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Most transcriptomic studies of SARS-CoV-2 infection have focused on differentially
expressed genes, which do not necessarily reveal the genes mediating the
transcriptomic changes. In contrast, exploiting curated biological network, our PathExt
tool identifies central genes from the differentially active paths mediating global
transcriptomic response. Here we apply PathExt to multiple cell line infection models of
SARS-CoV-2 and other viruses, as well as to COVID-19 patient-derived PBMCs. The
central genes mediating SARS-CoV-2 response in cell lines were uniquely enriched for
ATP metabolic process, G1/S transition, leukocyte activation and migration. In contrast,
PBMC response reveals dysregulated cell-cycle processes. In PBMC, the most frequently
central genes are associated with COVID-19 severity. Importantly, relative to differential
genes, PathExt-identified genes show greater concordance with several benchmark anti-
COVID-19 target gene sets. We propose six novel anti-SARS-CoV-2 targets ADCY2,
ADSL, OCRL, TIAM1, PBK, and BUB1, and potential drugs targeting these genes, such
as Bemcentinib, Phthalocyanine, and Conivaptan.

Keywords: SARS-C0V-2, transcriptome, cell lines, PBMCs (Peripheral Blood Mononuclear Cells), DEGs
(Differentially Expressed Genes), network analysis
INTRODUCTION

COVID-19, a serious respiratory disease caused by the zoonotic virus Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2, or SC2 for short), has emerged as a global pandemic
leading to ~315 million infections and 5 million deaths (data till date January 10th, 2022, as per
WHO dashboard). Despite a huge body of research investigating the SC2 biology (1), host-virus
mechanisms (2), potential drug targets and their inhibitors (3), we are far from a complete
understanding of mechanisms underlying the varied COVID-19 symptoms, and the search for an
effective therapy continues. As there are limited treatment options available for SC2, several drugs
which are prescribed to treat infections by other viruses such as Middle East respiratory syndrome
(MERS), severe acute respiratory syndrome (SARS), human immunodeficiency virus (HIV), etc.
org July 2022 | Volume 13 | Article 9188171
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have been tried on COVID-19 patients (4). Remdesivir, a viral
RNA dependent RNA polymerase inhibitor used in the
treatment of Ebola virus, was the first FDA-approved drug for
the treatment of COVID-19 (5); however, it has not been broadly
effective. More recently approved Paxlovid was found to be
effective against multiple SC2 variants including Omicron (6).
While several effective vaccines are now in general use, there
continues to be an urgent need for more effective therapeutic
options for infected patients, especially considering the highly
varied, and sometimes long-term effects as well as side effects of
the current therapies.

Viruses hijack the host system for their own survival and
proliferation, especially by exploiting and manipulating host
transcriptional machinery and gene regulation (7). A better
understanding of the host transcriptomic response to the viral
infection is thus widely recognized as critical in designing better
therapeutics strategies (4). Most previous studies investigating
infection-induced transcriptomic changes in the host tissues and
immune cells focus on genes that are differentially expressed
(DEGs) upon infection and perform a series of downstream
analyses to decipher the underlying mechanisms (8). One issue
with theDEG-centric approach is that certain genes are knowntobe
differentially expressed in a wide variety of contexts and represent
generic transcriptional response and are not specific to SC2
infection (9). Moreover, it is now well recognized that differential
expression ought to be interpreted in the context of genetic
networks and pathways, and indeed some of the works have
investigated SC2 transcriptomic response data from a network
perspective (10). These approaches nevertheless rely on gene-level
differential expression as the lynchpin for the downstreamnetwork-
assisted analyses. An alternative approach - PathExt - that we have
recently shown to be superior to DEG-centric approaches (11),
instead integrates transcriptomic data with curated gene networks
and instead of identifying differentially expressed genes, identifies
differentially active paths in the integrated network, and then
identifies the central genes mediating the differential activities of
themost perturbed paths. This alternative approach is based on the
recognition that (i) gene expression isnoisy andDEGscan therefore
lead to false positives, and (ii) key regulatory genes that mediate
global transcriptomic changes and thus present a potent targetmay
themselves not be differentially regulated andwill thus bemissed by
DEG-centric approaches.

Here, using PathExt, we comprehensively analyze and
compare transcriptomic response to SC2 and other respiratory
viruses (SARS-CoV-1, MERS, Influenza, RSV, and HPIV3) in
multiple cell lines (A549, A549-ACE2, Calu3, Vero, MRC5 and
NHBE), as well as in COVID-19 patient-derived peripheral
blood mononuclear cells (PBMCs). While PathExt identifies
largely distinct sets of central genes across cell lines and
viruses, these genes nevertheless converge on common
processes such as cytokine signaling, cell cycle, metabolism,
etc.; however, we observe a much greater similarity in response
across cell lines for the same virus than across viruses in the same
cell line. We assess the complementarity and unique advantages
of using PathExt compared to the conventional DEG-based
approach and find that PathExt genes capture experimentally
Frontiers in Immunology | www.frontiersin.org 2
identified anti-SC2 targets more accurately than DEGs, while
also providing an overall greater enrichment of key biological
processes. In PBMC data, we find that PathExt-identified central
genes are associated with patient severity. Finally, we propose
novel anti-SC2 therapeutic targets and their potential inhibitors
that are either FDA-approved or currently in clinical trials.
RESULTS

Overview of the Approach
PathExt is our recently published tool; here we provide a brief
intuitive overviewof the approach. The aimof PathExt is to identify
differentially activepaths, in apriorknowledge-basedgenenetwork,
while comparing transcriptomic data in two conditions, and
shortlist genes among those paths which might be critically
mediating the observed phenotypic change. As noted above, in
contrast to conventional DEG-centered approaches, such
mediating genes may not be differentially expressed themselves.
The PathExt workflow is illustrated in Figure 1A. PathExt starts by
integrating a knowledge-based curated gene network with sample-
specific omics data from the conditions of interest; we employed a
curated network - HPPIN - which integrates physical, regulatory,
and metabolic interactions between genes or proteins (12). In each
sample separately, nodes and edges of the network are weighted
such that interactions involving differentially expressed genes are
preferentially traversed by a shortest path algorithm. This
integration is done in two ways, to emphasize either differential
activation or repression. Shortest paths whose weights are
statistically significant (based on permutation) can then be
interpreted as statistically significant differentially active (or
repressed) paths. Such paths are then cast as a sub-network
referred to as the TopNet, either activated or repressed, based on
the weighting scheme. PathExt then identifies central genes in each
TopNet based on ripple centrality (13), which captures genes that
can reach a large part of the TopNet along highly active (or
repressed) paths. TopNet and the central genes are identified
independently for each transcriptomic sample.

Here, we apply PathExt to analyze how the impact of SC2
infection (as well as other respiratory viruses) can vary in
different cell lines, as well as in patient derived PBMCs
(Figure 1B). We first compare SC2 infection across cell lines,
and with other viral infections in the same cell lines. In PBMC
data, we identify associations between PathExt results and
patient demographics. We then show a high concordance
between the results from both cell line and PBMC data, and
benchmarks such as genes previously shown to be affected by
SC2 infection as well as experimentally screened drugs. Based on
this, we use the output of PathExt to propose novel drug targets
as well as drugs against them.

Key Processes Mediating SC2 Infection
Across Cell Lines
We compared the transcriptional responses between five cell
lines infected by SC2. These included three lung epithelium
derived cell lines – A549, A549 with increased ACE2 expression
July 2022 | Volume 13 | Article 918817
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(A549-ACE2), and Calu3, Vero cell line derived from African
monkey kidney, and primary bronchial epithelium cell line –
NHBE (14, 15). In each case, we applied PathExt to identify the
top 100 central genes each in the activated and repressed
TopNets (Supplementary Table S1); no repressed TopNet was
detected in NHBE. We found that the top 100 genes were largely
disjoint across cell lines (Figures 2A, B) with one exception,
where the top 100 genes from the activated TopNets in Calu3
and Vero cell lines shared 79 common genes; indicating a high
Frontiers in Immunology | www.frontiersin.org 3
cell-type specificity in response to SC2 infection. A list of the top
100 upregulated and downregulated DEGs is provided in the
Supplementary Table S2.

We then performed functional enrichment on the top 100
genes identified from each dataset using PANTHER (16), and
consolidated (Methods) the enriched biological process terms
using REVIGO (17). In case of activated TopNets (Figure 2C), as
expected, Calu3 and Vero cells show similar upregulated
pathways such as I-kappaB kinase/NF-kappaB signaling,
B

A

FIGURE 1 | Study Workflow. (A) Our PathExt tool accepts as input a curated gene network and gene expression data, to output two weighted sub-networks - an
activated and a repressed TopNet comprising activated and repressed paths respectively, and a list of central genes in each TopNet. Activated genes are shown
here in shades of red, and repressed genes are in shades of blue. PathExt integrates the inputs such that edges connecting genes with substantial change in
expression are preferentially traversed by a shortest paths algorithm (Methods), illustrated here using wider arrows. Shortest paths which are statistically significant
(permutation based) now represent differentially active (or repressed) paths and make up the TopNets in which PathExt identifies central genes based on ripple
centrality. (B) We apply PathExt to analyze RNa-seq data from SARS-CoV-2 infection in both cell lines and patient PBMC data. PathExt outputs from the cell line
data are used to compare cross-cell-line variation in SC2 infection response, and within-cell-line variation in response to other viruses. In patient PBMC data, we
identify associations between PathExt results and demographics. We then validate all the results against benchmarks and use the TopNets and central genes to
propose novel drug targets, as well as novel drugs for known targets.
July 2022 | Volume 13 | Article 918817

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Agrawal et al. COVID-19 Infection in Cell-Line and PBMCs
regulation of transcription factor (TF) activity, cytokine
mediated signaling pathway, and response to stimulus. These
processes are well supported by previous studies (18–20).
Regulation of immune signaling pathways is another process
prominently observed in COVID-19, especially production of
various cytokines and chemokines (21, 22). Likewise,
hyperactivation of NF-kappaB signaling pathway post SARS-
CoV-2 infection has been observed (23) and NF-kappaB has
been recognized as a potential pharmacological target to treat
COVID-19 (24). Several host TF binding sites (TFBS) are present
in SARS-CoV-2 genome which the virus exploits for its
replication (25). Calu3, Vero, and A549 were enriched for
inflammatory response, specifically, tyrosine kinase signaling,
recapitulating previously established links between SARS-CoV-2
and tyrosine kinase signaling (26). In A549 cells with high ACE2
expression, the strongest enrichment was seen for the post-
translational protein modification process. Although
inflammatory and immune response pathways were not
statistically enriched among the top 100 genes in A549-ACE2
Frontiers in Immunology | www.frontiersin.org 4
cell line, key immune response genes were among the top 100
central genes, e.g., STAT3, STAT5A, NFKB1, NFKBIA, etc.

Post-translational modification (PTM) of viral proteins by the
host machinery is well documented, such as glycosylation and
palmitoylation of Spike protein, N or O-linked glycosylation of
membrane protein, phosphorylation and ADP-ribosylation of
nucleocapsid protein (27). Likewise, deimination of SARS-COV-
2 proteins is catalyzed by peptidylarginine deiminases (PADs)
which leads to activation of neutrophils extracellular traps
(NETs) in an ACE2-dependent manner (28). These findings
suggest that a larger viral load, facilitated by high ACE2
expression, is likely to induce greater PTM. Gordon et al. (29)
created a PPI network where 332 human proteins were
interacting with 27 viral proteins. They showed that high viral
load inside the host cells leads to increased human protein
phosphorylation and host kinome modulation.

Other enriched processes such as metabolism and cell
differentiation also have known roles in viral infections. These
results suggest that the host response to viral infection may
B

C D

A

FIGURE 2 | SC2 infection across cell lines. We analyzed the transcriptional response across various cell lines post SC2 infection. We obtained the top100 central genes
from each cell line for both TopNets (activated & repressed) and compared the gene commonality across cell lines as shown in upset plots for activated TopNets (A) and
repressed TopNets (B). Next, we performed gene enrichment analysis and compared the top 10 parent GO terms enriched in various cell lines for activated TopNets (C)
and repressed TopNets (D). Here we show only those GO terms that were significant in at least 2 cell lines. Complete list of enriched GO terms is provided in the
supplementary tables. Heatmap is created by converting the FDR corrected p-value of each GO terms to -log10 scale. Significance of the terms is shown in various color
ranges (0-1.3, 1.3-2.0, 2-5 and >5-30). All the non-significant processes are shown in black (value <1.3).
July 2022 | Volume 13 | Article 918817
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depend on the infection and replication rates in various cell lines.
For instance, the differential response in A549 may be because
A549 cells are relatively less permissive to SARS-CoV-2
replication owing to lower concentration of ACE2 receptor
protein required for viral entry (30), while Calu3 and Vero cell
lines exhibit a much higher expression of ACE2. This difference
in infection rate leads to differences in the host immune
responses as shown previously (15). Key genes in NHBE
(bronchial epithelium cell line) were strongly associated with
small molecule and nucleoside phosphate metabolic processes,
known to be central for viral replication and survival (31). A
complete list of all the upregulated enriched terms as well as the
parent-child relations identified for various SARS-CoV-2
infected cell lines is provided in Supplementary Table S3.

In addition to biological process, we also looked at the
molecular function associated with the top 100 central genes
present in the Activated TopNets across these cell lines
(Supplementary Table S4). In the case of A549, we saw the
enrichment of molecular functions associated with DNA-binding
transcription factor activity, calcium-dependent protein kinase C
activity, protein binding, etc. All these processes have been shown
to be important for SC2 infection. For instance, the complex of viral
S protein and host ACE2 receptor binds to calcium ions (EF-hand
domain) and shows protein kinase activity (32). After binding, the
spike protein is further cleaved by TMPRSS2, a transmembrane
protein serine 2 leading to further downstream signaling processes
(33). As observed with biological processes, molecular functions for
Vero and Calu3 cell lines were very similar. They were enriched for
the functions such as protein kinase activity, TNF receptor
superfamily binding, cytokine receptor binding, etc. These
findings are supported by previous published literatures (34).
Lastly, for NHBE cell line, we saw molecular functions such as
small molecule binding, carbohydrate derivative binding, etc. as
shown in previous work (35). In stark contrast, for top 100 DEGs,
only one statistically significant molecular function was enriched
across all cell lines, namely, “sequence specific DNA binding
function” in the Vero cell line. The enrichment of regulatory and
signaling molecules among the PathExt genes underscores the
rationale that PathExt attempts to identify key genes mediating
the transcriptional response.

Figure 2D summarizes the pathways enriched among the top
100 central genes in the repressed TopNets. A549 cell lines were
highly enriched in cell cycle, DNA replication, and DNA damage
response; interestingly, the enrichment was much greater in A549
with ACE2. These observations recapitulate the established biology
of viral infection. For instance, genes mediating DNA damage
response – ATM and ATM/Rad3-related (ATR) – were among
the top 100 central genes. Key genes in Vero cells are enriched for
mitotic spindle organization, ERBB signaling, EGFR signaling,
protein phosphorylation, phagocytosis, etc., all previously known
to modulate SARS-CoV-2 infection response (36). Lastly, in Calu3
cells, we saw enrichment of several lipid metabolism pathways.
Lipids are one of the major components of viral structure and play
an important role in its entry and replication inside the host cell.
Several studies have shown the potential role of lipids and lipid
induced metabolic changes in coronavirus infection (37, 38).
Frontiers in Immunology | www.frontiersin.org 5
Other enriched pathways include leukocyte migration and
phagocytosis. The downregulated enriched biological terms
identified for various SC2 infected cell lines is provided in
Supplementary Table S5.

We also performed molecular function analysis for the top 100
central genes in repressed TopNets (Supplementary Table S6).
For A549 cell line, functions such as catalytic activity and single-
strand DNA binding, were enriched. These processes are
associated with SC2 attachment, infection and downstream
signaling events as shown before (39). Likewise, for A549 cell
line with high ACE2 expression, “single-stranded DNA binding”
was enriched. Genes associated with this function (e.g., ATM and
ATR) are essential for response to DNA damage and repair, DNA
metabolism, and maintaining genomic stability (40). In case of
Calu3 cell lines, enriched functions included kinase activity, purine
ribonuclease triphosphate binding, signaling receptor binding, etc.
These functions play an important role in viral entry, membrane
trafficking, signaling, etc. (34).

We investigated the commonality between the activated and
repressed TopNets for the cell lines. We first confirmed that the
top 100 central genes of the activated and repressed TopNets of
the same cell line were disjoint, with a few exceptions: out of 100
genes, 1 is common in Calu3 cell line, 2 in A549, 3 in A549 with
high ACE2 expression, and 5 in the Vero cell line, suggesting dual
activation and repressive roles of certain key genes; for instance,
ATM, a protein kinase which plays key roles in many processes
such as cell cycle progression, cell metabolism and growth,
oxidative stress and chromatin remodeling, and is upregulated
as well as downregulated in different cancers (41). Indeed, ATM
is known to regulate these pathways in COVID-19, as shown in
previous study (42). Despite disjoint central genes between
activated and repressed TopNets, the enriched pathways
among the central genes show greater commonality, such as
protein phosphorylation, suggesting that these key processes may
be involved in both activation and repression of different
downstream processes.

Comparison of SARS-CoV-2 Infection With
Other Viral Infections
Next, we compared the host transcriptional response to SC2
infection with those for other respiratory viruses in Calu3, Vero,
MRC5, NHBE and A549 cell lines where there was data for an
additional respiratory virus (RSV, IAV, HPIV3, SARS-CoV-1 and
MERS). Top 100 central genes from each viral TopNet (activated
& repressed) were used for comparison. As shown in Figures 3A,
B, while there are small but significant overlaps in most cases, the
responses could be considered largely virus specific.

Amongst activated TopNets, the SC2 response shares at least
10 central genes with responses to influenza virus, RSV, SARS-
CoV-1 and MERS virus in different cell lines. SC2 shared 29
genes with MERS in the MRC5 cell line. Influenza virus in NHBE
(bronchial epithelium) lacking NS1 shared 27 genes with SC2-
infected Calu3 (Lung epithelium) and 25 genes with SC2-
infected Vero cell line. The commonly shared genes between
SARS-CoV-2 and most of the other viruses included MAPK1,
IL7, LYN, STAT3, TRAF6, NFKB1. These genes are associated
July 2022 | Volume 13 | Article 918817
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with pathways such as regulation of MAPK, response to
cytokine, positive regulation of cell differentiation, and innate
and adaptive immune response, all of which are supported by
previous experimental work (15). These overlaps among the top
100 genes are significant and suggest shared responses across
viruses. In repressed TopNets, a similar overlap trend was seen.
SC2 shares at least 10 genes with all the viruses in different cell
lines except MERS. Among the top 100 central genes in the
repressed TopNet, SC2 shares 13 common genes with RSV and
HPIV3 in the A549 cell line. Some of the commonly shared genes
between SC2 and other viruses included E2F1, BRCA1, RAD21,
CDK, DDAH2. These genes are associated with pathways such as
cell cycle process, apoptotic process, cellular nitrogen compound
metabolic process, DNA repair, etc., again revealing known
shared responses across viruses (15, 43).

Next, we assessed the similarity in responses between SC2 and
other viruses at the pathway level, using PANTHER and
REVIGO. Given the enriched terms in the TopNets for all the
viruses, we computed the semantic similarity using the
GOSemSim package in R (44). For the activated TopNet, SC2
shares high similarity with nearly all the viruses considered in the
study (Figure 3C). Highest similarity of 0.97 is observed between
the processes enriched in SC2-infected A549 with high ACE2
expression, and Influenza-infected NHBE. Activated TopNets
Frontiers in Immunology | www.frontiersin.org 6
across viruses share cytokine signaling, NF-kappaB signaling,
inflammatory response, DNA binding transcription factor
activity, and protein phosphorylation, all of which are well
established host responses to respiratory viral infections. The
processes which were uniquely enriched for SC2 infection
include ATP metabolic process, G1/S transition of mitotic cell
cycle, post-translational protein modification, and carbohydrate
derivative metabolic process. Some recent published studies also
account for these processes associated with SC2 infection (42,
45). A complete list of enriched biological pathways in activated
TopNets for SC2 and other viruses is provided in the
Supplementary Table S3.

Compared to activated TopNets, repressed TopNets exhibited
greater divergence in terms of enriched processes (Figure 3D), but
consistent with activated TopNets, we observed a greater similarity
across different cell lines infected by SARS-CoV-2. Key enriched
processes across viruses include DNA replication, telomere
organization, DNA metabolic process, cellular response to DNA
damage stimulus, regulation of MAPK cascade, negative
regulation of apoptotic process, regulation of cell migration,
nuclear division, regulation of cell cycle, etc., all of which have
literature support (46). However, the unique processes enriched
with SC2 infection include activation of phospholipase C activity,
cardiomyocyte differentiation, leukocyte activation and migration,
B

C D

A

FIGURE 3 | SC2 infection comparison with other viruses. We analyzed the transcriptional response to different viruses including SC2 in various cell lines. We
obtained the top 100 central genes from each cell line for activated & repressed TopNets and compared the gene commonality across various viruses in different cell
lines as shown in gene enrichment plot (Observed/Expected overlap) for activated TopNets (A) and repressed TopNets (B). Semantic similarity among the enriched
biological processes observed in different viruses activated and repressed networks (C, D respectively) shows higher similarity.
July 2022 | Volume 13 | Article 918817
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and phagocytosis. Complete list of the enriched biological
pathways in repressed TopNets for SC2 and other viruses is
provided in the Supplementary Table S5. Overall, while as
expected the functional response to SC2 infection is similar with
the response to other respiratory viruses, our analysis reveals
unique aspects of SC2 response. Functional relevance of the
unique processes enriched among central genes in host response
to SC2 response, however, will require further experimental
follow up.

PathExt Provides Unique Insights
Compared With DEG Analyses
Next, to assess advantage or complementarity of PathExt relative
to DEG-centric approach, we compared the genes and pathways
identified by PathExt with DEGs and their enriched pathways.
Recall that PathExt identifies central genes that potentially
mediate differential expression of other genes but may not be
differentially expressed themselves. To test this, we selected the
SC2-infected Calu3 cell line data and analyzed the log-fold
change in expression of the top 100 central genes identified by
PathExt TopNets and DEGs. As shown in Figure 4A, log-fold
change of the genes present in the PathExt TopNets are much
smaller than those of the DEGs, and therefore would
systematically go undetected in a differential expression
analysis. Similar results were seen for other SC2 infected cell
lines as well (Supplementary Figure S1).
Frontiers in Immunology | www.frontiersin.org 7
Next, in each SC2-infected cell line, top 100 upregulated genes
were compared with the top 100 central genes in activated
TopNet, and top 100 downregulated genes were compared
with the top 100 central genes in repressed TopNet. As shown
in Figures 4B, C, PathExt genes and DEGs were largely distinct.
Given minimal overlap between PathExt central genes and
DEGs, we compared them in terms of enriched processes.
Remarkably, in stark contrast with PathExt central genes, the
100 most downregulated DEGs do not reveal any pathway
enrichment in any of the cell lines, and the upregulated DEGs
showed pathway enrichment only in Calu3 and Vero cell lines
(Supplementary Table S7); in Vero cell line only one process
was enriched and is therefore not discussed. As expected,
pathways enriched among upregulated DEGs in Calu3 showed
highest similarity with those in activated TopNet in Calu3
(Figure 4D), despite very little overlap in terms of genes. In
Calu3, while the common pathways among PathExt and DEGs
(Supplementary Figure S2) includes response to cytokine
production, and immune system process, several pathways
were uniquely revealed by PathExt, including regulation of
DNA binding transcription factor activity, I-kappaB kinase/
NF-kappaB signaling, regulation of cell death, and cellular
response to organic substances. These pathways are well-
associated with the COVID-19 infection as shown in multiple
studies (21, 25), highlighting the relative advantage of PathExt
over the conventional DEG approach.
B

C D

A

FIGURE 4 | Comparison of PathExt central genes with DEGs. We compare the PathExt result with the results obtained using traditional DEG approach. (A) LogFC
comparison of the top 100 genes between PathExt and DEGs obtained from the SC2-infected Calu3 cell line. Differential expression is estimated in infected relative
to uninfected cells. (B, C) Venn diagram shows the gene overlap among the top100 central genes & DEGs present in activated (B) network and repressed (C) network
across different cell lines. No repressed TopNet was seen in NHBE. (D) Semantic similarity among the enriched PathExt and DEGs biological processes for activated
TopNets.
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Application of PathExt to COVID-19
Patient PBMC
Next, we applied PathExt to 100 COVID-19 positive and 26
negative control individuals’ PBMC transcriptomic data from
(47), revealing activated TopNets in 96 samples and repressed
TopNets in all 100 samples. As above, we first identified the top
100 most central genes in each TopNet, and then integrating
across samples, we obtained the top 100 most frequent central
genes separately for the activated and the repressed TopNets.
Genes PBK, CDC6, and BUB1, were found to be the most frequent
central genes among the activated TopNets occurring in 56%,
53%, and 48% of the 96 samples, respectively. Likewise, in the
repressed TopNets, IL6 was the most frequent, occurring in 49% of
the samples, followed by POMC in 48% of the 100 samples; a
complete list of top genes is provided in Supplementary Table S8.
As shown in Figure 5A, pathways enriched among the frequent
central genes in activated TopNets are predominantly related to
cell cycle, which is an expected response to infection by the host
immune system (48), as well as potentially linking SC2 infection
with cancer (49). Previous studies have observed that cancer
patients are more vulnerable to SC2 infection leading to adverse
outcomes, likely due to compromised immune system (50). Some
of the pathways such as uncontrolled production of cytokines,
type-I interferon (IFN-I), dysregulation of immune checkpoint
signaling, etc. are common in both COVID-19 and cancer.
Complete list of enriched terms associated with top 100 most
frequent central genes in the activated TopNets are provided in the
Supplementary Table S9. Further, instead of using only the 100
most frequent central genes, if we consider all the unique central
genes, we see enrichment of addition established pathways such as
receptor signaling via JAK-STAT, cellular response to interleukin-
1, etc. Molecular function enrichment analysis revealed cell cycle
and replication processes such as single-stranded DNA binding,
Frontiers in Immunology | www.frontiersin.org 8
cyclin dependent protein serine/threonine kinase regulator
activity, etc. These are well known functions which occur post
SC2 infection (4). Interestingly, top 100 upregulated DEGs show
only one molecular function enriched, namely, 2’-5’-
oligonucleotide synthetase activity (Supplementary Table S10).

In contrast, pathways enriched among the frequent central
genes in the repressed TopNets included response to cytokine,
regulation of cytokine production, regulation of defense response
and icosanoid metabolic process (Figure 5B). Suppression of
regulatory mechanisms that keep cytokine production in check is
consistent with observed cytokine storms in COVID-19 patients
and ensuing damage of organs such as the liver leading to
downregulation of various metabolic processes (51). Likewise,
SC2 can suppress the host immune defense by downregulating
the T-cell function (52), cytokine production and cell-cell
adhesion (51). Complete list of enriched terms associated with
the top 100 most frequent central gene is provided in the
Supplementary Table S11. Molecular functions associated
with top 100 central genes include receptor ligand activity,
heme binding, chemokine binding, etc. Once again, these are
well known functions which occur post SC2 infection. However,
downregulated DEGs were found to be enriched only for retinol
binding function. Complete list of molecular function associated
with repressed TopNet in PBMC is provided in Supplementary
Table S12.

The cellular response in COVID-19 patient PBMC likely
reflects immune response to systemic infection by SC2.
However, there is some evidence that SC2 can infect immune
cells as well (53–55), and therefore, the cellular response in
PBMC could in part reflect endogenous response by the infected
PBMC cells. To distinguish between these two possibilities, we
identified the enriched pathways separately for the PBMC central
genes shared with those in other cell lines (reflecting endogenous
BA

FIGURE 5 | Functions enriched among central TopNet genes in patient PBMCs. Most frequent top 100 central genes were obtained from the activated and repressed
networks across patient PBMC data. Enriched biological processes were obtained by performing Gene Ontology study followed by parent child relationship, shown in
the form of circular visualization plot for activated TopNet (A) and repressed TopNet (B).
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response to infection) and the ones unique to PBMC (potentially
reflecting immune response). For activated TopNet, we therefore
compared the 1,830 unique genes appearing among the top 100
central genes in any TopNet across patient PBMC samples with
the 395 unique genes among the 100 central genes across 5 cell
lines. The 156 common genes were enriched in the similar
pathways as observed in cell lines, such as regulation of DNA-
binding transcription factor activity, regulation of I-kappaB kinase/
NF-kappaB signaling, etc. The remaining PBMC-specific 1,674
genes were enriched for the pathways such as response to cytokine,
humoral immune response, cellular response interleukin-4, and
leukocyte proliferation, representing immune response to systemic
infection. Likewise, for the repressed TopNet, we compared 1,877
unique genes in PBMC TopNets with the 368 genes across cell
lines. The 148 common genes were enriched for the pathways such
as positive regulation of cell migration, response to DNA damage
stimulus, phosphatidylinositol metabolic process, etc. The
remaining PBMC-specific 1,729 genes were enriched for T-
helper-2 cell differentiation, cellular response to interleukin-18,
positive regulation of MHC class II biosynthetic process, regulation
of eosinophil migration, regulation of neutrophil mediated
cytotoxicity, suggesting an overall suppression of immune
response to systemic infection. These results are consistent with
previous studies (56, 57). Zhou et al. have shown that an individual
who has gone through COVID-19 and has started testing SC2-
negative may still exhibit cold symptoms due to decreased
expression of adaptive immune related genes, especially those
related to T and B cells and HLA molecules, making them
susceptible to secondary infections. They also showed that the
suppression of the adaptive immune system could be due to
dysregulated host response and not because of immune
checkpoint molecules such as PD-1, PD-L1, CTLA4, etc. (58).
Overall, PathExt reveals immune cell response to SC2 infection and
Frontiers in Immunology | www.frontiersin.org 9
discriminates, to some extent, the potential cell-endogenous
responses by infected PBMC and response to systemic infection.
While it is possible that unique central genes in PBMC could
simply reflect the inter-cell type heterogeneity in response to
infection, we note that the fraction of unique genes in PBMCs
are far greater than those in other cell types and we speculate that
some of the unique gene genes and pathways in PBMCsmay reflect
systemic immune response. All enriched GO processes for
activated and repressed TopNets in patient PBMCs common
with cell lines are provided in Supplementary Table S13
whereas enriched GO processes for activated and repressed
TopNets unique to patient PBMCs are provided in
Supplementary Table S14.

Next, we investigated the association between PathExt-
identified most frequent central genes in PBMCs and the
available demographics and clinical features of the patients – age
(<= 60 years or >60 years), sex (male vs female), and severity (ICU
vs non-ICU). We found that most frequent genes in activated
TopNets were more frequently observed in severe cases
(Figure 6A). We did not see a direct association between
frequent central genes and sex or age. Frequency and distribution
of the PathExt identified genes in patients with severe illness is
consistent with previous findings (47). To further probe into
association of frequent central genes with severity, we identified
genes that were uniquely central in either ICU or non-ICU
patients, with a minimum frequency of 5 (Supplementary
Table S15). Central genes in ICU patients included genes like
CDC25C, LOX, TGFB3, CCNF, etc. and were enriched for mitotic
cell cycle phase transition and regulation of cell death. Central
genes in non-ICU patients included genes such as CCR10, IRF6,
CCL4, etc. and were enriched for cytokine-mediated signaling
pathway, cell communication, positive regulation of ERK1 and
ERK2 cascade (Supplementary Table S16).
B

A

FIGURE 6 | Demographic features analysis. Mann Whitney Test was performed to check statistical significance between top 100 central genes and various
demographic features (age, sex and severity). In case of PathExt identified top genes, “Severity” was found to be the only statistically group among activated TopNet
genes (A). However, no group was statistically significant in case of repressed TopNet (B).
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The analysis above identifies frequent central genes in ICU
and non-ICU patients. We further aimed to assess whether the
TopNet neighbors of the central genes are similar across samples,
which would indicate a homogeneity in the perturbed paths
mediated by a central gene. Toward this, we quantified, for each
central gene independently, all sample-pair overlap (quantified
by Jaccard Index or JI) between the sample-specific TopNet
neighbors of the central gene. We did this separately for ICU and
non-ICU patients; Supplementary Figure S3 shows the
distribution of JIs for the central genes in ICU and non-ICU
patients separately, suggesting a greater homogeneity of response
mediated by the central genes in the ICU patients.

We did not notice any association between frequent genes in
the repressed TopNets and demographic features (Figure 6B).
For DEGs, top central genes were more associated with male in
activated TopNets and with severe cases in repressed TopNets
(Supplementary Figure S4)

As a point of comparison, we also identified the upregulated
and downregulated DEGs from the COVID-19 patients. As
above, we selected the top 100 upregulated and downregulated
genes in each patient sample and then the top 100 most frequent
upregulated and downregulated genes across all 100 patients.
First, we note that while frequent central genes in activated
TopNets exhibit slightly lower fold changes compared to
frequent DEGs, the frequent central genes in repressed
TopNets exhibit far lower fold changes compared to DEGs
(Supplementary Figure S5).

Next, we analyzed the commonality among the PathExt and
DEGs top 100 genes. We found 28 genes to be common among
the activated TopNets and upregulated DEGs and 8 were
common among the repressed TopNets and downregulated
DEGs. Next, we analyzed the similarity at the pathway level.
While many processes enriched among frequent central genes
were also enriched among upregulated DEGs (e.g., cell cycle)
(Supplementary Figure S6), the PathExt central genes uniquely
revealed cellular response to DNA damage stimulus, regulation
of transferase activity, regulation of fibroblast proliferation,
establishment of chromosome localization, etc. However, the
frequent downregulated DEGs did not identify any significant
enriched process, underscoring the relative advantage of the
PathExt approach.

PathExt Reveals Previously Ascertained
Anti-SC2 Target Genes Far Better
Than DEGs
Next, we assessed the extent to which the PathExt-identified
genes and DEGs recapitulate previously proposed anti-SC2
target genes based on experimental screens. Toward this, we
compared the top 100 central genes identified in SC2-infected
cell lines and patient PBMC data against previously published
benchmark datasets of anti-SC2 targets. In total, we compiled 11
gene sets from our study: 6 for activated TopNets (5 for the cell
lines and 1 for the PBMC cohort) and 5 for repressed TopNets (4
for the cells lines and 1 for the PBMC cohort); while for each cell
line we considered the top central genes, for PBMC, we selected
the 100 most frequent central genes across patients. We compiled
9 benchmark genes sets from previously published reports which
Frontiers in Immunology | www.frontiersin.org 10
includes CRISPR gene-knockout studies, viral-host protein-
protein interactions (PPI) and targets associated with
experimentally screened drugs in various cell lines and animal
models (Methods). Next, we assessed overlap between our 11
gene sets and the 9 different benchmark datasets using Fisher’s
Exact test, resulting in 99 tests. In 18 of the 99 comparisons
(expectation is ~5 at p-value threshold of 0.05) PathExt gene sets
significantly overlapped with the benchmark gene sets
(Figure 7A). In sharp contrast, analogous sets of DEGs
significantly overlapped with gold sets in only 5 cases, as
expected by random chance (Figure 7B), again underscoring
the relative advantage of PathExt.

Identifying Novel Potential Anti-SC2
Targets and Drugs
Next, to identify novel drug targets against SC2, we removed the
already known targets (Methods) against SC2 and other viruses
(considered in this study) from the TopNets (activated &
repressed). Based on the frequency of these unique genes in
the TopNets of various SC2 infected cell lines, we proposed novel
anti-SC2 targets namely ADCY2, ADSL (mediating activated
TopNet), and OCRL, and TIAM1 (mediating repressed
TopNet). Similar analysis performed for the PBMC data
reveals that genes like PBK and BUB1 can be potential new
targets. Even though the inter-cell type overlap at the level of key
genes is not high, the overlap at the pathway level is much greater
(Figures 2C, D). Insofar targeting the key genes may impact the
specific pathways, the impact of targeting these genes may
nevertheless be broad. Complete list of the potential targets
observed in both cell line and PBMC is provided in the
Supplementary Table S17. The gold standard dataset used to
ascertain novel targets was created in March 2021. Instead of
using an updated dataset, we decided to further assess the
accuracy of our proposed novel targets in a prospective
manner: a quick survey of the literature published since March
2021 validated some of the targets that we have identified, for
example ESRRA (59), PTGDR2 (60), EGFR (59), etc. This serves
as a prospective validation of the targets proposed by PathExt.
Finally, we performed virtual screening (Methods) to identify
potential inhibitors against the proposed novel targets in our
study. We propose the top 5 potential drug molecules for each
target (cell line and PBMC) in Table 1.

All the drugs listed in Table 1 are either FDA approved or are
currently undergoing clinical trial against various diseases, e.g.,
Nilotinib to treat chronic myeloid leukemia (61), Tirilazad against
acute ischemic stroke (62), etc. Extensivedrug repurposinghasbeen
carried out recently to treat SC2 infection and corroborate our
proposal. Nilotinib has been shown to be effective against covid-19
(63); Conivaptan have been shown to be effective against covid-19
based on in silico studies, where conivaptan targets viral non-
structural protein 9 (Nsp9) (64). Likewise, Phthalocyanine has
been shown to be effective against preventing covid-19 in
randomized trials (65). Bemcentinib has been shown to be
effective against SC2 (66) and is being tested (trial NCT04890509)
for efficacy in hospitalized covid-19 patients. Bemcentinib was
designed for targeting AXL, a tyrosine kinase which signals via
PI3K (67); however, our analysis identifies it as a lead molecule
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against ADSL and PBK. We use GeneMANIA software (68) to
probe potential relationship between ADSL or PBK with AXL. As
shown in Figure 8A, there is a physical interaction between AXL
andPBK viaPIK3R2. Likewise, interaction can be seen amongAXL
andADSL inFigure8B, suggesting thatBemcentinib’s effectmaybe
mediated by multiple genes within a closely linked gene module.
Our computationally generated hypotheses however need
experimental validations through knockout or induction studies.
DISCUSSION

We applied PathExt to investigate the response to SC2 infection in
different cell lines (lung epithelium, bronchial epithelium and
kidney cells), as well as in patient derived PBMCs. We also
compared the response to SC2 with those for other respiratory
viruses. Some of the key processes enriched among the PathExt-
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identified genes involve the immune system, cytokine signaling,
metabolism, DNA replication and transcription, lipid mediated
processes, etc. Our analysis revealed both similarity and
dissimilarity in response to SC2 across different cell lines,
reflecting different strategies evolved in different cell types likely
governed by their specific regulatory networks. For instance, as
A549 cell line, with low baseline ACE2 expression, has a lower viral
load, its response, in terms of the enriched pathways among central
TopNet genes, were different in comparison to Vero and Calu3 cell
lines. Several previous studies have shown the links between viral
load dynamics and disease severity. Viral load affects the host gene
expression and downstream response pathways (55). Blanco et al.
have shown that only 0.1% viral reads were detected post SC2
infection in A549, whereas in Calu3 cell line, 15% of the reads were
detected. They also observed different host transcriptional
landscape in different cell lines based on virus replication rate
post SC2 infection (15). Comparing the response to SC2 with
TABLE 1 | Proposed small molecules potentially inhibiting the novel anti-SC2 targets.

Sr No. Target Proposed Drug Molecules

Cell Line
1 ADCY2 Phthalocyanine, Tirilazad, Temoporfin, Telcagepant, Laniquidar
2 ADSL Nilotinib, Lixivaptan, Telcagepant, Doramapimod, Bemcentinib
5 OCRL Conivaptan, Implitapide, Ergotamine, Fluspirilene, Tolvaptan
7 TIAM1 Cipargamin, MK-3207, Adozelesin, Hypericin, Tariquidar
PBMC
8 BUB1 Hypericin, Erismodegib, Hemin, Irinotecan, TMC-647055
10 PBK Conivaptan, Bemcentinib, Dihydroergotamine, Phthalocyanine, UK-432097
BA

FIGURE 7 | Overlap of PathExt-identified genes and DEGs with previously published datasets. (A) the overlap of the PathExt identified top 100 activated & repressed
genes of various cell lines and PBMC datasets with various previously published drug validation datasets (CRISPR-Cas, Host-Virus PPI networks, Drug-target studies).
(B) the overlap of the top 100 upregulated & downregulated DEGs of various cell lines and PBMC datasets with the same drug validation datasets.
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those of other respiratory viruses (Influenza, SARS1,MERS,HPIV3
and RSV), we noted that the central TopNet genes are largely virus
specific. However, the broad biological processes enriched among
these genes exhibit a much greater degree of similarity across
viruses, suggesting a virus-specific host response network that
nevertheless affects common phenotypic response. Some
common processes enriched among all the viruses include
cytokine signaling, defense response, cell cycle regulation,
inflammatory response, etc. However, processes like ATP
metabolic process, carbohydrate derivative metabolic process,
cardiomyocyte differentiation, phagocytosis, leukocyte activation
and migration, etc. were found to be specific to SC2 response.
Though activated and repressed TopNets shared very few central
genes, they shared several processes enriched among the central
genes, including cell cycle, phosphorylation, metabolism, etc.,
suggesting that these biological processes likely mediate both
upregulation and downregulation of various genes in the global
transcriptomic response to SC2 infection.

A previous study by Thair et al. (69) has reported the comparison
of differentially expressed genes in SARS-CoV-2 infection with other
viral infection models. There are key similarities between their
findings and ours in terms of enriched processes. For instance,
both our studies identified cytokine signaling, inflammatory
response, DNA binding transcription factor activity, etc. However,
PathExt uniquely identified ATP metabolic process, carbohydrate
derivativemetabolic process, cardiomyocyte differentiation, etc. to be
active in SARS-CoV-2 infection.

Conventional DEG-centered approaches can miss the genes
which are not significantly differentially expressed but are
nevertheless responsible for mediating, for instance, based on their
post-translational modification state, the global transcriptional
response in a given condition. PathExt addresses this limitation by
focusing on genes that critically mediate significant path-level
perturbations in the network. Thus, as expected, many of the
central genes identified by PathExt exhibit much lower expression
Frontiers in Immunology | www.frontiersin.org 12
fold change relative toDEGs. Interestingly, somegenes are identified
as central in both activated as well as repressed TopNets (a feature
unique to PathExt), consistent with pleiotropic function of genes.
PathExt identified genes are largely disjoint fromDEGs. In contrast
to top PathExt genes, the top upregulated DEGs show significantly
enriched pathways only in the Calu3 and Vero cell lines, with only
one pathway enriched in the Vero cell line. The top downregulated
DEGsexhibitednoenrichment at all in anycell line.ThoughPathExt
based approach have several advantages over conventional DEGs
based approach, one of its limitations, indeed of any network-based
approach, is the dependence on the knowledge of the protein-
protein interaction knowledge-based network, which may be
biased toward more studies proteins and have both false positives
and false negatives.

Similarly inpatientPBMCdataset,while the central genes both in
activated TopNet as well as in upregulated DEGs were enriched for
cell cycle and defense response, the downregulated DEGs did not
show any enrichment while key genes in repressed TopNet were
enriched for cytokine production. The pathways enriched among
central genes in PBMC TopNets likely reflect both the innate
endogenous response of immune cells to viral infection as well as
response to systemic infection. However, a vast majority of central
genes identified in PBMCs are specific to PBMCs, suggesting that
transcriptional changes inPBMCsare largely in response to systemic
infection. Demographic features were not statistically significant
except “severity” category in Activated TopNet of PathExt. Central
genes unique to ICU patients were associated with cell cycle
processes whereas unique genes associated with non-ICU patients
were enriched for cytokinemediatedprocesses.Central genes in ICU
patients exhibited a much greater homogeneity in their TopNet
neighborhood across patients compared with central genes in non-
ICU patients, suggesting that disease severity may be mediated by a
more conserved genes and processes. Importantly, PathExt was
substantially more effective in identifying potential anti-SC2 drug
targets. PathExt-identified targets were enriched in 18% of the gold
BA

FIGURE 8 | Drug-target association. Based on our virtual screening study, we identified, Bemcentinib as a potential inhibitor for PBK and ADSL. Bemcentinib is a
well-known drug against AXL, and we saw that this gene (AXL) is connected to our proposed target PBK (A) and ADSL (B) suggesting that the drug effect may be
mediated by multiple genes within a closely linked gene module.
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set comparisons, compared with only 5% (NULL expectation)
for DEGs.

Previous studies have noted that genes with variable expression
are more likely to be detected as differentially expressed in multiple
contexts and do not reveal context-specific functional responses (9).
Compared to reliance only on the differential expression, by
exploiting the knowledge-based gene networks, and focusing on
identifying key genes associated with significantly perturbed paths,
PathExt represents a complementary, and in important ways, more
effective approach. While previous works have exploited protein
networks to infer transcriptomic perturbations, they have still relied
on significantlydifferentially expressedgenes and interpreted themin
thecontextof thenetwork (70, 71).Wehavepreviouslydemonstrated
(11), superiority of PathExt over such integrative approaches that
nevertheless rely on significant differential expression.

In summary, our work (1) further establishes the utility of
PathExt, (2) provides a comparative analysis of key genes
potentially driving the global transcriptomic response to SC2
and other respiratory viruses and across multiple cell lines and
patient PBMCs, (3) identifies target genes validated in previously
published benchmark anti-COVID-19 target gene datasets, far
better than DEGs, (4) proposes novel targets against COVID-19,
and (5) proposes FDA approved drugs or drugs in clinical trials,
against the novel targets.
METHODS

Data Collection and Processing
We collected 12 datasets from 2 studies, one published (15) and
another unpublished (72), which include pre- and post-infection
transcriptome in 5 different cell lines (NHBE, A549, Calu3, Vero,
MRC5), each infected by one or more of the 6 viruses (SARS-
CoV-2, SARS-CoV-1, MERS, RSV, HPIV3, and Influenza virus).
In addition, we also obtained PBMC transcriptomes from 100
COVID-19 patients and 26 non-infected individuals as controls
(47). In total, we had 13 datasets from 3 different studies, details
of which are provided in Table 2. For each dataset (except Vero
and PBMCs), we downloaded the raw reads using prefetch (73);
most datasets were single end reads except Vero for which paired
Frontiers in Immunology | www.frontiersin.org 13
end reads were provided. Files were split using fastq-dump
command (73), trimmed using Trim Galore-0.6.6 (74) at
default parameters and the reads mapped to the human
transcriptomic index version hg38 using SALMON v.1.12 (75).
We proceeded only with those samples for which at least 60% of
the reads were mapped. In the case of Vero cell line and patient
PBMC data, we directly downloaded the TPM (transcripts per
million) values provided from the GEO.

Gene Expression Normalization and Node
Weight Computation
For every cell line, mean gene expression was computed for the
treated and control samples. Genes with TPM value 0 or greater
than 100 were removed. For patient PBMC data, each case was
analyzed individually and for the control, we took the mean
expression of 26 control samples. Data was further filtered by
removing the genes whose expression value was either 0 or above
100 in at least 50% of the PBMC case samples. Lastly, we also
excluded the genes from the cell lines and PBMC data, which were
not present in our human protein-protein interaction network.
After the above filters, there were a total of 7,740 genes for cell lines
(except Vero), 6,852 for Vero cell line. In case of patient PBMC
datasets, themain dataset comprises 12,417 genes (Supplementary
Table S18). All data was quantile normalized as done in previous
study (76). Lastly, the normalized data was used to compute node
weights which was then used to compute differentially expressed
paths using PathExt software. Node (gene) weights to identify
activated TopNet were computed as follows. While log(fold
change) is reasonable choice for node weight, given the
dependence of the magnitude of log(fold change) on the
expression value, we instead computed the expected log(fold
change) for a given control expression and then used the
difference of observed and expected log(fold change) as the node
weight. To compute the expected absolute log(fold change), we
regressed absolute log(fold change) values across all genes against
the gene expression in control samples using Loessfit, implemented
in R (77). For activated TopNets the fold change was computed in
cases relative to control, and for repressed TopNets the fold change
was computed in control relative to cases. Computed node weights
forActivatedandRepressedTopNets inSC2 infected cell line (other
TABLE 2 | Summary of datasets used in the study.

Dataset Name Description Sample Size Platform Reference

SC21_Vero SC2 infected African green monkey kidney epithelial cell line 6 Bulk RNASeq Riva et.al. (14)
SC2_Calu3 SC2 infected human lung adenocarcinoma cell line 6 Bulk RNASeq Blanco et.al. (15)
SC2_NHBE SC2 infected primary normal human bronchial epithelium cell line 6 Bulk RNASeq Blanco et.al. (15)
SC2_A549 SC2 infected human alveolar basal epithelial cells 6 Bulk RNASeq Blanco et.al. (15)
SC2_A549_ACE2 SC2 infected human alveolar basal epithelial cells with higher ACE2 expression 6 Bulk RNASeq Blanco et.al. (15)
INF2_A549 Influenza infected human alveolar basal epithelial cells 6 Bulk RNASeq Blanco et.al. (15)
INF_NHBE Influenza infected primary normal human bronchial epithelium cell line 6 Bulk RNASeq Blanco et.al. (15)
INF_DNS1_NHBE Influenza (lacking gene NS1) infected primary normal human bronchial epithelium cell line 6 Bulk RNASeq Blanco et.al. (15)
HPIV33_A549 HPIV3 infected human alveolar basal epithelial cells 6 Bulk RNASeq Blanco et.al. (15)
RSV4_A549 RSV infected human alveolar basal epithelial cells 4 Bulk RNASeq Blanco et.al. (15)
SC15_MRC5 SC1 infected diploid cell culture line composed of fibroblast 6 Bulk RNASeq GSE56192 (72)
MERS6_MRC5 MERS infected diploid cell culture line composed of fibroblast 6 Bulk RNASeq GSE56192 (72)
SC2_PBMCs SC2 infected peripheral blood mononuclear cells 126 Bulk RNASeq Overmyer et.al. (47)
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than Vero) is provided in Supplementary Table S19, for Vero cell
line is provided in Supplementary Table S20 and for the PBMCs is
provided in the Supplementary Table S21. Nodeweight computed
for remaining viruses is provided in Supplementary Table S22.

Given the node weights across samples, the PathExt tool
computes the significant paths in two steps: (1) Top 0.1% shortest
paths are selected and (2) Statistical significance of those selected
paths is estimatedbasedondata randomizationandmultiple testing
corrected q-value threshold. We selected those percentiles and q-
values which provide at least 300 nodes for a given TopNet. Once
the TopNets were generated, we computed the ripple centrality
score for each gene in the TopNet and top 100 central genes were
selected for the further analysis.

GO Enrichment Analysis
Enriched pathways in a givenTopNet (activated and repressed) were
analyzed using the top 100 central genes using PANTHER software.
Customized reference was used as a background during the
enrichment analysis, where we considered only those genes which
were used for the TopNet creation in this study. The reference was
different for the Vero cell line, cell lines other than Vero and the
patient PBMCdata. ‘GObiological process complete’was selected as
Annotation Data Set, ‘Fisher’s Exact’ as Test Type, and ‘Calculate
False Discovery Type’ as Correction method. As there could be
redundant terms present in the result, we removed them by
performing parent-child relation study using REVIGO software.
The GO term and its corresponding FDR value was provided as an
input with the resulting list option to be ‘Medium (0.7)’. Also, in the
‘Advanced options’, we selected ‘Yes’ in the remove obsolete GO
terms, ‘Homo sapiens’ as the working species, and the ‘SimRel’ as
semantic similarity measures. Finally, the circular plot representing
theparent-childGOtermswas createdusing theCirGosoftware (78).
This tool requires the output of the REVIGO as an input.
‘GOSemSim’ package was used to compute the semantic similarity
among the processes enriched in various cell lines, among different
viruses and the patient PBMC data. In GOSemSim package, to
calculate the similarities between two GO terms, we used Wang
method which uses the topology of GO DAG graph structures to
compute the semantic similarities. To combine two sets ofGO terms,
weutilized ‘rcmax’methodwhich considers the averageofmaximum
similarity on each row and column on the matrix consisting of
the similarities among two sets of GO terms. Heatmap plots for the
similarity analysis are visualized using ggplot2 R package (79).

Comparing Most Central Genes Across
Cell Lines and Viruses
Upset plot was generated by providing the list of genes of all the
samples in a csv file format as an input to the server. Intervene
server (80) at default parameters was used for generating the
upset plots. For gene enrichment heatmap, we computed the
Observed/Expected score. ‘pheatmap’ package in R was used for
generating the heatmaps (81).

Identification of Novel Drug Targets and
Their Potential Inhibitors
First, we identified known drug targets of SC2 (till March 2021)
from various published reports which includes CRISPR gene-
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knockout studies, viral-host protein-protein interactions (PPI)
and experimentally screened drugs in various cell lines and
animal models. See Supplementary Table S23, for the
references used for preparing this gold standard benchmarking
datasets. These studies reported the host genes important for the
viral replication and function. CRISPR-Cas studies provided the
important therapeutic targets based on the gene knockdown
studies and their downstream effects, whereas protein-protein
interaction studies shed light on the targets physically interacting
with the viral proteins. In vitro and in vivo studies in the cell lines
and animal models provided the information about the genes
which could be potentially targeted by different drugs. We
excluded all these targets from our list of predicted targets. To
provide specific recommendations for SC2, we also excluded the
targets which were present in the TopNets (Activated &
Repressed) for any other virus such as Influenza, HPIV3, RSV,
SC1 and MERS. For other viruses, we removed all the genes
present in the TopNets for the respective viral response in
various cell lines. This left us with the targets unique to SC2
and we then prioritized the remaining central TopNet genes
based on their frequency across cell line samples as novel
potential drug targets. Similar approach was followed for the
PBMC data.

Next, to propose potential inhibitors against our proposed
novel targets, we performed a virtual screening process using
AutoDock Vina software (82). The 3D structures of the targets
were downloaded from the RCSB-PDB (83) and further refined
using Open Babel software (84). Active site information of the
protein molecules was computed using P2RANK software (85).
Next, a drug library was created for the virtual screening process,
where we considered only those drug molecules which are either
FDA approved or are under clinical trials; SMILES formatted
files of these drugs were downloaded from the ZINC database
(86) and were further converted to MOL2 file format using
openbabel. The ligand and the receptor files were prepared in the
‘pdbqt’ file format required by vina for the docking purpose. The
center and the grid size of the receptor molecules was computed
using UCSF Chimera software (87), based on the P2RANK
software active site result. Lastly, based on the AutoDock Vina
affinity score and Root Mean Square Deviation (RMSD) value,
we proposed the drug molecules which could potentially inhibit
the function of these new targets.
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Supplementary Figure 1 | Fold Change comparison of the top 100 frequent
genes of PathExt TopNets and DEGs in various SC2 infected cell lines in (A) A549
cell line; (B) A549_ACE2 cell line; (iii) Vero Cell line; and (iv) NHBE cell line.

Supplementary Figure 2 | Parent and child enriched pathways associated with
upregulated DEGs in SC2 infected Calu3 cell line. Most frequent top 100
upregulated genes were obtained across patient PBMC data. Enriched biological
processes was obtained by performing Gene Ontology study followed by parent
child relationship, shown in the form of circular visualization plot.

Supplementary Figure 3 | Cross-sample overlap on TopNet neighbors of central
genes. For each central genes (x-axis), the figures show the distribution of Jaccard
Index of all sample-pair overlap between the TopNet neighbors of the central gene,
for Activated TopNet for ICU patients (A) and non-ICU patients (B).

Supplementary Figure 4 | Demographic features analysis. Mann Whitney Test
was performed to check statistical significance between top 100 differentially
expressed genes and various demographic features (age, sex and severity). In case
of upregulated DEGs, “Gender” was found to be the only statistically group among
activated TopNet genes (A) and in case of downregulated DEGs, “Severity” was
found to be the only statistically group among repressed TopNet genes (B).

Supplementary Figure 5 | Fold Change comparison of the top 100 frequent
genes of PathExt TopNets and DEGs. LogFC comparison of the top 100 genes
between PathExt and DEGs obtained from the SC2-infected patient PBMC data.
Differential expression is estimated in infected relative to uninfected cells. Mean
expression of the genes across 100 patients were considered while plotting

Supplementary Figure 6 | Parent and child enriched pathways associated with
upregulated DEGs in patient PBMC. Most frequent top 100 upregulated genes
were obtained across patient PBMC data. Enriched biological processes was
obtained by performing Gene Ontology study followed by parent child relationship,
shown in the form of circular visualization plot.
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