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Abstract: Understanding the recognition of specific epitopes by cytotoxic T cells is a central problem
in immunology. Although predicting binding between peptides and the class I Major Histocompati-
bility Complex (MHC) has had success, predicting interactions between T cell receptors (TCRs) and
MHC class I-peptide complexes (pMHC) remains elusive. This paper utilizes a convolutional neural
network model employing deep metric learning and multimodal learning to perform two critical
tasks in TCR-epitope binding prediction: identifying the TCRs that bind a given epitope from a TCR
repertoire, and identifying the binding epitope of a given TCR from a list of candidate epitopes.
Our model can perform both tasks simultaneously and reveals that inconsistent preprocessing of
TCR sequences can confound binding prediction. Applying a neural network interpretation method
identifies key amino acid sequence patterns and positions within the TCR, important for binding
specificity. Contrary to common assumption, known crystal structures of TCR-pMHC complexes
show that the predicted salient amino acid positions are not necessarily the closest to the epitopes, im-
plying that physical proximity may not be a good proxy for importance in determining TCR-epitope
specificity. Our work thus provides an insight into the learned predictive features of TCR-epitope
binding specificity and advances the associated classification tasks.

Keywords: T cell receptors; epitope binding specificity; deep learning; metric learning; multi-
modal learning

1. Introduction

The human adaptive immune response requires a two-step binding process to mediate
the recognition and destruction of diseased cells by Cytotoxic T lymphocytes (CTLs). First,
the class I MHC molecules found in all nucleated cells bind select peptides resulting from
cleaving cytosolic proteins, some of which may derive from pathogens infecting the host
cells, and present them on the cell surface as a peptide-MHC (pMHC) complex. Second,
the T cell receptors (TCRs) of CTLs must scan the presented pMHCs and bind only those
PMHC:s containing specific peptides recognized by the TCRs. Most human CTLs contain
TCRs consisting of « and 3 glycoprotein chains, and only a small subset of CTLs con-
tain TCRs composed of v and $ chains. During the binding interaction between the TCR
and pMHC, the Complementarity-Determining Region 1 (CDR1) and Complementarity-
Determining Region 2 (CDR2), loops of the TCR chains typically make significant contact
with the MHC, while the Complementarity-Determining Region 3 (CDR3) loop directly
interacts with the peptide itself, and thus determines the specificity of the TCR and pMHC
interaction [1]. Peptides recognized by the TCR in this context are known as epitopes.
Currently, a number of immune assays are used to measure T cell response to pathogen pep-
tides [2-6]. Researchers have attempted to predict both peptide-MHC- and TCR-epitope-
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binding events using the amino acid sequence information contained in experimental
TCR-pMHC-binding data emerging from recent TCR sequencing technology [7,8]. Notable
progress has been made in predicting binding between peptides and MHC [9-12], but
the peptide-MHC binding is only a necessary, not a sufficient, condition for TCR-epitope
binding [13], the prediction of which has had only limited success.

A variety of approaches to TCR-epitope-binding prediction have been explored in the
literature. For instance, Glanville et al. [14] and Dash et al. [15] have utilized amino acid
motif signatures present in the CDR3 region of the TCR & and 3 chains to cluster TCRs by
epitope specificity. Methods modeling the physical structure and interaction between TCR
and pMHC have also been proposed [16-19]. Additionally, with the emergence of large
databases of aggregated experimental TCR-epitope binding data, researchers have begun
to explore machine learning methods, including Gaussian Processes [20], convolutional
neural networks [21,22], and recurrent neural networks [23]. These methods differ in terms
of the datasets used for training and testing, as well as the nature of the classification tasks
performed, making direct comparison of model performance difficult.

Ideally, prediction of TCR-epitope binding would allow for the classification of any
pair of TCR and pMHC into a binding or non-binding class given three inputs: TCR
variable region sequence, peptide sequence, and the HLA allele of the MHC molecule.
However, limitations of data availability and theoretical understanding currently restrict
this task to only special considerations relying on certain assumptions. First, previous
investigations have analyzed TCR-pMHC crystal structures and shown that the CDR3 loop
of TCR o chain (CDR3A) rarely makes contact with the epitope, whereas the CDR3 loop of
TCR $ chain (CDR3B) always makes contact with the epitope, suggesting that the CDR3B
sequence may play a dominant role in determining the TCR-epitope binding specificity [14].
Consequently, most large databases reporting TCR-pMHC interactions include only the
CDR3B sequences, and prediction methods utilizing large amounts of data primarily use
only this limited information, as is the case for this manuscript. Second, most databases
only report confirmed instances of TCR-pMHC binding, known as positive binding data,
and lack confirmed non-binding events between a TCR and pMHC, known as negative
binding data, which are also needed for robust TCR-epitope binding prediction. Previous
studies [20-23] have generated artificial negative binding data through two approaches
that assume a TCR and an epitope not explicitly confirmed to bind are non-binding: one
approach is to utilize only positive binding data and randomize TCR pairing with reported
epitopes; another approach, which is employed in this manuscript, utilizes an ambient
set of TCRs obtained via high-throughput sequencing of the human TCR repertoire and
not present in the positive set, assuming that every TCR in this ambient set does not bind
an epitope in the positive set (Methods: Positive binding and negative binding datasets).
Third, the currently available TCR-pMHC binding data lack diversity in the HLA allele
and epitope sequence, with the vast majority of reported interactions being associated
with a small number of HLA alleles and peptides. Some studies have addressed this
issue by limiting their analysis to TCR-pMHC binding interactions involving the most
common HLA allele [21], HLA A*02:01, a method which is also pursued in this work. The
lack of epitope diversity implies that TCRs and epitopes usually display a many-to-one
relationship, with many distinct TCRs binding each curated epitope. The cross-reactivity of
TCRs [24], the phenomenon of a single TCR recognizing multiple epitopes, is also reported
in public databases, but is relatively rare. Consequently, current models are usually capable
of predicting binding between an epitope the model has seen during training and a new
TCR previously unseen during training, but tend to fail at predicting binding for a new
epitope which is unseen during training. Because of this limitation, most studies currently
attempt to predict binding only between a small predetermined set of epitopes and arbitrary
TCRs, rather than between arbitrary epitopes and TCRs.

This manuscript formalizes the above limitations, which were only implicitly ad-
dressed in most previous studies, by categorizing the TCR-epitope binding prediction
problem into three distinct tasks. Task 1 involves identifying the specific TCRs that can
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bind a given epitope sequence from a repertoire of TCRs. This task can be considered
as a binary classification of TCRs into binding and non-binding classes. The appropriate
performance metric for this task is the Area Under the ROC Curve (AUC). Task 2 involves
identifying the binding epitope of a TCR from a predetermined list of candidate epitopes.
This task can be considered as a multi-class classification problem of classifying TCRs into
the candidate epitope-binding groups. The appropriate performance metric in this setting
is the classification accuracy. Finally, Task 3 involves predicting whether any arbitrary TCR
and epitope pair will interact; this task is the most complex and is currently infeasible
because of the lack of relevant training data, as only a few epitopes have currently reported
interactions with a large number of unique TCRs in the available TCR-epitope-binding
databases. We here propose a novel convolutional neural network (CNN) model, inspired
by ideas from deep metric learning [25-27] and multimodal learning [28], directly utilizing
the CDR3B sequences of TCRs as well as the epitope sequences. Even though the model
is, in principle, capable of simultaneously performing all three prediction tasks given
sufficient data, this manuscript shall focus on implementing and testing the model only for
Task 1 and Task 2, as currently there is not sufficient data for Task 3.

Our model requires only a single training procedure for all three tasks, but evaluation on
each of the three tasks can be performed by modifying the composition of the test set and
the procedure for evaluating model output. The architecture of our CNN model revolves
around the observation that the TCR-epitope binding prediction problem may be considered a
multimodal machine learning problem. Modality in machine learning is analogous to sensory
modality, defined as our “primary channel of communication and sensation, such as vision
or touch” [28]. In the setting of machine learning, modalities correspond to classes of data,
such as image data and text data. Multimodal machine learning, therefore, involves modeling
the interactions between multiple data types. We thus consider TCR-epitope binding to be a
multimodal machine learning problem, with the CDR3B sequences and epitope sequences
considered as two separate modalities. A central design choice in multimodal machine
learning is the choice of representation of the multimodal input. In this respect, our work
differs from previous studies utilizing neural networks [21,23] based on a joint representation
scheme in which CDR3B and epitope sequences are combined into a single representation as
model input. By contrast, our model uses a coordinated representation scheme, in which the
CDR3B and epitope sequence inputs, initially encoded in a numeric matrix form (Figure 1A;
Methods: CDR3B and epitope sequence representation), are each mapped to their own rep-
resentation in a latent vector space by a CDR3B embedding network and epitope mapping
network, respectively (Methods: Overview of model architecture; Results: A hybrid neural
network represents CDR3B and epitope sequences in a shared latent space; Supplementary
Figures S1 and S2; Supplementary Methods: Model architecture and training). The latent
space representations of the CDR3B and epitope sequences are then coordinated through a
similarity measure using a composite neural network model comprising two subunits: the
Triplet Network [25,26] and Modal Alignment Network (Figure 1B; Supplementary Meth-
ods: Model architecture and training). The Triplet Network itself is a composite structure
that trains the CDR3B embedding network to map CDR3B sequences to points in a latent
space, clustered into point clouds according to their binding epitope, by minimizing Triplet
Loss (Figure 1C, Supplementary Figure S3; Supplementary Methods: Model architecture
and training); intuitively, training the Triplet Network to minimize Triplet Loss forces the
network to pull together the points corresponding to CDR3B sequences binding the same
epitope, while pushing apart the points corresponding to CDR3B sequences binding different
epitopes. Another neural network, known as the Modal Alignment Network (Figure 1D,
Supplementary Figure S4; Supplementary Methods: Model architecture and training), then
maps epitope sequences to Gaussian distributions localized to these point clouds in the afore-
mentioned latent space. We demonstrate that this model performs similarly to, and in some
cases outperforms, current state-of-the-art methods, while providing a flexible computational
framework to simultaneously handle multifarious classification tasks.
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Figure 1. Amino acid sequence representation and architecture of hybrid neural network model. (A)
Visualization of the procedure encoding CDR3B and epitope amino acid sequences as numerical
matrices. Each amino acid was mapped to a 6-dimensional row vector derived from published amino
acid factor scores [29]. CDR3B and epitope sequences of length less than 20 and 10, respectively,
were padded to a predetermined length with placeholder amino acids (“-”), which were mapped to
placeholder row vectors (Supplementary Table S1). (B) Architecture of the hybrid neural network
model consisting of the Triplet Network and Modal Alignment Network subunits. During training,

all valid triplets (x,;, x,;, X,,;) of CDR3B sequences were extracted from each minibatch of data and

pi ’
input into the Triplet Network, while the original minibatch (x;, y;) composed of binding CDR3B
and epitope sequence pairs were input into the Modal Alignment Network. The Triplet and Modal
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Alignment Networks were trained simultaneously by combining their respective Triplet Loss and
negative log likelihood loss functions into a single combined loss function. (C) Schematic of Triplet
Network that trains the parameters of the CDR3B embedding network. The Triplet Network consisted
of 3 copies of the CDR3B embedding network with shared parameters and took triplets of CDR3B
sequences as input. (D) Schematic of Modal Alignment Network that trained the parameters of the
epitope mapping network. The Modal Alignment Network took as input pairs of binding CDR3B
and epitope sequences and calculated the negative log likelihood loss by taking the negative log of
the probability of observing the latent space representation of the CDR3B sequence with respect to
the Gaussian distribution obtained via epitope mapping network. (E) UMAP scatterplot visualization
of CDR3B sequences embedded as points in latent space. Points were colored according to their
binding epitope and shaped according to their membership in either the training or test set. Training
the hybrid neural network model forced the CDR3B sequence embeddings to cluster in latent space
by their binding epitope.

Additionally, we investigate several inconsistencies in the processing of CDR3B se-
quences by popular databases and the confounding effects of ignoring such inconsistencies
on evaluating TCR-epitope binding prediction. The CDR3B sequence is a variable region
of the TCR f3 chain flanked by conserved amino acids. A particular convention is usually
followed when CDR3B sequences are reported in the literature; specifically, the N-terminus
starts with a conserved cysteine (C) residue, while the C-terminus ends with a conserved
phenylalanine (F) residue. CDR3B sequences that follow this convention are considered
to be in “proper” form, while sequences not displaying this pattern are considered to be
“improper.” Although some databases such as VDJDB [30] curate all CDR3B sequences into
proper form, other databases such as IEDB [31] and McPAS [32] may contain a mixture
of CDR3B in proper and improper forms. Importantly, we show that the preprocessing
status may be correlated with distinct epitopes, thereby acting as a confounding factor and
causing a machine learning model to learn the preprocessing status itself, rather than the
intrinsic sequence patterns that confer TCR-epitope specificity.

In addition to the ability to predict TCR-epitope binding, it is also important to under-
stand the features within CDR3B sequences which determine epitope specificity. Previous
studies have attempted to identify relevant CDR3B sequence motifs; however, these ap-
proaches are mostly limited to visualizing the empirical position-dependent amino acid
distributions of CDR3B sequences binding a given epitope and do not describe the features
discriminating different epitopes. Interpreting the learned features of a machine learning
model that can accurately predict TCR-epitope binding offers a powerful alternative strat-
egy for extracting biologically relevant discriminatory features. In this work, we apply a
statistical interpretation method, based on Markov Chain Monte Carlo (MCMC) sampling
of input sequences [33,34], to extract the patterns of CDR3B sequences and biochemical
properties that our model has learned to associate with specific epitope binding and to
gain insight into the particular positions within the CDR3B domain important for binding.
In contrast to the previous studies, such as [14], that have analyzed the physical structure
of the TCR-pMHC complex first to constrain their motif analysis to the CDR3B regions
contacting the epitope, our approach identifies the salient positions of CDR3B learned
by our model without any prior structural information and then compares the results
with known crystal structures of the TCR-pMHC complex. Our analysis shows that the
inferred salient positions are not necessarily the closest to the epitope, highlighting a need
to reconsider the common assumption that physical proximity represents importance for
determining the TCR-epitope specificity. Our work thus advances key prediction tasks
associated with TCR-epitope binding and provides interpretable insight into the learned
features of our computational model.
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2. Materials and Methods
2.1. Positive Binding and Negative Binding Datasets

A dataset consisting of pairs of CDR3B sequences and their corresponding target
epitope sequences, termed the positive binding dataset, was constructed by combining
experimental data from four sources: IEDB [31], VDJdb [30], McPAS [32], and PIRD [35].
The data were downloaded on February 26, 2020 and filtered as follows: removal of CDR3B
sequences originating from TCRs of non-human hosts, restriction of data to pairs in which
the epitope is presented by MHC class I molecules corresponding to HLA A*02:01, removal
of pairs with either CDR3B or epitope sequence containing non-proteinogenic amino acids,
removal of pairs with a CDR3B sequence longer than 20 amino acids, and removal of
pairs with epitope sequence longer than 10 amino acids. Constraints on CDR3B and
epitope sequence lengths were imposed to accommodate the fixed-length representation
used in our model, and the specific sequence lengths were chosen such that the vast
majority of available CDR3B and epitope sequences were included in our analysis, while
minimizing the input dimension. The sets of CDR3B-epitope pairs from the four databases
were merged, with duplicates removed. A set of CDR3B sequences assumed not to bind
any epitopes represented in the positive binding dataset, termed the negative binding
dataset, was constructed from the CDR3B sequences downloaded from [36] in August 2020,
subjected to the following conditions: removal of sequences containing non-proteinogenic
amino acids, removal of sequences with length greater than 20, retention of only those
sequences conforming to the standard CDR3B conventions of having a C amino acid at the
N-terminus and an F amino acid at the C-terminus, and removal of sequences represented
within the positive binding dataset.

2.2. CDR3B and Epitope Sequence Representation

CDR3B and epitope amino acid sequences were both initially represented by strings of
amino acid letters, as downloaded from the databases; however, our model required these
sequences to be represented in a numeric form. Therefore, we formulated a numerical proce-
dure to encode amino acid sequences into a specific matrix form which we call the Atchley
representation. We first mapped each amino acid to a six-dimensional vector, which we
termed the Atchley amino acid vector, capturing various physical and biochemical properties
of the amino acid according to a factor analysis of 54 features [29]. More specifically, the first
five entries of the six-dimensional vector representation of an amino acid corresponded to the
five factor scores associated with the amino acid transformed by min-max scaling, and the
remaining entry was set to 1, as an indicator of its being a real amino acid. Supplementary
Table S1 displays the vector representations of the amino acids. This encoding scheme allowed
us to represent a sequence of amino acids as a matrix with the six-dimensional vectors along
rows. Furthermore, to accommodate CDR3B or epitope sequences of varying lengths, we
padded the matrix representation of each CDR3B and epitope sequence with placeholder
row vectors to achieve a total row dimension of 20 and 10, respectively. The placeholder
row vectors contained a value of 0.5 for the first five entries, and 0 in the final entry. We,
therefore, mapped CDR3B and epitope amino acid sequences to Atchley amino acid matrices
of dimension 20 x 6 and 10 X 6, respectively (Figure 1A).

2.3. Overview of Model Architecture

Our model consists of two neural networks that are used to calculate the unnormalized
binding affinity between input TCR and epitope. The first neural network, termed the
CDR3B embedding network, takes an input Atchley representation (Methods: CDR3B and
epitope sequence representation) of a TCR CDR3B sequence x and outputs a 32-dimensional
vector f(x). The second neural network, termed the epitope mapping network, takes an
input Atchley representation of an epitope sequence y and outputs two 32-dimensional
vectors, y(y) and o(y). A diagonal matrix %(y) is then constructed with main diagonal
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entries taken from the vector o(y). The unnormalized binding affinity p between the TCR
and epitope is then calculated as follows

exp (=3 (f(x) = 1) "Z(w) " (F(x) — 1))

2m) 12(y)|

p(x,y) =

where |%(y)| is the determinant of X(y).

Intuitively, the CDR3B embedding network maps the Atchley representation x of
a CDR3B sequence to point f(x) in R¥, while the epitope mapping network maps the
Atchley representation y of an epitope sequence to the parameters u(y) and o(y) of a
Gaussian distribution with diagonal covariance matrix and support over the same latent
space R¥. The unnormalized binding affinity is defined as the probability of observing
the CDR3B sequence represented by f(x) with respect to the Gaussian distribution of the
epitope sequence parametrized by pu(y) and o(y).

To enable our model to predict TCR-epitope binding, we tuned the parameters of both
the CDR3B embedding network and epitope mapping network with two goals in mind: first,
the CDR3B embedding network must map the Atchley representations of CDR3B sequences
to points in the R3? latent space, such that the CDR3B sequences of TCRs binding the same
epitope are clustered together into the same point cloud in latent space; second, the epitope
mapping network must map the Atchley representations of epitope sequences to Gaussian
distributions over the latent space, localized to the point clouds of their corresponding CDR3B
sequences. To accomplish the first goal, we constructed a Triplet Network, composed of
three copies of the CDR3B embedding network trained using a Triplet Loss function (Supple-
mentary Methods: Model architecture and training). The input to the Triplet Network was
a set of triplets of CDR3B Atchley representations. For each triplet in the input set, two of
the CDR3B Atchley representations, known as the anchor and the positive, corresponded to
TCRs binding the same epitope, while the third remaining CDR3B Atchley representation,
known as the negative, was derived from the negative binding set or corresponded to a TCR
binding a different epitope. Training the Triplet Network with Triplet Loss was designed to
tune the parameters of the CDR3B embedding network to cluster latent space representations
of CDR3B sequences according to their corresponding binding epitope by pulling together the
latent space representations of the anchor and positive and pushing apart the latent space rep-
resentations of the anchor and negative for every triplet in the input triplet set (Supplementary
Methods: Model architecture and training). To accomplish the second goal, we constructed a
network termed the Modal Alignment Network. The Modal Alignment Network took the
Atchley representations of a pair of binding CDR3B and epitope sequences—denoted by x
and y, respectively—as input, and was trained to minimize the negative log likelihood loss
function — log(p(x,y)). Given that p(x,y) is the unnormalized binding affinity, minimizing
the loss function of the Modal Alignment Network tuned the parameters of the epitope map-
ping network to map the Atchley representations of epitopes to Gaussian distributions that
maximized the likelihood of observing the latent space representations of their corresponding
binding CDR3B sequences. During the model training process, both the Triplet and Modal
Alignment Networks were trained simultaneously by minimizing a combined loss function
comprising of Triplet Loss and negative log likelihood loss (Supplementary Methods: Model
architecture and training). The weights of the CDR3B embedding network components con-
tained in the Triplet and Modal Alignment Networks were shared to ensure that the CDR3B
embedding network accomplished both goals of clustering the representations of CDR3B
sequences into point clouds in latent space according to their binding epitope and aligning
each point cloud to the Gaussian distribution corresponding to its binding epitope.
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2.4. Model Training

We analyzed the performance of our model on Tasks 1 and 2 using various subsets
of the entire dataset with varying numbers and compositions of epitope classes in the
training and test sets. Each subset was specified by a set of epitopes, called the “seen
epitope set”, and included their bound TCRs. For each given subset, we trained the above
model with a single training procedure and used a single test set to evaluate Tasks 1 and 2
by performing two different evaluation procedures. In order to build the training and test
sets for a given seen epitope set, we placed 80% of the CDR3B sequences from the positive
binding set (Methods: Positive binding and negative binding datasets), corresponding to
TCRs binding an epitope in the seen epitope set, into the training set, while the remaining
20% were placed into the test set. The size and composition of the training and test sets
could, therefore, be specified by the number and identity of the epitopes in the seen epitope
set. Since the number of examples associated with each epitope class is highly imbalanced
(Supplementary Table S2), we must balance the classes to ensure that our model learns
to predict TCR-epitope binding for minority classes. Therefore, during the formation
of training and test sets, we upsampled the minority classes with replacement until all
classes contained the same number of examples as the majority class. Training and test
sets were upsampled independently to ensure that no single CDR3B sequence appeared in
both the training and test sets simultaneously. Given N, the size of the training set after
upsampling, 0.5 x N CDR3B sequences were randomly sampled without replacement from
the negative binding set (Methods: Positive binding and negative binding datasets) and
added to the training set. Additionally, 10,000 CDR3B sequences were randomly sampled
without replacement from the remaining negative set and added to the test set.

Training was performed by first randomly shuffling the training dataset for every
epoch and utilizing minibatches of size 128. For each minibatch, all valid triplets of Atchley
representations of CDR3B sequences were extracted and input into the Triplet Network.
Additionally, the pairs of Atchley representations of CDR3B sequences and epitope se-
quences contained in the minibatch were input into the Modal Alignment Network. Both
the Triplet Network and Modal Alignment Network were trained simultaneously by mini-
mizing an overall loss function that combined the Triplet Loss and negative log likelihood
(Supplementary Methods: Model architecture and training) and using early stopping for a
set number of epochs determined by the seen epitope set.

2.5. Definition of Classification Tasks and General Model Evaluation Procedure

Task 1 was defined as follows: given a predetermined epitope sequence and TCR
repertoire, classify the TCRs within the given TCR repertoire into binding and non-binding
classes. To evaluate the model on Task 1, a query epitope, y, was first chosen from the
seen epitope set. A query CDR3B sequence set corresponding to the query epitope was
then constructed from the test set by retaining only the CDR3B sequences corresponding
to TCRs binding to the query epitope as well as all CDR3B sequences derived from the
negative set. The unnormalized binding affinity between the query epitope and every
CDR3B sequence in the test set was then calculated. The AUC metric was then measured
from the unnormalized binding affinity scores. This procedure was repeated, with each
epitope in the seen epitope set taking on the role of the query epitope.

Task 2 was defined as follows: given a set of TCRs known to bind one of the epitopes
in the seen epitope set, identify the binding epitope for each TCR. To construct the query
CDR3B sequence set specific to Task 2, the CDR3B sequences from the negative set were
first removed from the test set. For each CDR3B sequence in the query CDR3B sequence
set, its associated unnormalized binding affinity to each epitope in the epitope set was
calculated. The TCR corresponding to the CDR3B sequence was then predicted to bind
the epitope corresponding to the highest unnormalized binding probability. Classification
accuracy was calculated as the percentage of all TCRs with the CDR3B sequence contained
in the test set predicted to bind their true binding epitopes.
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2.6. Processing of CDR3B Sequences

CDR3B sequences displaying conserved C and F residues at the N- and C-terminus,
respectively, were termed as “proper CDR3B” sequences in this manuscript. CDR3B
sequences not curated in the databases with both of these conserved residues were similarly
termed as “improper CDR3B” sequences. We sought to process improper CDR3B sequences
into the proper form and denoted the converted sequences as “fixed proper CDR3B”
sequences. CDR3B sequences already in proper form without the application of this
correction procedure were termed “native proper CDR3B” sequences. In the procedure, we
first counted the occurrences of 3-mers following the conserved C residue at the N-terminus
of native proper CDR3B sequences and the occurrences of 3-mers at the N-terminus of
improper CDR3B sequences without the conserved C residue (Supplementary Table S3).
Similarly, we counted the occurrences of 3-mers directly preceding the conserved F residue
at the C-terminus of native proper CDR3B sequences and the occurrences of 3-mers at the C-
terminus of improper CDR3B sequences without the conserved F residue (Supplementary
Table S3). An improper CDR3B sequence lacking a conserved C residue at the N-terminus
was considered to have a fixable-at-k N-terminus if its N-terminal 3-mer appeared within
the top k occurring N-terminal 3-mers of both proper and improper CDR3B sequences.
Improper CDR3B sequences with a fixable-at-k N-terminus could have their N-terminus
fixed into a proper form by appending the C residue prefix. Likewise, an improper CDR3B
sequence lacking a conserved F residue at the C-terminus was considered to have a fixable-
at-k C-terminus if its C-terminal 3-mer appeared within the top k occurring C-terminal
3-mers of both the proper and improper CDR3B sequences or contained the XFG motif, with
X representing an arbitrary amino acid. CDR3B sequences with a fixable-at-k C-terminus
could have their C-terminus processed into proper form by removing the extraneous G
residue when the C-terminal 3-mer contained the XFG motif or by appending the F residue
suffix. Improper CDR3B sequences that could be processed into proper form by fixing N-
and/or C-termini at a given value of k were considered to be “fixable improper CDR3B”
sequences. Improper CDR3B sequences that could not be processed at a given value of k
were considered “unfixable improper CDR3B” sequences. We thus created the “unfixed
dataset”, consisting of native proper and fixable improper CDR3B sequences, and the “fixed
datasetc”, consisting of native proper and fixed proper CDR3B sequences, by performing
the above procedure on CDR3B sequences in the positive binding set with k set to 10. The
value of k was chosen to include only the most highly represented 3-mers.

2.7. Identification of Preprocessing Artifacts as Confounding Factors

The model was trained with training and test sets constructed from the unfixed dataset
with the seen epitope set specified to include only epitopes GILGFVFIL and NLVPMVATV.
The training was performed using early stopping at 250 epochs. To investigate the con-
sequences of ignoring the data preprocessing steps on model performance for Task 2, we
explored the relationship between the presence and absence of the conserved C residue at
the N-terminus of CDR3B sequences and the classification status of the CDR3B sequence
as corresponding to a TCR binding either GILGFVFTL or NLVPMVATV. Given the Atchley
representations ygircrvrrL and ynrvpmvary of the epitope sequences GILGFVFTIL and
NLVPMVATYV, respectively, we calculated the log ratio of the unnormalized binding affinities

p(Xi, YGILGFVFTL)
p(Xi, YNLVPMVATV )

ri =1lo

for the Atchley representation of each CDR3B sequence in the test set, denoted by x;, under
two settings: with the CDR3B sequence displaying proper N- and C-terminus and with the
CDR3B sequence truncated to remove the conserved C residue at the N-terminus while
still displaying proper C-terminus. We performed a two-sided Mann-Whitney U test to
measure the divergence of the spreads of r; under the proper N-terminus and truncated
N-terminus settings.
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To investigate the effects of the presence or absence of processing of CDR3B sequences
on classification accuracy in the Task 2 classification setting, the model was trained using
early stopping at 250 epochs and 5-fold cross-validation with 80-20 train-test splits of
the CDR3B sequences of TCRs binding the epitopes GILGFVFTL and NLVPMVATV. The
classification accuracy of the test sets was evaluated in four different contexts (Results:
Artifacts in preprocessing CDR3B sequences confound TCR-epitope binding predictions).

2.8. Model Evaluation for Specific Seen Epitope Sets

We first ranked the epitopes according to their number of annotated binding TCR
CDR3B sequences in the fixed dataset (Supplementary Table S2). We then trained and
evaluated the model on Tasks 1 and 2 using 5-fold cross-validation on four pairs of training
and test sets derived from the fixed dataset. Each pair of training and test sets was
constructed by taking the top M epitopes as the seen epitope set, with M taking values
between 2 and 5. For M =2, 3, 4, and 5, training was performed using early stopping at
250, 180, 140, and 120 epochs, respectively. The number of epochs was chosen by training
the model for 500 epochs and determining the epoch at which test loss started to rise. To
investigate the performance of the model in the setting with a greater number of classes
and fewer examples per class, we created the “reduced fixed dataset” by removing CDR3B
sequences binding the top five epitopes from the fixed dataset. We then repeated the
evaluation procedure on four pairs of training and test sets derived from the reduced fixed
dataset, with each pair of sets specified by taking the top P epitopes of the reduced fixed
dataset as the seen epitope set and P taking on values of 5, 10, 15, and 20. Training was
performed using early stopping at 500 epochs for all values of P.

2.9. Model Interpretation

We first trained our model on the training set specified by taking the top four epi-
topes as the seen epitope set. We then interpreted the learned features of our model using
an MCMC method inspired by [33,34], fixing the epitope sequence input to the model
and sampling the space of CDR3B sequences of fixed length with a bias towards CDR3B
sequences with higher unnormalized binding affinity for the specified epitope (Supple-
mentary Methods: MCMC method of model interpretation). Since our MCMC method
varies the inner positions of the CDR3B sequence while fixing the epitope sequence and
CDR3B sequence length, our method interprets the features that the model has learned
to predict binding between a specific epitope and CDR3B sequences of a specific length.
The MCMC method was performed for 12 combinations of CDR3B sequence length and
epitope sequence, corresponding to CDR3B sequences of lengths 13, 14, and 15 associated
with TCRs binding the epitopes GILGFVFTL, NLVPMVATV, GLCTLVAML, and ELAGIG-
ILTV. For each combination of CDR3B sequence length and epitope sequence, the CDR3B
sequences associated with TCRs binding the given epitope were selected as candidates
to seed the MCMC runs. From this candidate set, the top 40 CDR3B sequences with the
highest predicted binding affinities from the training and test set were selected as seeds for
the MCMC runs. Five MCMC runs were initiated at each seed, with each run proceeding
for 20,000 steps, resulting in a total of 200 MCMC runs, termed the “individual MCMC
runs”, for each combination of CDR3B sequence length and epitope sequence. The inverse
temperature parameter 8 was set to 2.8, 2.8, 2.0, and 1.6 for MCMC runs associated with
the epitopes GILGFVFTL, NLVPMVATV, GLCTLVAML, and ELAGIGILTYV, respectively.
MCMC runs sharing epitope sequence and input CDR3B length were clustered by agglom-
erative clustering utilizing complete linkage, with the distance metric between runs defined
as the Jenson-Shannon Divergence (JSD) between their associated empirical amino acid
distributions. The number Q of clusters was varied between 2 and 40, and the Silhouette
score was measured for each value of Q. For values of Q displaying the highest peaks in the
Silhouette score, clustered MCMC runs were combined, and sequence logos were generated
from the empirical amino acid distributions derived from the sampled CDR3B sequences
using the Python package weblogo [37]. Each combined MCMC run corresponding to



Genes 2021, 12, 572

11 of 24

a cluster, termed the “cluster MCMC run”, was then ranked according to a uniqueness
score constructed as follows: first, for each combination of CDR3B sequence length and
epitope sequence, all 200 MCMC runs were combined into a single MCMC run, termed the
“representative MCMC run”; next, every cluster MCMC run for a given CDR3B sequence
length and epitope sequence was given a uniqueness score calculated by averaging its JSD
with all representative MCMC runs associated with the same CDR3B sequence length and
alternative epitope sequence.

To investigate the physical and biochemical properties of amino acids found to affect the
binding affinity of CDR3B sequences, we constructed a 5 x L matrix from each individual
MCMC run, with the five rows corresponding to the five entries of the amino acid vector
representation [29] and the L columns corresponding to the middle L positions in the CDR3B
sequence. For each position in the CDR3B sequence, a weighted average of amino acid
vectors was taken over the MCMC samples, with the weight of each amino acid vector
given by the empirical frequency of its corresponding amino acid at that position. Matrices
constructed from individual MCMC runs in this manner were termed “individual matrices”.
For each combination of CDR3B sequence length and epitope sequence, we also generated
a single matrix, termed the “representative matrix”, by performing the same procedure on
the corresponding representative MCMC run. Additionally, for each combination of CDR3B
sequence length and epitope sequence, we clustered the individual matrices via agglomerative
clustering utilizing complete linkage, with the distance metric between matrices defined as the
Frobenius distance. The number of clusters R was varied between 2 and 40, and the Silhouette
score was measured for each value of R. For each combination of CDR3B sequence length and
epitope sequence, the final number of clusters was chosen to be the value of R displaying the
highest peak in Silhouette score. After the number of clusters was determined, each cluster
of matrices was associated with a single matrix, termed the “cluster matrix”, constructed by
averaging the matrices within the cluster. The resulting cluster matrices were then ranked
according to a uniqueness score given by its average Frobenius distance to representative
matrices with identical CDR3B sequence length and alternative epitope sequence. A more
detailed description of the MCMC method and clustering is given in Supplementary Methods:
MCMC method of model interpretation.

2.10. TCR-pMHC Structure Analysis

To investigate where contact between the CDR3B region of the TCR and the epitope
occurs, a set of TCR-pMHC structures was obtained from the database STCRDab [38].
We filtered the set for structures with structure resolution finer than three Angstroms,
and in which one of the top four epitopes (GILGFVFTL, NLVPMVATV, GLCTLVAML,
ELAGIGILTV) was presented on a class | MHC molecule, resulting in 17 structures. The
resolution threshold was chosen to remove data with high uncertainty in atomic and
residue positions [39]. For each structure, the pairwise distance between each epitope
amino acid and CDR3B region amino acid was computed, yielding a two-dimensional
distance matrix. The distance matrices of structures containing the same epitope binding
to CDR3B sequences of the same length were aggregated using an elementwise average.
The MCMC method of model interpretation was run on the same combinations of CDR3B
sequence length and epitope sequence as were present in the TCR-pMHC structural data,
with the inverse temperature parameter 8 set to 1.7, 1.7, 1.7, and 1.3 for the epitopes
GILGFVFTL, NLVPMVATYV, GLCTLVAML, and ELAGIGILTYV, respectively. We sought to
measure the correlation between the median distance of a position on the CDR3B region
to the epitope, as given by structural data, and the salience of a position on the CDR3B
region (Supplementary Methods: MCMC method of model interpretation). Due to the high
conservation of the CDR3B sequence at positions near the C-terminus and N-terminus, the
first and last four amino acid positions of the CDR3B were excluded, retaining only the
highly variable center region of the CDR3B for analysis. For each of the remaining positions
in the CDR3B, the median distance to the amino acids of the epitope was calculated.
Each of the 17 structures was matched with the set of MCMC runs corresponding to the
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same combination of epitope and CDR3B length. For each combination, the position-
wise KL divergence was calculated from the sampled CDR3B sequences derived from
the MCMC run. The four leading and four trailing positions were excluded, and the
remaining positions corresponding to the highly variable CDR3B region were ranked by
KL divergence in decreasing order, with the position with highest KL divergence receiving
a rank of 0. For each position in the CDR3B region, its rank was summed over the MCMC
runs and standardized yielding the “salience rank”. For each position in the CDR3B region
in each of the 17 structures, the median distance and salience rank was plotted, and the
Pearson correlation coefficient and p-value were calculated.

3. Results
3.1. A Hybrid Neural Network Represents CDR3B and Epitope Sequences in a Shared Latent Space

We designed a hybrid neural network model that can simultaneously perform Task 1
and Task 2 (Methods: Definition of classification tasks and general model evaluation proce-
dure) by learning representations of both CDR3B and epitope sequences in a shared latent
space, given an initial procedure encoding amino acid sequences into numerical matri-
ces that embody various physical and biochemical properties [29] (Figure 1A; Methods:
CDR3B and epitope sequence representation). More specifically, our model consisted of
two main components (Figure 1B): a Triplet Network [25,26] that trained a CDR3B embed-
ding network to embed CDR3B sequences into a latent space, clustering them into point
clouds according to their binding epitope, and a Modal Alignment Network that trained an
epitope mapping network to represent epitopes as Gaussian distributions over latent space
localized to their corresponding CDR3B point clouds (Figure 1E). The Triplet and Modal
Alignment Networks themselves consisted of a CDR3B embedding network and epitope
mapping network subunits (Figure 1C, Supplementary Figure S3 for Triplet Network and
Figure 1D, Supplementary Figure 5S4 for Modal Alignment Network; Methods: Overview
of model architecture, Supplementary Methods: Model architecture and training). The
architecture and weights of the CDR3B embedding network subunits were shared within
the Triplet Network and also between the Triplet Network and the Modal Alignment
Network, which were trained together (Methods: Model training).

3.2. Artifacts in Preprocessing CDR3B Sequences Confound TCR-Epitope Binding Predictions

Previous studies, such as NetTCR [21] and ERGO [23], attempting to predict the
binding epitopes of TCRs from their CDR3B sequences have not explicitly addressed the
potential nonuniform preprocessing of CDR3B sequences in public databases. Training
and testing computational models on CDR3B datasets not standardized via a proper
preprocessing step (Methods: Processing of CDR3B sequences) may inadvertently force
the models to learn epitope-specific artifacts and fictitiously inflate the assessment of
model performance. The CDR3B sequences listed in some databases are preprocessed
into proper CDR3B sequences, which display conserved C and F amino acids at the
N- and C-terminus, respectively. Other databases of TCR-epitope binding interactions,
however, may contain a mixture of “proper CDR3B” sequences and “improper CDR3B”
sequences (Methods: Processing of CDR3B sequences). Common forms of improper CDR3B
sequences include sequences missing the single conserved C or F amino acid at the N- or
C-terminus, respectively, as well as sequences retaining the superfluous conserved FGXG
motif at the C-terminus, with X representing an arbitrary amino acid. Furthermore, the
preprocessing status of a CDR3B sequence might provide information on the identity
of its binding epitope, as the ratio of the number of reported proper CDR3B sequences
to the number of reported improper CDR3B sequences varies widely between epitopes
(Figure 2A; Supplementary Figure S5).
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Figure 2. Processing CDR3B sequences reduces bias in Task 2 classification. (A) Proportion of CDR3B
sequences derived from the unfixed dataset displaying proper N-terminus, arranged by binding
epitope. (B) Histograms displaying the distribution of log ratios of unnormalized binding affinity
towards GILGFVFTL versus NLVPMVATYV for CDR3B sequences in the test set. Sequences with
proper N-terminus showed a bias towards positive values, associated with preferential classification
as binding the epitope GILGFVFTL, demonstrating that the model had learned epitope-specific
processing artifacts. (C) Classification accuracy for CDR3B sequences binding GILGFVFTL or
NLVPMVATYV under Context 1 and Context 2. Discrepancy in classification accuracy between
Context 1 and Context 2 demonstrated that ignoring preprocessing of CDR3B sequences may inflate
assessment of the model on TCR-epitope binding prediction. (D) Classification accuracy for CDR3B
sequences binding to GILGFVFTL and NLVPMVATV under Contexts 3 and 4. The similarity of
classification accuracy between Context 3 and Context 4 demonstrated that preprocessing of CDR3B
sequences did not introduce any new biases that would affect model assessment. Error bars represent
1 standard deviation (s.d.) of cross-validation accuracies.

Without uniform processing of CDR3B sequences, machine learning models might
learn to identify the binding epitope of CDR3B sequences based on the processing status
of the N- and C-termini, rather than the inherent patterns determining epitope binding.
For example, over 40% of CDR3B sequences binding GILGFVFTL display a proper N-
terminus in the unfixed dataset (Methods: Processing of CDR3B sequences), while less than
20% of CDR3B sequences binding NLVPMVATYV display a proper N-terminus (Figure 2A;
Methods: Processing of CDR3B sequences). Therefore, a model trained on the unfixed
dataset might assign a higher probability of binding GILGFVFTL to a CDR3B sequence
containing a proper N-terminus relative to the variant of the same sequence containing
an improper N-terminus. To demonstrate this effect, we trained our model on 80% of
the CDR3B sequences corresponding to TCRs binding the epitopes GILGFVFTL and
NLVPMAVTYV in the unfixed dataset, containing a mixture of proper and improper CDR3B
sequences (Methods: Processing of CDR3B sequences, Model training). We evaluated the
log ratio of unnormalized binding affinity to GILGFVFTL versus unnormalized binding
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affinity to NLVPMVATV for the remaining 20% of CDR3B sequences under two processing
conditions: with all CDR3B sequences processed to have the conserved C and F residues
at their respective N- and C-terminus, and with the same CDR3B sequences excluding
the conserved C residue at the N-terminus while retaining the conserved F residue at the
C-terminus (Methods: Identification of preprocessing artifacts as confounding factors).
The distributions of log ratios of unnormalized binding affinity showed a clear bias of
the proper CDR3B sequences towards being classified as binding the epitope GILGFVFTL
(Figure 2B; p = 1.83 x 107116, two-sided Mann-Whitney U test), confirming that the model
indeed learned the epitope-specific processing artifacts to perform classification.

To understand the effect of including unprocessed CDR3B sequences on evaluation of
Task 2 (Methods: Definition of classification tasks and general model evaluation procedure),
we classified CDR3B sequences as binding GILGFVFTL versus NLVPMVATYV using 5-fold
cross-validation in four different contexts (Methods: Identification of preprocessing artifacts as
confounding factors): both training and test sets derived from the unfixed dataset (Context 1);
unfixed training set, but test set filtered to include only native proper CDR3B sequences
(Context 2); both training and test sets derived from the fixed dataset (Context 3); fixed
training set, but the test set filtered to include only native proper CDR3B sequences (Context 4).
Context 1 simulated the setting in which researchers failed to process the CDR3B sequences in
both training and test sets. In this context, a relatively high test accuracy may arise from the
epitope-specific processing status artificially informing the model about the associated epitope
of a CDR3B sequence. Context 2 simulated the setting in which researchers trained their
model on unprocessed CDR3B sequences and proceeded to test their model on an external
set of proper CDR3B sequences. As expected, the classification accuracy in Context 2 was
diminished compared to Context 1, because the processing status no longer provided any
epitope-specific information for the test CDR3B sequences (Figure 2C), suggesting that the
model performance was artificially over-estimated in Context 1. Context 3 simulated the
condition in which researchers processed all CDR3B sequences into proper form prior to
training and testing. Context 4 simulated the setting in which researchers trained their model
on processed CDR3B sequences and proceeded to test their model on an external set of proper
CDR3B sequences. The classification accuracy in Context 4 was higher than that in Context 2
(Figure 2C,D), demonstrating that training on properly processed data successfully removed
the confounding factor of the preprocessing status and improved the model performance
on unseen proper CDR3B sequences. Furthermore, the classification accuracies were similar
between Context 3 and Context 4 (Figure 2D), supporting that our processing procedure did
not introduce any new biases. Using alternative 4-fold and 11-fold cross-validation strategies
yielded similar results.

These results demonstrated the critical importance of uniform preprocessing of CDR3B
sequences prior to model training and evaluation for accurate assessment of model per-
formance and generalizability. We, therefore, utilized the fixed dataset for all subsequent
evaluation and analysis of our model.

3.3. The Trained Model Predicts TCR-Epitope Binding under Task 1 and Task 2 Settings

We first evaluated the model on Task 2 of assigning CDR3B sequences to epitope
classes containing the most amount of data in the fixed dataset (Methods: Processing of
CDR3B sequences), with the number M of epitope classes varying from 2 to 5 (Methods:
Model evaluation for specific seen epitope sets). We computed the cross-validation clas-
sification accuracy for the different values of M and observed a decrease in classification
accuracy for increasing values of the class number (Figure 3A), as was to be expected
for multi-class classification tasks. The classification accuracy was, however, greater than
random for all values of M, indicating that the model was learning to identify the binding
epitope of TCRs from their CDR3B sequence. A single normalized confusion matrix was
calculated for each value of M by taking the elementwise average of the normalized con-
fusion matrices derived from 5-fold cross-validation (Supplementary Figure S6). For all
values of M, we also evaluated the mean performance of the model on Task 1 of predicting
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whether the CDR3B sequences could bind each given epitope (Figure 3B, Supplementary
Table S4). The mean AUC scores ranged from 0.66 to 0.80, demonstrating that the model
was learning to perform the binary classification task.
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Figure 3. Model performance on multiclass and binary classification tasks. (A) Line chart displaying
the mean and standard deviation of the 5-fold cross-validation classification accuracy of the model on
Task 2 using the fixed dataset, with the number of epitope classes shown on the x-axis. Classification
accuracy of a null model performing random classification is also shown for reference. (B) Line
chart displaying the mean AUC score of the model on Task 1 for each epitope class displayed on
the x-axis, with the number of classes varying from 2 to 5. A separate line is plotted for each value
of the number of classes (C) Line chart displaying the mean and standard deviation of the 5-fold
cross-validation classification accuracy of the model on Task 2 for the reduced fixed dataset, with the
number of classes shown on the x-axis. Classification accuracy of a null model performing random
classification is also shown for reference. (D) Box plot of the distribution of AUC scores for the model
on Task 1 using the reduced fixed dataset, with the number of epitope classes shown on the x-axis.
Error bars represent 1 s.d. of values estimated from cross-validation.

Since the vast majority of epitope sequences represented in the fixed dataset have very
few binding CDR3B sequences, we also sought to evaluate the performance of the model
on Tasks 1 and 2 under the condition of limited data. We first constructed a “reduced fixed
dataset” (Methods: Model evaluation for specific seen epitope sets) from the fixed dataset by
excluding all CDR3B sequences binding one of the top five epitopes with the most recorded
binding CDR3B sequences (Supplementary Table S2). We then evaluated the model on the
top P epitope classes with the most data in the reduced dataset, with the number P of epitope
classes set to 5, 10, 15, and 20 (Figure 3C for Task 2 and Figure 3D for Task 1; Methods:
Model evaluation for specific seen epitope sets). The model was able to perform Task 2 with
classification accuracy greater than random chance (Figure 3C), suggesting that the model
could perform Task 2 even with very few data and a large number of classes. However,
the model showed wide variability in performance on Task 1 under this setting (Figure 3D,
Supplementary Table S5), with mean AUC dropping below 0.5 for certain classes, suggesting
that data availability is critical for performing Task 1. Using alternative 4-fold and 11-fold
cross-validation strategies yielded similar results and trends.
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To assess our model with respect to other state-of-the-art approaches, we compared
the performance of our model on Task 1 to Table 2 from Springer et al. [23] summarizing
the performance of their model on Task 1 relative to the performance of a model based
on Gaussian Processes [20]. The authors evaluated two different versions of their model
on three different datasets: McPAS, VDJdb, and a combination of McPAS and VDJdb. We
analyzed the dataset consisting of a combination of McPAS and VDJdb datasets, as it most
closely reflected the setting in which we evaluated our model. Of note, the classification
task we performed differed from that performed by Springer et al. Our model was trained
to identify, for a specified epitope, its binding TCRs from a set consisting of TCRs that bind
the given epitope and ambient TCRs, derived from a healthy control group of donors and
not contained in the positive binding set (Methods: Positive binding and negative binding
datasets). By contrast, Springer et al. performed a classification task, which they termed
single-peptide binding (SPB), using a set consisting of TCRs binding the specified epitope
and TCRs known to bind alternative epitopes. Our model had the best performance on
Task 1 with respect to the epitope NLVPMVATV and showed competitive performance
with respect to the epitopes GILGFVFTL and GLCTLVAML (Supplementary Table S6).

3.4. Model Interpretation Method Identifies Salient CDR3B Sequence Motifs and Amino Acid
Positions Specifying Epitope Binding

We sought to discover the CDR3B sequence features that determine binding affinity to
the top four epitopes with the most data (GILGFVFTL, NLVPMVATV, GLCTLVAML, and
ELAGIGILTV), using a neural network interpretation method based on the maximum en-
tropy principle [33] (Methods: Model interpretation and Supplementary Methods: MCMC
method of model interpretation). For each given epitope, this probabilistic interpretation
method performed successive single amino acid mutagenesis, starting from a seed CDR3B
sequence known to bind the epitope, with the MCMC sampling biased towards sequences
with high predicted affinity and away from sequences with low predicted affinity. We
summarized the MCMC runs by visualizing the empirical amino acid distribution at each
position of the CDR3B sequence across the MCMC samples using weblogos [37]. Positions
within the CDR3B sequence permitting a wide variety of residues with minimal impact to
predicted binding affinity displayed low sequence conservation across the MCMC samples,
while positions at which specific amino acids were required for high predicted binding
affinity were preserved during sampling. To highlight the advantage of the MCMC inter-
pretation method over simply aligning the CDR3B sequences reported in the dataset, we
first visualized the weblogos of the aligned CDR3B sequences of length 15 binding the top
four epitopes (Figure 4A). This visualization method simply extracted a conserved amino
acid motif from the empirical distribution of CDR3B sequences binding an epitope and
had difficulty discovering individual motifs determining the specificity of CDR3B-epitope
binding. For example, the CDR3B sequences for all four epitopes exhibited a conserved
CASS motif at the C-terminus (positions 1-4), a conserved EQYF motif at the N-terminus
(positions 12-15), and conserved glycine residues at positions 7-9 (Figure 4A). These shared
features thus could not discriminate specific interactions between epitopes and TCRs.
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Figure 4. Consensus and discriminative CDR3B motifs and their associated biochemical properties extracted by the MCMC
interpretation method. (A) Weblogos visualizing the alignment of CDR3B sequences of length 15 binding the top 4 epitopes.
(B) Weblogos corresponding to the top 3 most unique cluster MCMC runs for CDR3B sequences of length 15 binding the
top 4 epitopes. (C) Heatmap visualization of the representative matrices of CDR3B sequences of length 13 binding the top
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associated with amino acid chemical properties. (D) Heatmap visualization of the top 3 most unique cluster matrices for
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We simulated 200 MCMC chains for each pair of CDR3B sequence length and epitope
sequence, with the seeds for each pair chosen to be the top 40 CDR3B sequences of the
specified length with the highest unnormalized binding affinity to the specified epitope
(Methods: Model interpretation) and five independent MCMC runs initiated from each
seed. MCMC runs constructed in this manner were termed the “individual MCMC runs.”
In contrast to the simple alignment method, the MCMC method, which interpreted the
learned features of our model that was designed to discriminate the CDR3B sequences
of TCRs binding different epitopes, highlighted epitope-specific CDR3B sequence motifs;
for example, the presence of a T residue at position 7 in the CDR3B uniquely indicated
binding affinity to the epitope ELAGIGILTV (Figure 4B, rightmost column and bottom
row), while the presence of an E residue at the same position indicated binding affinity
to GLCTLVAML (Figure 4B, second column from the right and bottom row). To combine
the individual MCMC runs containing redundant sequence information, we clustered the
MCMC chains using the following method: for every pair of CDR3B sequence length and
epitope sequence, we clustered the 200 MCMC chains into Q number of clusters, with Q
ranging from 2 to 40; the clusters were obtained by associating each chain with its empirical
amino acid distribution across MCMC samples and performing hierarchical clustering with
complete linkage, defining the distance between MCMC chains as the Jenson-Shannon
divergence between their corresponding empirical amino acid distributions (Methods:
Model interpretation). We calculated the Silhouette score of the clustering for every value
of Q within the specified range and chose the value of Q displaying the highest “peak” in
Silhouette score as the final value used for clustering (Supplementary Figure S7).

Individual MCMC runs contained within the same cluster were combined, forming a
single MCMC run termed the “cluster MCMC run”. We then ranked each cluster MCMC
run according to a uniqueness score, such that the most unique cluster MCMC run had the
highest rank (Methods: Model interpretation). The top three most unique cluster MCMC
runs associated with CDR3B sequences of length 15 binding the top four epitopes are shown
in Figure 4B. The top three most unique cluster MCMC runs for every combination of
CDR3B sequence length and epitope sequence are shown in Supplementary Figure S8. Our
model interpretation method identified subtle individual motifs associated with particular
epitopes. For example, the CDR3B sequences of length 15 binding the epitope GILGFVFTL
preferred the motifs TSS and STV at positions 7-9 (Figure 4B, first column from the left,
top two rows), whereas CDR3B sequences of length 15 binding the epitope NLVPMVATV
preferred the motifs TAA and STG at positions 7-9 (Figure 4B, second column from the
left, top two rows). Additionally, our interpretation method identified key positions
and amino acids contributing to binding. For example, having an L, A, or V residue at
position 8 indicated preferential binding to ELAGIGILTV (Figure 4B, first column from the
right, second row), whereas having the same residues at position 7 indicated preferential
binding to NLVPMVATYV (Figure 4B, second column from the left, third row). Likewise,
CDR3B sequences with an S, G, or P residue at position 10 indicated preferential affinity
to GLCTLVAML (Figure 4C, second column from the right, second row), and sequences
displaying G, E, T, and R residues at position 6 showed preferential affinity to GILGFVFTL.
These results demonstrated that our model interpretation method highlighted a wide
variety of motifs that differentiated CDR3B sequences by epitope specificity. However, the
diversity and large number of motifs identified by the model suggested that simple rules
may not be sufficient to classify CDR3B sequences by their binding epitope.

To further interpret the learned model features, we investigated the physical and
biochemical properties of preferred amino acids in CDR3B sequences by representing the
empirical amino acid distributions of MCMC runs as matrices constructed by utilizing
the six-dimensional Atchley representation of amino acids (Methods: CDR3B and epitope
sequence representation). Given an MCMC run associated with a CDR3B sequence of
length L and epitope sequence, a 5 x L matrix was constructed by performing a weighted
average of the first five entries of the Atchley representation of sampled amino acids at
each position, with weights given by the empirical amino acid frequency from the MCMC
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run. Each of the five entries corresponded to a factor score capturing a set of amino acid
chemical properties [29]. Roughly, Factor 1 correlates with polarity and hydrophilicity,
Factor 2 correlates with the propensity for amino acids to be included in various secondary
structural configurations, Factor 3 correlates with molecular size, Factor 4 anticorrelates
with refractivity and heat capacity while correlating with the propensity for amino acids
to be included in various proteins, and Factor 5 correlates with positive charge. An entry
in the matrix, therefore, reflected a particular set of amino acid biochemical properties
at the corresponding position in the CDR3B sequence, and its extreme value signified
that the embodied amino acid properties at the position influenced the predicted binding
affinity. Matrices were constructed from individual MCMC runs, yielding “individual
matrices”, and representative MCMC runs (Methods: Model interpretation), yielding “rep-
resentative matrices.” Differences between the populations of CDR3B sequences of TCRs
binding different epitopes were evident in the heatmap visualization of the representative
matrices excluding the four conserved positions at the N-terminus and the C-terminus
(Figure 4C, Supplementary Figure S9). For example, the heatmap associated with the
epitope GILGFVFTL was characterized by low values for Factors 3 and 5 at position 7,
suggesting that binding this epitope required small negatively charged amino acids at
position 7; CDR3B sequences binding NLVPMVATYV were characterized by nonpolar amino
acids at positions 6-8 and amino acids with low refractivity and heat capacity at positions
6 and 8; CDR3B sequences binding GLCTLVAML were characterized by a small negatively
charged amino acid at position 5 and an amino acid with high Factor 2 score at position
8; CDR3B sequences binding the epitope ELAGIGILTV had similar biochemical profiles
as CDR3B sequences binding the epitope NLVPMVATYV, but preferred amino acids with
lower Factor 2 score at position 7.

To gain a more fine-grained understanding of the chemical properties contributing
to binding, we clustered the 200 individual matrices associated with each combination of
CDR3B sequence length and epitope sequence. Clustering was performed using agglom-
erative clustering with complete linkage and with the distance metric between individual
matrices defined by the Frobenius distance. As in the clustering of weblogos, we deter-
mined the number R of clusters by clustering the matrices with values of R ranging from
2 to 40, calculating the Silhouette score for each value of R, and choosing the value of R
displaying the highest “peak” (Supplementary Figure S10). A single matrix, termed the
“cluster matrix”, was constructed for each cluster by averaging the individual matrices
contained in the cluster. The cluster matrices were then ranked according to a uniqueness
score given by its average Frobenius distance to the representative matrices with the same
CDR3B sequence length and alternative epitope sequence (top three clusters shown in
Figure 4D and Supplementary Figure S11). These fine-grained heatmaps displayed unique
biochemical patterns not captured by the representative heatmaps (Figure 4C). For example,
while a consensus propensity for hydrophobic amino acids at positions 6-8 was evident for
NLVPMVATV (Figure 4C), the refined heatmaps for NLVPMVATYV revealed a preference for
hydrophobic amino acids at either position 7 or 8, suggesting that only a single hydrophobic
amino acid was necessary at one of these locations (Figure 4D, second column from the
left). Additionally, while hydrophobic amino acids seemed to be prevalent at positions 6-8
for the vast majority of CDR3B sequences binding the top four epitopes, certain CDR3B se-
quences binding GLCTLVAML and ELAGIGILTV did not possess this property (Figure 4D).
These results demonstrated that our model extracted epitope specificity through learning
interpretable patterns of amino acid chemical properties in the CDR3B sequence.

3.5. Salient Positions in CDR3B Sequence Do Not Necessarily Reflect Physical Proximity to Epitope

We next sought to analyze the model interpretation results in the context of available
TCR-pMHC crystal structure data. Specifically, we investigated the assertion by Glanville
et al. [14] that the central positions of CDR3B sequence contacting the epitope play an
important role in determining TCR-epitope specificity. To investigate this assertion, we
utilized the published crystal structure data of TCR-pMHC complexes [38] restricted to
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HLA A*02:01 and containing one of the top four epitopes with the most reported interac-
tions from the fixed dataset (GILGFVFTL, NLVPMVATYV, GLCTLVAML, ELAGIGILTV).
Computing the minimum distance between a given position in the CDR3B sequence and
the bound epitope showed that the center of the CDR3B sequence tended to be closest
to the epitope (Figure 5A,B; Supplementary Figures S12 and 513; Methods: TCR-pMHC
structure analysis). We investigated whether the salience of a particular position inferred
by our interpretation method correlated with the physical proximity of the amino acid to
the epitope. We first quantified the salience of a position in the CDR3B region to be the
KL divergence of the amino acid distribution derived from MCMC samples with respect
to the uniform amino acid distribution (Figure 5C; Supplementary Figure S14). As the
first and last four positions showed high conservation of the CASS and EQYF motifs at
the N-terminus and C-terminus, respectively, across the top four epitopes (Figure 4A),
suggesting that these residues do not play a major role in determining epitope specificity,
we excluded these positions from the analysis.
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Figure 5. Analysis of TCR-pMHC crystal structure data reveals limited relationship between physical
proximity and salience in binding specificity. (A) Heatmap visualizing the pairwise distance between
amino acids in the CDR3B chain and the epitope ELAGIGILTYV, calculated from TCR-pMHC crystal
structure data [38]. (B) Median distance to the epitope ELAGIGILTV for each position within the
CDR3B sequence of length 15 [38]. The middle positions of the CDR3B sequence tended to be more
proximal to the epitope, with positions 8 and 9 displaying the highest proximity. (C) Bar chart
displaying the median KL divergence of the empirical amino acid distribution from the uniform
distribution at each position in the CDR3B. Median was taken across all MCMC runs associated
with CDR3B sequences of length 15 binding the epitope ELAGIGILTV. (D) Scatterplot with linear
regression fit showing statically insignificant correlation (p = 0.976) between the salience rank of
a position according to the MCMC interpretation method and its median distance to the epitope
derived from TCR-pMHC crystal structure data. Dotted lines indicate 95% prediction limit, and
shaded area indicates 95% confidence interval.
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We investigated the connection between the model-learned importance of a position in
the CDR3B region and the physical proximity of the amino acid to the epitope according to
structural data by assessing the correlation between a summary measure of position salience
obtained from the model interpretation method, called the “salience rank”, and the median
distance of the position to the epitope (Methods: TCR-pMHC structure analysis). Intuitively,
a low salience rank for a position signified that the model interpretation method found the
position to be important for epitope specificity. We did not detect a statistically significant
correlation (Methods: TCR-pMHC structure analysis) between the salience rank of a position
and its transformed median distance to the epitope (Figure 5D; Pearson correlation = 0.0032;
p = 0.976). These results suggested that the majority of the inner amino acids of the CDR3B
sequence, not just those most proximal to the bound epitope, contributed to determining the
epitope specificity of TCR. Although the most proximal positions might be still important
for interacting with epitopes, as evidenced by the high degree of sequence conservation
at the central locations (Figure 4A), these amino acids were also conserved across CDR3B
sequences of TCRs binding different epitopes, suggesting that they might mediate interactions
with generic epitopes, rather than determining epitope specificity. These results indicate that
TCR-epitope specificity may rely on CDR3B sequence features which are not necessarily most
proximal to the epitope, contrary to the common assumption.

4. Discussion

We have introduced a hybrid convolutional neural network model to represent TCR and
epitope sequences in a shared latent space and study TCR-epitope binding specificity. Inspired
by ideas from multimodal machine learning [28] and metric learning [25,26], our method
can be viewed as modeling the TCR-epitope binding interactions using a Gaussian mixture
model in the latent space. Evaluating the performance of this model on multiple subsets of a
dataset consisting of positive binding pairs of CDR3B and epitope sequences aggregated from
four popular databases [30-32,35] and nonbinding CDR3B sequences from a large cohort of
healthy volunteers [36], we have shown that our model achieves similar performance, and
in some cases superior performance, compared to other state-of-the-art machine learning
methods for studying TCR-epitope binding [20,23]. Additionally, our hybrid neural network
model provides an interpretable latent space in which CDR3B sequences are embedded
as points and epitope sequences are mapped to Gaussian distributions, giving an intuitive
spatial representation of the decision boundaries drawn by the model. Furthermore, we
have identified key differences in preprocessing of CDR3B sequences in public databases
and shown that ignoring such differences may inadvertently force machine learning models
to learn to utilize epitope-specific preprocessing artifacts to predict TCR-epitope binding,
thereby potentially inflating the assessment of model performance.

Interpreting the learned features of our neural network model through an MCMC
sampling approach has enabled the identification of epitope-specific motifs and biochem-
ical properties of binding CDR3B sequences. The results highlight that a given epitope
is associated with a large number of diverse CDR3B motifs, rather than a few monolithic
motifs. This diversity emphasizes the difficulty of TCR-pMHC binding prediction, sug-
gesting that TCR-pMHC binding may depend on many complicated factors arising from
interactions between the CDR3B region and the epitope. Despite these challenges, our
analysis has identified several informative trends in CD3B sequences, such as the increased
sensitivity of binding affinity to changes in discriminatory amino acids. Integrating these
results with known crystal structures of TCR-pMHC complexes [38] has provided physical
insight into the predictive features learned by the model, demonstrating that the salient
positions within the CDR3B sequence may not necessarily be the closest to the binding
epitope. The salience assigned by our model interpretation method to the amino acids more
distant to the epitope suggests that these residues may still contribute to epitope specificity
by weakly interacting with the epitope themselves or providing specific structural support
to the amino acids directly contacting the epitope. Our work thus advances two key tasks
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associated with TCR-pMHC prediction and highlights several biochemical properties of
the discriminatory amino acids learned by our model.
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