
planatory variables are the raw quality scores, and covariates
such as position in the read, or base context.

For our purpose, these methods suffer from two short-
comings: first, they cannot be applied to ancient DNA since
they do not take PMD into account. Second, both require a
reference sequence as well as knowledge of polymorphic
positions, such that they can be excluded from the analysis.
While we have shown how to extend the BQSR method to
ancient DNA (Hofmanová et al. 2016), we develop here an
approach that also integrates over the unknown reference
sequence.

Todo so,wewill assume the existence a genomic region for
which the individual does not show any polymorphism. A
good example of such a genomic region are nonhomologous
sequences from sex chromosomes in heterogametic individ-
uals, and we will describe our approach with this type of data
in mind. However, we note that our approach can also be
readily applied to diploid regions that are known to be mono-
morphic, such as positions that are highly conserved among
species or positions retained after filtering out those with
high minor allele counts (Cabanski et al. 2012).

Model

As above, let us denote the hidden (haploid) genotype at site i
by gi;where gi is one of the nucleotides A;G;C;T: At each site
i, there are ni reads, and we denote by dij; j ¼ 1; . . . ; ni, the
base of read j covering site i. A sequencing error occurs with
probability eij: These probabilities shall now be given by a
model

eij ¼ e
�
qij;b

	
; (11)

where qij ¼ ðqij1; . . . ; qijLÞ is a given external vector of infor-
mation, andb ¼ ðb0; . . . ;bLÞ are the parameters of themodel
that have to be estimated. While our approach is flexible

regarding the choice of included covariates, we will here
consider the raw quality score, the position within the read,
the squares of these to account for a nonlinear relationships,
and all two-base contexts consisting of the bases of the read
at positions i2 1 and i.

Following Cabanski et al. (2012), we impose the logit model

eij

�
qij;b

	
¼

exp
h
hijðbÞ

i
1þ exp

h
hijðbÞ

i (12)

with

hikðbÞ ¼ b0 þ
XL
l¼1

qijlbl:

In the case of monomorphic or haploid sites only, the prob-
ability of the read vector di given the hidden state gi can be
written more generally as

ℙðdijgi;bÞ ¼
Yni

j¼1

ð12DijÞ 12 eij
� �

þ Dij
eij

3


 �
; (13)

Here, the dependence on the parameters b is given by (12),

Dij ¼ D
�
dij; qij; gi

�
¼

0 if   gi ¼ dij ¼ A  or  T
DC/T

�
qij
�

if   gi ¼ C; dij ¼ C
12DC/T

�
qij
�

if   gi ¼ C; dij ¼ T
12DG/A

�
qij
�

if   gi ¼ G; dij ¼ A
DG/A

�
qij
�

if   gi ¼ G; dij ¼ G
1 otherwise

;

8>>>>>>><
>>>>>>>:

and DC/TðqijÞ and DG/AðqijÞ refer to the known probability
that a C/T or G/A PMD occurred at the position covering
site i in read j.

Again, thismodel can be estimated using the EMalgorithm
with theNewton-Raphsonalgorithm in theM-step.Details are
given in the Appendix.

Figure 1 Power to infer u from low coverage data. Results from sets of 100 simulations with PMD for different average coverage, window size, and true
u values. (A) Estimated û in windows of 1 Mbp as a function of average coverage. (B) Estimated û as a function of window size and fixed average
coverage of 13 : (C) Accuracy of estimating u ¼ 1023 quantified as the median relative error (j12 û=uj) over replicates indicated by contour lines as a
function of both coverage and window size. (D) True vs. estimated u for different average coverages (see color legend). Polygons indicate the 95%
quantile of estimated û values among all replicates. The diagonal black line indicates the expectation for perfect estimation. In (A, B, and D), replicates
resulting in a û, 1025 are not shown, but their fraction across replicates are printed below the horizontal black line.
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Implementation

All approachesmentionedwere implemented in a custom C++
program available at our laboratory website (http://www.unifr.
ch/biology/research/wegmann/wegmannsoft). We used func-
tions included in the library BamTools for manipulating bam
files (Barnett et al. 2011).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Simulations

Generating simulations

In this section, we illustrate the power and accuracy of our
inference approacheswith simulations. Thesewere generated
using a custom-made R script that implements the following
steps:

1. The first chromosome of length L was simulated using ran-
dom bases with frequencies p ¼ f0:25; 0:25; 0:25; 0:25g:

2. The second, homologous chromosome was simulated
according to the Felsenstein (1981) substitution model
(Equation 1) with p and a chosen u value.

3. Sequencing reads of 100 bases were then generated by
copying from one of the two chromosomes with equal
probability, and by choosing a starting position uniformly
between positions 1 and L2 99 until the desired average
coverage was reached. All reads copied from the second
chromosome were considered to map to the reverse
strand.

4. PMD was simulated on all reads with probabilities follow-
ing an exponential decay with increasing position in the
read as proposed by Skoglund et al. (2014) to match re-
alistic patterns. Specifically, we simulate PMD at position p
within the read with probability

D ¼ ð12lÞp21 pþ C;

where l ¼ 0:3 and C ¼ 0:01 for both C/T and G/A
but with p counted from the 39 and 59 ends, respectively.

5. For each simulated base, a phred-scaled quality score was
simulated and sequencing errors were then added with
probabilities given by these scores. If not stated otherwise,
quality scores were simulated from a normal distribution
with mean mQ ¼ 20 and SD sQ ¼ 4:5; truncated at zero.
When testing our recalibration approach, however, the
quality scores were simulated from a uniform distribution
U½5; 60�, and then transformed according to Equation
12 with coefficients b to obtain the true error rate, with
which sequencing errors were simulated.

6. The simulated data were finally used to generate a refer-
ence FASTA file containing the first chromosome and a
SAM file containing the reads. The latter was then trans-
formed into a BAM file using SAMtools (Li et al. 2009).

Power to infer u

To check the power of our approach to infer u from low
coverage data, we first simulated data within a 1 Mbp win-
dow with a true u ¼ 1023 for various coverages. The specific
value of u ¼ 1023 was chosen to reflect the median hetero-
zygosity in a modern, non-African human individual.

We found themedian of our u estimates across replicates to
be very close to the true value, but the variance to be a func-
tion of coverage. At low coverage (, 13 ), u was often
inferred to be zero. This is not surprising, as the information
about genetic diversity can come only from sites covered at
least twice, which is rare at average coverages , 13: The
simulations that did result in an estimate above zero were
thus enriched for cases with slightly above average number of
polymorphic sites among those covered twice. As soon as
average coverage exceeded 1:53 ; however, our approach
estimated u at 1023 very accurately (Figure 1A).

We next performed simulations with a fixed coverage of
13 ; but varying the window size (Figure 1). Interestingly, we
found that an increase in window size has a positive effect on
the estimate accuracy, similarly to an increase in coverage,
suggesting that larger windows help to increase accuracy if
coverage is very low. To illustrate this effect, we performed
simulations at various window sizes and coverages, and
recorded the relative estimation error for a series of repli-
cates. As expected, we found the median relative estimation
error to be a direct function of the product of window size and
coverage (Figure 1C), thus suggesting our method will per-
form well also at average coverages below 13 if the window
size is large enough.

Using the same setting,we also checked the accuracy of the
approximate confidence intervals obtained using the Fisher
information. For this we inferred u from 1000 windows of
1 Mbp simulatedwith u at 1023 for a coverage of 1.0 and 0.2.

Figure 2 Effect of sequencing quality on power to estimate u. Results
from sets of 100 simulations to assess the power to estimate u of 1024

and 1023 for (A) and (B), respectively, for different average base qualities
distributed normally with mean 20, 40, or 60, and a SD of 4.5, but
truncated at 0. Polygon shapes indicate the 95% confidence interval
for estimated û over all replicates, excluding those resulting in û,1025

(the fraction excluded are printed below the horizontal black line). All
simulations were conducted with PMD, and the true PMD probability
functions were used during the estimation.
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We found the true value to be included in the 95% confidence
interval in 93.6 and 98.6%, respectively, suggesting these
confidence intervals to be a very accurate reflection of esti-
mation uncertainty.

Using a third set of simulations, we found that, at equal
coverage and window size, higher u values are estimated
more accurately than lower values (Figure 1D). This is
expected since, in the case of low u, only few heterozygous
sites are present in a given window, rendering the estimate
more dependent on the detection of individual sites. None-
theless, we found our approach to infer u. 1024 very accu-
rately in a window of 1 Mbp if the average coverage exceeds
33.

All results above were generated assuming base-specific
quality scores to be normally distributedwithmQ ¼ 20 and SD
sQ ¼ 4:5; which is lower than the quality expected with cur-
rent sequencing approaches (e.g., Utturkar et al. 2015). Se-
quences generated with higher quality will positively affect
estimation accuracy. Indeed we found that simulating data
with mQ ¼ 40 or mQ ¼ 60 resulted in much lower estimation
error, effectively rendering the estimation of u feasible even
at very low average coverage (Figure 2). For instance, we
found that, at an average coverage of 0:83; more than 90%
of windows with u ¼ 1024 and mQ ¼ 60 were estimated
within less than half an order of magnitude from the true
value. At mQ ¼ 20; this accuracy was only reached with an
average coverage of 3:23:

Comparison to an existing method

While there is currently no implemented method available to
infer heterozygosity in a window or region from a single
individual, our method is very similar to those inferring the
SFS from multiple individuals (e.g., Nielsen et al. 2012;
Korneliussen 2014). Indeed, inferring the SFS from a single
individual gives a direct estimate of heterozygosity, H, which
is related to u by

E½H� ¼
X
g9

ℙ
�
gi ¼ g9

��u;p	: (14)

The most commonly used approach to infer the SFS while
integrating over genotype uncertainty at individual sites
(Nielsen et al. 2012) is implemented in the software package
ANGSD (Korneliussen 2014). This implementation assumes
that the two potential alleles are known a priori for each site,
and hence have to be inferred first using the major-minor
option implemented in ANGSD. While the method imple-
mented in ANGSD can be extended to address this limitation,
we used our simulation framework to assess its effect on the
inference of heterozygosity from low coverage data. In order
to make estimates comparable, we report those of ANGSD in
terms of u calculated according to Equation 14 from the frac-
tion of sites reported to be heterozygous in the SFS.

As shown in Figure 3A, ANGSD inferred u very accurately if
the reference allele was provided for each site, and only the
second allele needed to be inferred. Making explicit use of
this additional information, the estimates were more accu-
rate than those obtained with our approach, which does not
make any assumption about the alleles present. However,
when no information was given about the observable al-
leles, and both had to be inferred using the major-minor
option of ANGSD prior to the inference of heterozygosity,
u was grossly underestimated whenever coverage was be-
low 103. While we note that ANGSD is designed for appli-
cations involving multiple samples, in which case inferring
the two observable alleles accurately is much easier; this
result illustrates the importance of taking the full genotype
uncertainty into account when inferring diversity from low
coverage data.

Again using simulations, we next studied the impact of
PMD on the inference of heterozygosity (Figure 3B). Unsur-
prisingly, the diversity estimated using the method imple-
mented in ANGSD that does not take PMD into account
was more than one order of magnitude too large. In contrast,
our method properly accounts for PMD if its pattern is well
characterized. While ANGSD can readily be extended to ac-
count for PMD, these results highlight the importance of ac-
counting for PMD for any population genetic inference or
comparison involving ancient DNA.

Figure 3 Performance comparison with
ANGSD. Results from sets of 100 simula-
tions with (A) or without (B) PMD, com-
paring the performance of the method
presented in this study and ANGSD in in-
ferring u. ANGSD was run either with the
reference sequence provided (ANGSD_wREF)
or without (ANGSD_noREF), in which case
the major and minor alleles were first
inferred in an additional step. For all sim-
ulations, we further assumed that base
qualities were distributed normally, with
mQ ¼ 20 and sQ ¼ 4:5; but truncated at
0. Polygon shapes indicate the 95% con-
fidence interval for estimated û; but ex-
cluding replicates resulting in û,1025:

The fraction of replicates excluded are
printed below the horizontal black line. When applying our method in simulations conducted with PMD, we provided the true PMD probability patterns
during the estimation.
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Accuracy of recalibration

The results discussed so far were all obtained under the
assumption that quality scores provided by the sequencing
machine are accurate. Unfortunately, this is rarely the case,
making recalibration of the quality scores necessary for most
applications, and, in particular, when trying to infer genetic
diversity from low coverage data. Here, we developed an
approach to recalibrate quality scores without prior knowledge
of the underlying sequencing information. Instead, we simply
assumethatapartof thesequence isknowntobemonomorphic,
such as the haploid X-chromosome in mammalian males.

To investigate the power of our approach to infer recali-
bration parameters, we simulated sequencing reads from a
haploid region where the quality scores provided in the SAM
fileswere distorted.Wedid this byfirst simulating fake quality
scores from a uniform distribution U½5; 60�, and then trans-
forming them into true quality scores according to Equation
12. We used the following coefficients: all context coeffi-
cients = 1.0, the coefficients for the raw quality score,
bq ¼ 1:5; the square of the raw quality score, bq2 ¼ 0:05;
the position within the read, bp ¼ 2 0:1, and the square of
the position within the read, bp2 ¼ 5 � 1025: These values
were chosen to reflect a distortion observed in real data from
the ancient human samples analyzed in this study (see below).
They also result in both a relatively strong distortion, aswell as
meaningful error rates for the evaluation of our approach.

We found all coefficients to be inferred with high accuracy
from a 1 Mbp window with an average coverage above 13
(Figure 4). If the amount of data were much lower than that,
estimates were generally less accurate. In particular, we
found the coefficients for the quality (bq and bq2 ) to be often
slightly overestimated at low coverages, likely because many
sequencing errors go undetected since they can only be
inferred at sites covered at least twice. However, this bias
can be alleviated with larger window sizes if coverage is very
low (see below).

Accuracy of full pipeline

We finally used simulations to assess the accuracy of the full
pipeline, that is, when inferring first the pattern of PMD, then

the recalibration coefficients given the inferred PMD pattern,
and lastly using the recalibrated quality scores along with the
inferred PMD pattern to estimate u. In these simulations, the
distortion of quality scores was, in addition to the four ef-
fects included above (bq ¼ 1:5; b2

q ¼ 0:05; bp ¼ 2 0:1 and
b2
q ¼ 5 � 1025), also affected by sequence context, in that

simulated sequencing errors were 1.5 times more likely to
result in a C or G than in an A or T.

Regardless of the true u value we used, we detected a
strong bias toward high values in our estimates whenever
very little data were used (Figure 5, 0.1 Mbp). This is a direct
result of the overestimation of the quality scores during the
recalibration step as reported above, which leads to an over-
estimation of diversity. Encouragingly, however, this bias is
overcome with only slightly more data. Indeed, we found
1 Mbp of data with an average coverage of well below 13
to be sufficient to accurately infer u$1023, and of 13 for
u ¼ 1024: Notably, even lower average coverages were suffi-
cient when data were available for 10 Mb. Finally, we found
an average coverage of 43 to be sufficient when conducting
recalibration and inference in windows as small as 0.1 Mb.
These results thus suggest that our approach may be useful
not only for hemizygous individuals with large chunks of
haploid DNA (the sex chromosomes), but may also work well
in other individuals when using mtDNA, for which high cov-
erage can be obtained, or ultraconserved elements for
recalibration.

Application

We illustrate the benefit of our approach by inferring u for
several ancient human male samples, and comparing these
estimates to those obtained for several male individuals from
the 1000 Genomes Project. For the ancient genomes, we first
inferred PMD patterns from chromosome 1 using the expo-
nential model introduced here (Supplemental Material,
Figure S1), then used the first 20 Mbp of the X chromosome
to perform recalibration individually for each read group,
taking the inferred PMD pattern into account (Figure S2).
Finally, we used both the inferred PMD patterns, as well as
the recalibrated quality scores, to infer u in windows of

Figure 4 Accuracy in inferring recalibration parameters. Results from sets of 100 simulations are shown where sequence data from a haploid 1 Mbp
region was simulated assuming a uniform distribution of observed quality scores (U½5;60�) that were then transformed to true qualities according to
Equation 12, with bq ¼ 1:5; b2

q ¼ 0:05; bp ¼ 2 0:1; b2
q ¼ 5 � 1025, and all context coefficients at 1.0. All simulations were conducted with PMD, and

the true PMD probability patterns were used during the estimation. The coverage values refer to the diploid regions of the simulated genome.
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1 Mbp in the whole genome, excluding windows closer than
5 Mbp to telomeres or centromeres as defined by the track
Gap in group Mapping and Sequencing in the UCSC Table
Browser (Karolchik et al. 2008).

The samples that we analyzed this way were (1) two
European hunter-gatherer individuals (Jones et al. 2015),
namely theMesolithic genome “Kotias” from Kotias Klde cave
fromWestern Georgia (KK1), and the western European Late
Upper Paleolithic genome, “Bichon” from Grotte du Bichon,
Switzerland (Bich), �17,700 years old (2) an individual
from the Bronze age burial site at Ludas-Varjú-dülö, Hungary
(BR2 Gamba et al. 2014), and (3) a 4500-year-old male from
Mota Cave in the southern Ethiopian highlands (Gallego Llor-
ente and Jones 2015). All these samples had relatively high
coverage (. 103 ), and thus allowed us to infer fine scaled
patterns of heterozygosity along the genomes, even for re-
gions with low diversity (u, 1024).

For comparison,wealso inferreddiversity patterns for nine
modern males from three populations that were analyzed as
part of the 1000 Genomes Project, phase 3 (alignment files
downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/phase3/data/). These were the British males HG00115,
HG00116, andHG00117, Tuscanmales NA20509, NA20511,
and NA20762, and Yoruban males NA18486, NA18519, and
NA18522. As shown in Figure 6B, these nine individuals por-
trayed the expected pattern of higher diversity in African
than European individuals, but they also revealed significant
variation among individuals of the same population (t-test,
p, 1025 in at least two out of three possible comparisons in
each population). Larger differences in overall diversity were
observed among the ancient samples analyzed. Unsurpris-
ingly, the African sample Mota exhibited the highest diversity
of all ancient samples, which was also higher than the di-
versity observed in modern day Europeans, yet lower than
modern day Yorubans. The ancient sample with the second
highest diversity was the Bronze Age sample BR2, whose di-

versity falls well within the range of estimates obtained from
modern day Europeans. In contrast, the two European
hunter-gatherer samples KK1 and Bichon showed much
lower diversity than modern day Europeans with their me-
dian estimates being 15–25% lower than the median esti-
mates of modern Europeans. These results suggest that
while hunter-gatherer populations had much lower diversity,
the diversity found in Europeans about 3000 years ago was
very comparable to the diversity observed today. This conclu-
sion is in perfect agreement with a temporal trend in the total
length of runs of homozygosity (ROH) inferred from im-
puted genotypes among ancient samples from Hungary that
spanned a period from 5700 to 100 BC and also included the
sample BR2 (Gamba et al. 2014).

The inference of local diversity patterns also allows us to
compare the distribution of diversity in the genome between
individuals, regardless of the overall level of diversity. This
analysis revealed a substantial phylogenetic signal in the
distribution of diversity as quantified by Spearman correla-
tions. For instance, the diversity pattern is more strongly
correlated among modern Yorubans (pairwise Spearman
correlations between 0.55 and 0.60) than between Yorubans
and Europeans (0.40–0.50). Similarly, the diversity pattern of
the ancient African samples Mota is most strongly correlated
with that of modern day Yorubans (0.491–0.537), and much
less so with modern day Europeans (0.362–0.433). Interest-
ingly, European samples are more diverse in their patterns
than Africans (pairwise Spearman correlations between
0.42 and 0.48), and their correlations do not exceed those
obtained when comparing African and European individuals.
Nonetheless, hierarchical clustering groups all modern day
Europeans together, and also puts the Bronze age sample BR2
at the basis of that clade (Figure 6C).

The lowest pairwise correlations (0.28–0.39) were found
for comparisons involving the two European hunter-gatherer
samples KK1 and Bich, with the overall lowest being the

Figure 5 Accuracy in estimating u using the full pipeline. Results from sets of 50 simulations, each consisting of data from a haploid as well as a diploid
region used to conduct recalibration and inference of u, respectively. The data sets in (A, B, and C) were simulated with different true values of u, which
are indicated with the dashed lines, and were 1022; 1023 and 1024; respectively. Each data set was simulated with PMD as well as distorted base quality
scores according to Equation 12, with bq ¼ 1:5; b2

q ¼ 0:05; bp ¼ 20:1; and b2
q ¼ 5 � 1025: In addition, these simulations also included context effects

in that sequencing errors were simulated to result 1.5 times more often in a C or G than in an A or T. The average coverage indicated is for the diploid
data, while the haploid data were simulated with half the coverage. Line segments and polygons correspond to the median and the 90% quantile of all
estimated û within the set of simulations, respectively.
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correlation between these samples (0.28). This is also illus-
trated visually when plotting our estimates of the first
75 Mbp of chromosome 1, where we found relatively high
concordance in local diversity among the two European sam-
ples, but vastly different patterns among the hunter-gatherer
samples (Figure 6C). These results suggest that, despite very
comparable overall levels of diversity, the distribution of di-
versity along the genome was very diverse among European
hunter-gatherer populations, and very different from the one
observed among modern day individuals. Multiple observa-
tions support such a conclusion: first, the two samples ana-
lyzed here represent two vastly different geographic regions,
with one being a sample from Switzerland, and the other
from Georgia, and were previously reported to belong to
two different clades that split 45,000 years ago, as inferred
from genotyping data (Jones et al. 2015). Second, the ances-
try of modern Europeans traces only partly back to Euro-
pean hunter-gatherers, with early Neolithic people from the
Aegean (Hofmanová et al. 2016) and Yamnaya steppe herders
(Haak et al. 2015) contributing themajority of themodern-day
genetic makeup. Finally, the two European hunter-gatherer
samples both exhibit many, but unique, regions of very low
diversity (û, 1024 in 4% of all windows, cf. 0.00–0.03% in all
modern Europeans), which do not have particularly low cov-
erage. They are likely the result of small population sizes with
some level of consanguinity in the population (Pemberton
et al. 2012).

Discussion

Quantifying genetic diversity and comparing it between dif-
ferent individuals and populations is fundamental to under-
standing theevolutionaryprocesses shapinggenetic variation.
Unfortunately, the inference of heterozygosity is confounded

byboth sequencing errors, resulting in falsediversity aswell as
the statistical power to identify heterozygous sites, particu-
larly when coverage is low. Several methods have been
developed to learn about heterozygosity probabilistically, that
is,without theneed tofirst call genotypes.A rather recent such
approach (Bryc et al. 2013) proposes to leverage data from
external reference individuals to obtain an unbiased estimate
of the probability that a specific sites is heterozygous. The
expected heterozygosity is then estimated from these site-
specific estimates. Since this approach requires per site esti-
mates to be accurate, only sites with a coverage of 53 or
higher can be included in the analysis, which severely limits
the scope of the application.

An alternative is to infer heterozygosity probabilistically
from a collection of sites. Among the earliest such methods
was a likelihood-based estimator (Lynch 2008), which infers
heterozygosity of an individual jointly with the rate sequenc-
ing errors. We presented a natural extension of this approach
that relaxes the infinite sites assumption and integrates PMD,
a particular feature of ancient DNA that is not captured by
base quality scores provided by sequencing machines. We
achieved this by extending Felsenstein’s model of substitutions
(Felsenstein 1981) with an explicit model of next-generation
sequencing data that incorporates both sequencing errors as
well as errors arising from PMD. We have previously used the
same PMD error model for variant calling from ancient sam-
ples (Hofmanová et al. 2016), and we note that it may be used
to extend any other inference method based on genotype like-
lihood to ancient DNA.

Following other recently developed approaches to infer
genetic diversity from next-generation sequencing data (e.g.,
Nielsen et al. 2012; Korneliussen 2014; Maruki and Lynch
2015), our method also relaxes the assumption of constant
error across all reads by benefiting from the base-specific

Figure 6 Local diversity in ancient and modern humans. (A) Heterozygosity (u) inferred in 1 Mb windows along the first 75 Mbp of chromosome 1
(excluding windows closer than 5 Mbp of the telomere) for two modern Europeans (TSI2 and GBR2), and two ancient European hunter-gatherers (KK1
and Bich). Solid lines indicate the MLE estimate, shading indicates the 95% confidence intervals and dashed lines the genome-wide median for each
sample. (B) Distribution of estimates û in 1 Mbp windows across the first 22 chromosomes of each sample. (C) Similarity in the pattern of u along the
genome visualized by hierarchical clustering using 1 2 Spearman correlation as distance.
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quality information provided by current sequencing technol-
ogies. Yet since these provided quality scores are often dis-
torted, we also introduced here a method to recalibrate the
quality scores for low coverage genomes. In contrast to com-
monly used methods for recalibration (e.g., McKenna et al.
2010; DePristo et al. 2011; Cabanski et al. 2012), our ap-
proach does not require information about the underlying
sequence context. It only assumes sites to be monomorphic
while integrating over the uncertainty of the sequence
itself. Examples of regions known to be monomorphic
are the sex chromosomes in hemizygous individuals. But,
since we found that our method recalibrates quality scores
with high accuracy and reliably, even based on DNA
stretches as short as 1 Mbp, we are confident that it will
work even on ultraconserved elements or plasmid DNA.
Finally, we note that if multiple individuals are sequenced
together, they are likely affected by the same distortion
of quality scores, and can hence be recalibrated with pa-
rameters inferred from a subset of them (e.g., the male
samples).

As an illustration, we applied the methods developed here
to modern and ancient human samples of various coverage.
While our approach to infer heterozygosity incorporates the
possibility of PMD, it assumes that the probability of a PMD
event occurring is known.We thus also introduce amethod to
infer these probability functions from raw data, which is
robust to divergence between the sample and the reference
genome. By inferring PMD patterns for each sample, then the
recalibration parameters, and,finally, local diversity in 1 Mbp
windows, we found that both ancient and modern African
samples exhibited much larger diversity than European indi-
viduals. In addition, the diversity inferred from two ancient
European hunter-gatherer samples wasmuch lower than that
of modern samples, which is likely explained by smaller pop-
ulation sizes. Besides overall differences in diversity, also the
pattern of diversity along the genome revealed a strong geo-
graphic clustering among modern and ancient samples. The
exceptions were the two European hunter-gatherers that
showed patterns very different from both modern samples,
as well as from one another, further corroborating the view
(Jones et al. 2015) that these samples represent different and
ancient clades that contributed onlymarginally to the genetic
make-up of modern day Europeans.
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Appendix

Emission Probabilities in the Presence of PMD

Following Lynch (2008) and commonly used approaches (e.g., Li 2011), we assume here that a sequencing read is equally
likely to cover any of the two alleles of an individual, and that sequencing errors may result in any of the alternative bases with
equal probability, eij=3: In the absence of PMD, the probability of observing a base, dij, given the underlying genotype gi ¼ kl is
then given by

ℙ dij
��gi ¼ kl; eij

� �
¼

12 eij if   k ¼ l ¼ dij
eij

3
if   k 6¼ dij; l 6¼ dij

1
2
2

eij

3
if   k 6¼ l; k ¼ dij   or  l ¼ dij

;

8>>>>><
>>>>>:

In ancient DNA, differences between the base observed within a read and the underlying alleles may also be the result of PMD.
FollowingHofmanová et al. (2016), let us denote byDC/TðqijÞ andDG/AðqijÞ, the known probability that a C/T orG/A PMD
occurred at the position covering site i in read j, respectively. In the presence of PMD, the probability of observing a base, dij,
given the underlying genotype gi ¼ kl is given by

ℙðdij
��gi ¼ kl; eij; qijÞ ¼

½12DG/AðqijÞ�
eij
3

þ DG/AðqijÞð12 eijÞ if   dij ¼ A; gi ¼ GG

½1þ DG/AðqijÞ�ð12 eijÞ
2

þ ½12DG/AðqijÞ�eij
6

if   dij ¼ A; gi ¼ AG

DG/AðqijÞð12 eijÞ
2

þ ½2DG/AðqijÞ�eij
6

if   dij ¼ A; gi ¼ CG;GT

½12DC/TðqijÞ�ð12 eijÞ þ DC/TðqijÞ
eij
3

if   dij ¼ C; gi ¼ CC

½12DC/TðqijÞ�ð12 eijÞ
2

þ ½1þ DC/TðqijÞ�eij
6

if   dij ¼ C; gi ¼ AC;CG;CT

½12DG/AðqijÞ�ð12 eijÞ þ DG/AðqijÞ
eij
3

if   dij ¼ G; gi ¼ GG

½12DG/AðqijÞ�ð12 eijÞ
2

þ ½1þ DG/AðqijÞ�eij
6

if   dij ¼ G; gi ¼ AG;CG;GT

½12DC/TðqijÞ�
eij
3

þ DC/TðqijÞð12 eijÞ if   dij ¼ T; gi ¼ TT

DC/TðqijÞð12 eijÞ
2

þ ½22DC/TðqijÞ�eij
6

if   dij ¼ T; gi ¼ AC;CG

½1þ DC/TðqijÞ�ð12 eijÞ
2

þ ½12DC/TðqijÞ�eij
6

if   dij ¼ T; gi ¼ CT

12 eij if dij ¼ A; gi ¼ AA  or  dij ¼ T; gi ¼ TT

1
2
2 eij if dij ¼ A; gi ¼ AC;AT   or  dij ¼ T; gi ¼ AT;GT

e

3
otherwise

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Newton-Raphson Algorithm to Infer PMD Patterns

Under the model proposed in Equation 10, the log likelihood of the data are given by

lða; d; gÞ ¼
X
p

T CTplogðmþ de2apÞ þ
X
p

T CCplogð12m2 de2apÞ;

the gradient vector Fða; d; gÞ by
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Fða; d; gÞ ¼

2
4 Fa
Fd
Fg

3
5 ¼

X
p

T CTp

aþ de2gp

2
4 1

e2gp

2pde2gp

3
5þ

X
p

T CCp

12a2 de2gp

2
4 21
2e2gp

pde2gp

3
5

and the Jacobian matrix Jða; d; gÞ by

Jða; d; gÞ ¼

2
4 Faa Fad Fag
Fad Fdd Fdg
Fag Fdg Fgg

3
5 ¼

X
p

np
ðaþ de2gpÞ2

J9p þ
X
p

Np2 np
ð12a2de2gpÞ2

J$p ;

where

J9p ¼

2
4 21 2e2gp pde2gp

2e2gp 2e22gp 2pae2gp

pde2gp 2pae2gp p2ade2gp

3
5

and

J$p ¼

2
4 21 2e2gp pde2gp

2e2gp 2e22gp pð12aÞe2gp

pde2gp pð12aÞe2gp 2p2ð12aÞde2gp

3
5:

The Newton-Raphson iteration for u ¼ ða; d; gÞT is given by

unew ¼ uold2 J21ðuoldÞFðuoldÞ: (15)

EM Algorithm to Infer Base-Specific Error Rates

We propose an EM algorithm for this estimation that is similar to the one above, but assume here that the base frequencies pg;

g ¼ A;G;C;T are known, i.e., can be derived accurately from counting in the region. The complete data log-likelihood of our
model is given by

lcðbjd; gÞ ¼
XI
i¼1

�
logℙðdijgi;bÞ þ logpgi

�
:

From this, we get the expected complete data log-likelihood

Q
�
b;b9

	
¼ E

h
lcðbjd; gÞjd;b9

i
¼
XI
i¼1

X
g

�
logℙðdijg;bÞ þ logpg

�
ℙ
�
gjdi;b9

	
:

For the M-step, we need only to consider the first part of Qðb;b9Þ :

Q1

�
b;b9

	
¼
XI
i¼1

X
g

ℙ
�
gjdi;b9

	
logℙðdijg;bÞ;

where

ℙ
�
gjdi;b9

	
¼

ℙ
�
dijg;b9

�
pgP

h
ℙ
�
dijh;b9

�
ph
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by Bayes’ formula. From (13), we get more explicitly

Q1

�
b;b9

	
¼
X
i;g;j

9log 12Dij þ Bijeij ;Þ
�

where we used the abbreviations Bij ¼ ½ð4=3ÞDij 2 1� and

X
i;g;j

9 . . . ¼
XI
i¼1

X
g

ℙ
�
gjdi;b9

	Xni

j¼1

. . .:

In order to maximize Q1 for b; we calculate the gradient vector FðbÞ ¼ =bQ1ðb;b9Þ with components

FmðbÞ ¼
@

@bn
Q1

�
b;b9

	
¼
X
i;g;j

9 Bij
12Dij þ Bijeij

@eij
@bm

; (16)

for m ¼ 0; . . . ; L: From (12), we obtain

@eij
@bm

¼ eij 12 eij
� � @hij

@bm
:

Observe that @hij=@b0 ¼ 1 and @hij=@bm ¼ qijm for m ¼ 1; . . . ; L:
We solve FðbÞ ¼ ð0Þ with the Newton-Ralphson method with the Jacobian matrix Jmn ¼ @Fm=@bn: From (16), we get

JmnðbÞ ¼
X
i;g;k

9

"
Bij

12Dij þ Bijeij

@2eij
@bm@bn

2
B2ij�

12Dij þ Bijeij
�2 @eij

@bm

@eij
@bn

#

where

@2eij
@bm@bn

¼ eij 12 eij
� �

12 2eij
� � @hij

@bm

@hij

@bn
:

Putting everything together we obtain

JmnðbÞ ¼
X
i;g;k

9 Bijeij 12 eij
� �

12Dij þ Bijeij
� �2 �

12Dij
�
122eij
� �

2Bije2ij
� 	 @hij

@bm

@hij

@bn
:

The Newton-Ralphson iteration is

bnew ¼ bold 2 J21ðboldÞFðboldÞ:
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Figure S1: Post-mortem damage pattern pro�les of ancient samples. Plotted is the fre-
quency of reads showing T at all sites where the reference is C (top panels) and the frequency of
reads showing A at all sites where the reference is G (bottom panels) as a function of the distance
from the 5' and 3' end of the read, respectively, for each individual and read group. For single
end sequencing runs, damage patterns are further shown individually for reads that are shorter
(<cycles) or as long (=cycles) as the number of sequencing cycles used.
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Figure S2: E�ect of Recalibration on Quality Scores. Shown are the density distributions
of the quality transformations as a result of the applied quality recalibration for each sample. It
appears that the machine-reported qualities were overall too high, and in particular for the qualities
> 30.
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