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The composition of the oral milieu reflects oral health. Saliva provides an environment for
multiple microorganisms, and contains soluble factors and immune cells. Neutrophils,
which rapidly react on the changes in the microenvironment, are a major immune
cell population in saliva and thus may serve as a biomarker for oral pathologies. This
review focuses on salivary neutrophils in the oral cavity, their phenotype changes in
physiological and pathological conditions, as well as on factors regulating oral neutrophil
amount, activation and functionality, with special emphasis on oral cancer and its
risk factors.
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INTRODUCTION

Head-and-neck cancer (HNC) of the oral cavity (oral squamous cell carcinoma, OSCC), is one
of the leading malignancies worldwide (1). OSCC is located in the area of the tongue, upper and
lower gingiva, oral floor, palate and buccal mucosa. It can spread to local lymph nodes in the
head and neck, while metastasis to distant organs are rare (2). Despite advances in diagnosis and
treatment, the 5-year overall survival rate for OSCC remained below 50% for the last three decades
(3). Traditional prognostic factors, such as primary tumor size, regional lymph node metastasis,
extracapsular spread, surgical margin involvement and perineural invasion are routinely used to
predict OSCC outcome (4). In addition to these, a variety of biomarkers are currently under
investigation to predict prognosis, allocate treatment and to follow-up responders or recurrences,
including but not limited to circulating DNA, exosomes and automated pathology.

Neutrophils are important players in cancer immunology and their in-depth investigation helps
to better understand tumor immune escape mechanisms as well as to establish more suitable
biomarkers for cancer diagnostics and therapy. Neutrophils are known to contribute to cancer
progression or regression via multiple mechanisms, including the suppression of cytotoxic (5) as
well as helper (6) T cell responses and the stimulation of tumor angiogenesis (7, 8). Moreover,
neutrophils participate in cancer metastasis via formation of premetastatic niche in target organs
(9, 10) or via NET-mediated trapping of circulating cancer cells (11). Clinical studies identified
blood neutrophil-to-lymphocyte ratio (12) and the number of tumor-infiltrating neutrophils to be
negative prognostic factors in a variety of different cancers, including HNC (5, 13).

Here we provide an up-to-date review on oral neutrophils during the development
and progression of oral cancer. We discuss tumor-induced systemic changes in circulating
polymorphonuclear leukocytes (cPMN), and further alterations that take place in tumor
microenvironment. To evaluate possible prognostic role of oral polymorphonuclear leukocytes
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(oPMN) in HNC, we first address their modifications in
healthy oral cavity, and then compare it with their activity
in conditions known to be HNC risk factors [aging, smoking,
chronic periodontitis (CP)] or with neutrophils associated
with oral cancer itself. Finally, we discuss the parallels
between the activation status of tumor-associated neutrophils
(TANs) and oPMNs, and the potential applicability of these
cells in diagnostics.

TUMOR-INDUCED ALTERATION OF
CIRCULATING NEUTROPHILS

Most of the current studies on the prognostic role of neutrophils
in cancer focus on the blood neutrophils – PMNs, called also
circulating PMNs (cPMNs). And so, it is known that in advanced
cancer neutrophilia reflects a systemic inflammatory response
to cancer progression (14). Neutrophilia and a high ratio of
neutrophils-to-lymphocytes are associated with poor prognosis
in many different types of cancer (15), including HNC. These
changes could be correlated with both tumor burden and spread
to lymph nodes (16). Of note, high PMN levels are associated with
worse prognosis in HPV+, but not HPV− oropharyngeal cancer
patients (17).

The increased numbers of circulating neutrophils may be
the result of tumor-induced emergency myelopoiesis (18), but
also of prolonged survival of such cells. PMNs of patients with
later stages of HNC were shown to have reduced spontaneous
apoptosis in comparison to healthy (19). This was probably due
to the increased proportion of immature PMNs in circulation
of such patients. To the contrary, in another study including
patients with oral cancer, circulating PMNs were shown to
have elevated apoptosis due to higher caspase-8 activity and
elevated activity of TRAIL-mediated mitochondrial cascade,
as compared to healthy (20). The surgical removal of the
primary tumor partially decreased the predisposition of such
PMNs to apoptosis.

Circulating PMNs in HNC show activated status, with reduced
expression of CD62L (L-selectin) in neutrophils, as compared
to healthy controls (16). The secretion of various cytokines
including IL-1b, VEGF, and IL17 was reported to be increased
in blood neutrophils in oral cancer, while the secretion of IL-
18 and sTRAIL was reduced (21, 22). The ability to release
neutrophil extracellular traps (NETs) by PMNs was reported to
be significantly enhanced in early stages of HNC, as compared to
healthy (23). Moreover, a statistically significant decrease of ROS
production by PMNs from HNC patients was observed (19) and
it was associated with poor patient prognosis (24).

Importantly, systemic inflammatory response in different
types of cancer, including HNC, results in the activation of
cPMNs, increasing their cytotoxic response against tumor cells
(25). Moreover, progression of cancer leads to the expansion
of immature immunosuppressive PMNs (so called granulocytic
myeloid-derived suppressor cells) in low density fraction of
blood during HNC, lung cancer, or cancers of bladder and
ureter (26). Such cells show upregulated CD11b and CD66b
expression, suggesting their enhanced degranulation capacity (26,

27). Expansion of such suppressive neutrophils in human HNC is
strongly associated with poor survival of patients (28).

TUMOR-ASSOCIATED NEUTROPHILS

After transmigration into tumor tissue, blood neutrophils
undergo dramatic changes of their phenotype and activity,
depending on the cytokines and growth factors available in
the tumor microenvironment. Multiple reviews are dedicated
to the role of tumor-associated neutrophils (TANs) in tumor
progression, therefore here we will only briefly address it
to provide a link to the key topic of this review – oral
neutrophils in cancer. It is known that TANs contribute to tumor
vascularization and metastatic spread via the release of VEGF
(Vascular endothelial growth factor) and matrix-degrading
enzymes, such as MMP9 (7–9). Moreover, such neutrophils
are able to modulate adaptive anti-tumor immune responses.
On the one hand, TANs express molecules characteristic for
antigen-presenting cells (major histocompatibility complex and
co-stimulatory molecules) and release stimulatory cytokines that
enhance T cell activity (29). On the other hand, the expression of
LOX-1 and arginase by neutrophils was reported to be associated
with decreased activity and proliferation of effector T cells
in tumor tissue (5). The described complexity of neutrophil
functions in cancer has not yet been reflected in the clinical
studies concerning oral neutrophils.

The prognostic significance of TANs varies between different
types of malignancy, indicating the different role of these cells in
tumor. For HNC, increased presence of TANs was shown to be a
negative, independent prognostic factor for recurrence, as well as
overall survival (19).

In HNC, data concerning TANs are limited, possibly due to
the minor size of primary tumors. In other cancer types, such as
human lung carcinomas, TANs were revealed to have an activated
phenotype with high expression of CD11b, CD66b, ICAM-1
and downregulated CD16, in comparison to blood neutrophils.
TANs upregulate chemokine receptors responsible for further
homing to lymphoid organs (CCR5, CCR7, CXCR3, CXCR4) and
downregulate molecules involved in their migration to the tumor
site (CD62L, CXCR1, CXCR2). TANs upregulate Fc receptor
CD64, death ligand FasL and co-stimulatory molecules CD86,
OX40L, 4-1BBl (29). Moreover, they release high amounts of pro-
inflammatory cytokines and chemokines that regulate migration
of other immune cells into tumor and so influence tumor
growth, angiogenesis, and spread. No significant differences
in viability, ROS and phagocytosis between cPMN and TANs
were observed (29). Due to their expression of co-stimulatory
molecules, TANs can efficiently induce proliferation of T cells and
their IFNγ production, while blood neutrophils are poor T cell
stimulators (29).

PMNs and TANs are already extensively described in HNC
context. However, nothing is known about other type of
neutrophils that populate environment localized closely to
growing oral HNC – oral neutrophils. These cells represent a
unique population of neutrophils with phenotypic and functional
properties that are distinct from cPMN or neutrophils in other
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biological compartments, such as mucosa or tumor tissue, due to
the specific anatomy and physiology of the oral cavity.

THE COMPLEX ENVIRONMENT OF
ORAL CAVITY

Oral cavity represents the first barrier where the external
pathogens enter the body and interact with immune defense
mechanisms, with saliva as an environment for these interactions.
Saliva, secreted by minor and major salivary glands (800–
1,500 ml per day, declining during the nighttime) (30–32), is a
complex biofluid, containing components from the mucosa, the
gingiva crevices, tooth surfaces, nasal secrets and plasma (33–35).
Soluble molecules dissolved in saliva are nucleic acids, proteins,
mucins/glycoproteins, immunoglobulins, metabolites, drugs and
their metabolites (36). The most abundant proteins in saliva are
plasma albumin, digestive enzymes and microbicidal proteins,
but also variety of hormones, cytokines and chemokines, as
well as other molecules with regulatory functions (33). Besides
this, saliva contains components with still unknown biological
functions (37) that are secreted by exocytosis of the granules
of acinar cells in the salivary glands (38). Moreover, saliva
contains high amounts of extracellular vesicles, mainly secreted
by epithelial cells and salivary glands (39), but also originating
from the circulation. Cellular components of saliva include
epithelial and immune cells, mostly neutrophils (40).

The mucosal barrier in the oral cavity is considered to be
one of the main ecological habitats of the human body (41).
Saliva contains bacteria (the most common are Firmicutes,
Bacillus, Proteobacteria, Streptococci, Staphylococci, Lactobacilli
and Actinomycetes species) (42–44), fungi (e.g., Candida species)
(45), viruses (e.g., Herpes-, Papilloma- and Coxsackieviruses)
(46, 47), and other exogenous substances that colonize the
mouth and can therefore potentially provide an insight into the
relationship of the host with the environment (34). Oral bacterial
communities are the second most complex in the body, after the
communities of the colon (48). Interestingly, a study of healthy
volunteers from 12 locations worldwide have found no significant
geographical differences between their salivary microbiota (49).
This suggests that the diet and the environment do not
significantly influence the composition of the oral microbiome
and that the host species is the primary determinant (50).
Commensal microbiota play an important role in maintaining
oral and systemic health (51), as its presence inhibits colonization
by pathogens (“colonization resistance”) (52, 53).

ORAL NEUTROPHILS IN STEADY STATE

The contact of the oral cavity with the external environment,
the constant presence of normal or invading microbiota as well
as secretion of chemokines by activated epithelial cells attract
neutrophils. More than 1011 neutrophils are produced daily
in the bone marrow (54) and are released into circulation to
transmigrate into tissues. The trafficking of neutrophils into oral
cavity is a constant process, displaying a circadian rhythm, with

an increase during the day and a decrease at night (55). Around
106 leukocytes can be isolated after rinsing of the oral cavity.
Polymorphonuclear neutrophils represent ca. 83% of cells in such
oral rinse, mononuclear cells 17%, and basophils/eosinophils
0.4% (56). Of note, immature forms of neutrophils can also be
observed in oral rinse, suggesting direct trafficking from the bone
marrow (40). Thus, a redistribution of leukocyte subpopulations
in comparison to blood, namely, increased neutrophil and
monocyte percentage accompanied by decreased amount of
lymphocytes can be observed in oral cavity (57).

The gingival crevices are suggested to be the main point of
entry for oPMN into the oral cavity, while only a small proportion
of cells originate from salivary glands (55, 58). In agreement, the
amount of oPMN in the oral cavity was shown to be significantly
decreased in patients without teeth (59, 60). Importantly, there
is no correlation between the amount of cPMN and oPMN in
healthy individuals (61), which can be explained by a specific
local microenvironment, attracting neutrophils to the oral cavity
with no impact on the remaining immune system. At the same
time, in systemic conditions such as neutropenia or bone marrow
transplantation, a shift in numbers of oPMN correlates with
cPMN numbers (56, 62).

THE LIFE-CYCLE OF ORAL
NEUTROPHILS

After their release from the bone marrow, neutrophils circulate
for 5–9 h and then migrate into tissues where they survive 8–
16 h before they die (63). Recently, a prolonged (up to 5 days)
survival of activated neutrophils in tissues has been described (64,
65), which ensures the presence of functional neutrophils at the
site of inflammation (66). In healthy volunteers the proportion
of viable oPMN is significantly lower compared with cPMN, and
their maturation more advanced with elevated apoptosis/necrosis
(56, 67). Availability of bacteria-derived endotoxin in the oral
microenvironment shifts neutrophil fate from apoptosis to
necrosis (68, 69). At the same time, oPMN become more resistant
to the additional apoptotic stimuli. Unlike cPMN, exudated
oPMN are not sensitive to rhTNF-α/cyclohexirnide-induced
apoptosis (69). In an elegant study, Hotta et al. demonstrated the
lack of sensitivity of oPMN to TNFα-stimulated apoptosis, with
lower caspase 3 activity, as compared to cPMN. While in cPMN
activation of nuclear factor kB (NF-kB) was induced by TNF-α,
in oPMN NF-kB was already activated in steady state, and no
further activation was observed by TNF-α treatment. Moreover,
no significant effect of NF-kB inhibitor in oPMN was observed
(70). This shows that neutrophils become more resistant to
apoptotic stimuli during their migration from blood to oral cavity
and that this resistance depends on the NF-kB pathway.

THE PHENOTYPES OF ORAL
NEUTROPHILS

During transmigration from the circulation to the oral cavity,
neutrophils are exposed to the new environment, resulting in an
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activation and dramatic changes of their phenotype and function
(Figure 1). Significant modulation of their transcriptome has
been shown, with 469 genes downregulated and 119 genes
upregulated (71). Majority of these genes are involved in
cytokine-cytokine receptor interactions, chemokine signaling
pathways, hematopoietic cell lineage development and T cell
activation (71).

oPMN express typical neutrophil makers, such as CD11b,
CD16, and CD66b. These markers were demonstrated to be
constantly expressed on neutrophils, independent of the cell
location, level of activation or disease state (72). However, the
level of their expression can vary in different conditions (see
below). As compared to cPMN, oPMN upregulate molecules
reflecting their activation in the oral cavity, including CD63 (a
marker associated with degranulation of azurophilic granules),
CD66a (adhesion), CD10 (marker of neutrophil differentiation),
CD64 (Fc-gamma receptor 1), CD55 (complement regulator)
and CD11b (adhesion). Other upregulated molecules in oPMN
include inhibitory molecules CD85a, CD305 and CD312
(responsible for interaction with immune cells) (72), while
CD16 (Fc-gamma receptor 3) is reduced on oPMN (73). Other
molecules responsible for intracellular signaling (CD50, CD114,
CD132, CD182) as well as molecules responsible for adhesion
(CD31), complement regulation (CD46) or regulation of adaptive
immunity (CD43, CD44) are reported to be downregulated on
oPMNs (72).

Importantly, two distinct subpopulations of oPMN in healthy
donors were described, based on the size and granularity of these
cells: para-inflammatory 1 neutrophils with size and granularity
comparable to cPMN, and para-inflammatory 2 neutrophils,
which are smaller and less granular. These populations exhibit
also differences in their function and phenotype, with elevated
expression of CD55, CD63 and reduced expression of CD16
and CD170 on para-inflammatory 2 neutrophils, as compared to
para-inflammatory 1 (see below) (73).

THE FUNCTION OF ORAL
NEUTROPHILS AND ITS MODULATION
BY THE SALIVA

Antibacterial functions of neutrophils include adhesion and
internalization of bacteria (phagocytosis), production of
reactive oxygen species (ROS) that damage membranes and
genetical material, the release of neutrophil extracellular traps
(NETs) capturing pathogens and the secretion of antibacterial
proteins. oPMN isolated from healthy controls demonstrate
slightly elevated adhesion to pathogens and significantly
higher internalization of bacteria (A. actinomycetemcomitans,
P. gingivalis, E. coli) in comparison to cPMN (63). Higher
phagocytotic activity in para-inflammatory 2 oral neutrophils
was also demonstrated, as compared to para-inflammatory
1 (73). Activation of neutrophils upon phagocytosis (61, 74)
led to dramatically increased ROS production by oPMN, but
not by cPMN (40). A comparison of both subpopulations
of oPMN reveals only slightly increased ROS production by
para-inflammatory 2 neutrophils (73). Importantly, the ability

to respond to the stimulation with PMA is preserved in both
populations in healthy donors (73).

To immobilize and kill distantly localized microorganisms,
neutrophils release NETs (75). Importantly, increased NET
formation by oPMN, in comparison to cPMN, was reported (63),
with para-inflammatory 2 subpopulation showing significantly
higher release (73). This was in line with their elevated
phagocytosis. In addition to changes in effector function,
migratory capacity of neutrophils decreases significantly once
they have transmigrated from the bloodstream to the oral cavity.
oPMN exhibit random chemotactic movement with a shorter
distance as well as decreased fMLP receptor expression (63).

The effect of saliva on neutrophils in the oral cavity is
complex and depends on multiple mediators, such as cytokines,
chemokines, various proteins or glycoproteins, as well as
commensal and pathogenic bacteria and fungi. Several bacterial
species are reported to modulate neutrophil functions in vitro.
The effect of different oral microorganisms, both commensal
(S. oralis, S. sanguinis, S. salivarius) and pathogenic (S. mutans,
A. actinomycetemcomitans, P. gingivalis), on the activation status
of cPMN was described by Oveisi et al. (76). While CD63
and CD11b/CD18 markers were upregulated after exposure
to both commensal and pathogenic bacteria, commensal
microorganisms in biofilms induced the selective increase of
CD66, CD64, CD55, while pathogenic bacteria induced the
expression of lipopolysaccharide receptor CD14. Moreover,
only commensal bacteria in biofilms stimulated degranulation,
phagocytosis, ROS production and NET formation, while
pathogenic bacteria showed no effect (76). Coexistence of F. alocis
with other pathogens induced the secretion of proinflammatory
cytokines from epithelial cells and promoted apoptosis of
neutrophils (77). This was responsible for increased pathological
conditions in oral cavity. Interestingly, F. alocis has been shown
to be resistant to oxidative stress and to inhibit PMA-induced
NET-production. Moreover, this bacterium can survive within
neutrophils, repressing their ROS release and maturation of
granules. This in turn prolongs neutrophils lifespan and leads to
elevated inflammation and tissue damage (77, 78). At the same
time, components of bacteria-free saliva (e.g., carbohydrates)
limit tissue-damaging neutrophil inflammatory responses (ROS
production and release of hydrolytic enzymes) to microbiota (61,
79, 80).

RISK FACTORS FOR ORAL CANCER
AND THEIR INFLUENCE ON THE
ACTIVITY OF oPMN

Main risk factors for oral cancer include age (81), tobacco
and alcohol consumption (82), and chronic inflammation
(e.g., periodontitis) (83, 84). All these factors have also the
potential to influence the phenotype, activation and functions of
oPMN (Figure 2).

Aging
Aging is associated with a significant impairment of neutrophil
responses in the oral cavity. Elderly individuals (60–85 years
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FIGURE 1 | Neutrophils enter the oral cavity through gingival crevice and change their phenotype and properties. Several molecules (namely: CD11b, CD16 and
CD66b, marked in violet) are constitutively expressed on neutrophils in all compartments. The variety of molecules responsible for adhesion (namely: CD31, CD66a,
marked in yellow), complement-regulation (namely: CD46, CD55 marked in green), regulation of adaptive immunity (namely: CD43 and CD44, marked in red) and
intracellular signaling (namely: CD50, CD114, CD132 and CD 182, marked in blue) are down-regulated on oPMNs in comparison to the cPMNs, while the markers of
activation (namely: CD10, CD64 and CD 63, marked in gray), complement inhibition (namely: CD55, marked in green) and neutrophil inhibition (namely: CD85a,
CD305 and CD312, marked in orange) are up-regulated. ROS, reactive oxygen species; NETs, neutrophil extracellular traps. The data are based on
flow cytometry results.

FIGURE 2 | A spectrum of normal and pathological conditions is associated with changes in oral neutrophil activity. Inflammation (chronic periodontitis) in oral cavity
activates neutrophils and thus leads to tissue damage, while aging, smoking, tooth loss, alcohol consumption, oral cancer and its treatment are associated with
decreased neutrophil activity and expansion of pathological bacteria and fungi in oral cavity. ROS, reactive oxygen species; NETs, neutrophil extracellular traps.

old) in comparison to younger persons (20–50 years old) show
a reduction of oPMN numbers, which is in line with overall
decreasing innate immune responses in elderly (85). Moreover,
elevated granulocyte-macrophage colony-stimulating factor (86)
in the saliva of aged individuals was reported, which could
be responsible for the sensitivity of oPMN to bacteria-induced
apoptosis (86). Also, cPMN from the elderly group express
lower amounts of CXCR1, CD11b/CD18 integrin and CD62L (L-
selectin), which could be responsible for the decreased migration

of such cells to the oral cavity (86). Aging is associated with
diminished salivary flow rates and reduced production of anti-
microbial factors (transferrin and lactoferrin) by oPMN (87).
Neutrophil antimicrobial functions, such as phagocytosis, are
impaired with age in both, cPMN and oPMN (86). Moreover,
aged oPMN show decreased generation of ROS and reduced
killing activity (87). All these changes in oPMN functionality
could be responsible for the elevated risk for the development of
oral neoplasia in elderly.
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Smoking and Alcohol Consumption
The influence of smoking on oral cells is mediated by nicotine
as well as a wide range of other accompanying hazardous
substances that are included in tobacco smoke. Besides the direct
influence, tobacco also affects the pH of saliva (88) and can
thus potentially influence the functions of neutrophils. In vitro
experiments on the effect of nicotine on cPMN demonstrate
a disturbed balance between antibacterial and tissue-damaging
properties of neutrophils: on the one hand, a dose-dependent
suppression of chemotaxis, phagocytosis (89) and diminished
ROS-dependent killing is observed (90), on the other hand, such
cells show enhanced degranulation and elastase release (89),
but their viability is not influenced (89, 90). The data obtained
from in vivo studies of the effect of smoking on the oPMN
functions remain controversial. While some studies show an
increased phagocytic activity of oPMN directly after smoking
(91), suggesting a direct effect of tobacco smoke on these cells,
others demonstrate reduced phagocytic activity and viability of
oPMN in smokers, as compared to non-smokers (92, 93). The
observed differences may be explained by the different time point
of analysis, directly after exposure or chronic changes, or the
different impact of various components of the smoke (94), and
should still be investigated.

While no data concerning the effect of alcohol consumption
on oPMNs and are available, data about cPMNs report the
correlation of blood level of gamma-glutamyl transpeptidase (as a
measure of alcohol consumption) with compromised neutrophil
bacterial killing (95).

Inflammation in the Oral Cavity
Inflammation is considered to be a hallmark of cancer (96). In
agreement, inflammation in oral cavity increases the risk of oral
cancer (97). In the inflammatory oral diseases, such as gingivitis
or CP, increased amounts of oPMN are observed (55). This can
be due to chemoattractants produced by epithelium, but also
due to increased oPMN-derived CCL3 or IL-1 (71). Patients
with CP show more than a 2.5-fold increase of oral neutrophil
counts, as compared to healthy individuals (71). Such neutrophils
are of the pro-survival neutrophil phenotype with a prolonged
lifespan (71).

The functionality of oPMN reflects the activation of the
immune system and may serve a diagnostic parameter for the
disease severity and a prognostic marker. In chronic periodontitis
(CP) patients distinct changes of the neutrophil transcriptome
during migration to the oral cavity has been shown, with
2,386 downregulated and 1,207 upregulated genes in oPMN,
compared to cPMN. The major differences were observed in
genes responsible for the regulation of apoptosis, but also Toll-
like receptor signaling pathways, chemokines and cytokines
(71). These changes have an impact on the survival and
functions of oPMN.

Inflammatory diseases are often accompanied by the presence
of pathogenic bacteria in the oral cavity. Only in rare cases there
is one single pathogen inducing the disease, more often it is a
shift of microbiome toward certain pathogenic bacteria. In case
of CP, the predominance of Actinomyces species, which compose

much of the supragingival and subgingival plaque microbiota,
P. intermedia, Bacteroides species, and F. nucleatum are reported
(98, 99). oPMN become activated by invading microorganisms,
which contributes to tissue damage and disease progression.
Decreased amounts of oPMN together with their suppressed
function might be responsible for the development of secondary
bacterial or fungal infections in such individuals. The changes in
oPMN phenotype and functions are well studied in CP, while in
other inflammatory conditions data is still scarce. As compared
to the healthy state, CP oPMN gain proinflammatory phenotype,
characterized with decreased size and granularity together with
prominent activation (upregulation of CD63, CD66a, CD10,
CD64, CD55, CD11b/CD18) (73). Lakschevitz et al. reported
the upregulation of degranulation (CD63) and adhesion (CD11b,
CD66, CD66b, CD66c, CD66e) markers on CP oPMN (72).

Electron microscopy shows elevated phagocytosis (measured
as an increase of early and late phagosome counts) and
greater degranulation (lower number of granules) of oPMN
during CP. This is in line with upregulated expression of
CD63 while no differences in granule content is observed
(73). The enhanced activation of oPMN is reflected in the
induction of myeloperoxidase (MPO) (100). Proinflammatory
neutrophils in CP demonstrate elevated ROS production, but
in contrast to neutrophils in healthy state, they show no
increase of ROS production in response to PMA, suggesting
an exhausted phenotype (73). In agreement, NET release
estimated by MPO and histone citrullination, is also significantly
increased in proinflammatory neutrophils in chronic periodontal
disease (73).

Thus, the changes of oPMN functions induced by the contact
with pathogens during the course of disease may lead to several
unfavorable consequences. On the one hand, suppression of
neutrophil functions results in pathogen persistence and spread.
On the other hand, hyperactivated neutrophils can cause tissue
damage due to the release of proteases (neutrophil elastase or
matrix metallopeptidase 9), NETs (101) or pro-inflammatory
cytokines, such as IL-1 (71).

As already mentioned, inflammation due to tissue damage is a
known cancer hallmark. The presence of activated neutrophils in
the oral environment may influence the progression of HNC, as
TNFα and IL8 released by neutrophils were shown to increase
tumor cell line invasion in vitro (102). Thus, the changes of
oral neutrophil functions in certain inflammatory conditions
(including periodontitis, the known risk factor of oral cancer)
may be permissive for cancer development and progression.

ORAL CANCER AND MICROBIOME
SHIFT

Oral cancer is a consequence of the multiple factors present
locally in the oral cavity as well as systemically. Inflammation
transforms oral ecosystem, including microbiome and immune
components, and leads to the formation of premalignant
and malignant lesions. Later, growing tumor influences the
microenvironment by releasing a wide range of biologically active
molecules, such as cytokines, chemokines and growth factors.
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An increased predominance of certain bacteria (e.g.,
P. gingivalis, F. nucleatum, P. intermedia, C. gingivalis,
P. melaninogenica, S. mitis, as well as Veillonella, Actinomyces,
Clostridium, Haemophilus or Enterobacteriaceae) correlates
strongly with OSCC (99, 103–106). Such association between
changes in oral microbiome and the presence of oral cancer
can be explained by different causal links: one hypothesis
is, that certain bacteria may cause DNA damage in oral
epithelium by secreted endotoxins (107) or induce inflammatory
responses supporting cancer development (108). On the other
hand, changed immune responses in cancer may promote the
expansion of pathological microorganisms in the oral cavity.
Moreover, tumor-derived molecules solved in saliva serve
as chemoattractants and potent regulators of inflammatory
cell function (109). Such factors can influence trafficking and
activation of immune cells in the oral cavity.

Bacteria are not the only factors in the oral cavity
influencing neutrophil properties. The prevalence rate of HPV in
normal human mucosa depend from different sociodemographic
variables, sexual behavior and sensitivity of the diagnostic
techniques (110). HPV is associated with an increased risk
of head and neck cancer (HNC), but the prognosis of HPV-
positive tumors is better compared to HPV-negative cases (111,
112). It could be demonstrated that HPV-positive OSCC cells
contain secondary changes in genes and pathways involved in
activation of the host anti-viral interferon signaling (113). As
interferons have been shown to have anti-tumoral capacity (114)
and to prime anti-tumor phenotype of neutrophils (8, 10, 115),
this phenomenon should be further exploited. Overexpression
of HPV proteins in OSCC cells is also associated with an
impaired neutrophil infiltration to the tumor, possibly due to
the downregulated expression of IL-8 (116). While recently a
comprehensive single cell RNA sequencing study investigated
the differences between intratumoral immune cells isolated from
HPV+ and HPV− HNC [large differences between B-cells,
myeloid cells and conventional CD4+ T-cells, rare differences
between regulatory CD4+ T-cells and CD8+ T-cells] (117), there
is to the best of our knowledge no study investigating the
influence of HPV status on oPMN phenotype and function.

CHANGES IN ORAL CAVITY
MICROENVIRONMENT DUE TO ORAL
CANCER

Saliva contains various proteins derived from cells populating
oral cavity that might attract and activate neutrophils. The
levels of such molecules may therefore potentially be used
as biomarkers. Saliva contains several chemokines attracting
neutrophils. The significant increase of CXCL-8 (118, 119),
CXCL-10 and CCL-14 in saliva of patients with head-and-neck
carcinoma was reported (120). Moreover, saliva CCL7 levels
are shown to correlate positively with lymph node metastasis,
tumor size and clinical stage (121). Cytokines and cytokine-
coding mRNA in saliva are also shown to be predictors for OSCC
progression (51). Goertzen et al. showed that cancer patients
have significantly increased pro-inflammatory cytokines, such as

IL-1α, IL-1β, IL-6, IL-8 and TNF-α in saliva, as compared to
controls (122). Salivary levels of IL-6 (118, 119) may serve as oral
cancer predictors (123). Higher levels of growth factors in saliva
also correlate with oral inflammation and tumor invasion (37).
Importantly, the upregulation of all these factors has a significant
role in the activation of neutrophils.

Reduced abundance of peptidyl-prolyl cis-trans isomerase A
(PPIA, also known as cyclophilin-A) appeared to be a factor
that might predict poor prognosis of OSCC patients (124).
This cytosolic molecule being released from the cell, is a
potent chemoattractant for neutrophils through the receptor,
CD147 (125).

Neutrophil-derived molecules in saliva may reflect the amount
and activation status of oPMN. Proteomic analysis of human
saliva and saliva-derived extracellular vesicles from healthy
individuals and patients with OSCC revealed a significant
overrepresentation of proteins related to acute inflammatory
response, regulation of humoral response and regulation of
hydrogen peroxide metabolic processes (124). Elevated levels of
total protein and neutrophil-derived molecules (lysozyme) in
saliva were reported for oral cancer patients (126). During severe
oral cancer, levels of TNF-α, IL-1 and RANKL are also elevated
(33). In neutrophils, MPO makes up to 5% of the total protein
content (127). MPO level in saliva increases proportionally to
the number of oPMN (100) and therefore is elevated during
oral inflammation (128, 129) High levels of neutrophil-derived
defensine-1 in saliva can be a sensitive marker for earlier stages
of OSCC, while in other conditions, such as glossodynia or
oral discomfort, the levels are comparable with healthy controls
(130, 131).

Cortisol levels in saliva are significantly increased in OSCC
patients in comparison to controls (132), which may potentially
influence neutrophil trafficking (133) and functions (134).
Thus, saliva from oral cancer patients contains multiple factors
regulating oPMN functions or reflecting their activation status
during disease progression.

ORAL NEUTROPHILS DURING THE
COURSE OF ORAL CANCER

Neutrophils present in tumor microenvironment can suppress
or potentiate cancer progression (135, 136), depending on
their modulation via tumor microenvironment. This can occur
locally as well as systemically in distant organs (137). oPMN
being in close contact to the tumor site, may influence tumor
development, therefore the assessment of their functions may
serve an important diagnostic tool. However, only few studies
that focus on oPMN in cancer are available.

oPMN isolated from patients with untreated OSCC,
demonstrate comparable phagocytic activity, but significantly
lower chemotactic capacity to fMLP, as compared to healthy.
Moreover, lower superoxide production in response to fMLP
and PMA treatment is observed. In agreement, reduced Candida
killing is observed in such neutrophils (138, 139).

Radio(chemo)therapy is a treatment option for OSCC either
in the primary (definitive) setting or as an adjuvant to
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surgery (2). Irradiation is reported to damage major salivary
glands and to impair the salivary flow (140, 141). This in
turn is one of the reasons for post-radiation caries and
shifts in oral microflora (126, 142). Chemotherapy also has a
prominent influence on granulopoiesis in bone marrow, leading
to significant neutropenia and bacterial complications (143).
The impact of the chemoradiotherapy on oPMN functions was
also described, showing suppression of neutrophil chemotaxis,
reduced superoxide production and impaired Candida killing
by oPMN (138). This could be the cause for elevated Candida
infections in cancer patients (144, 145).

Neutrophil activity in oral cavity reflect changes in the
emergency myelopoiesis in the bone marrow, therefore could
be used as prognostic tool in certain conditions (59). In
agreement, the increase of oPMN numbers was demonstrated
to correlate with successful bone marrow transplantation after
immunosuppressive treatment of patients with non-Hodgkin’s
lymphoma or multiple myeloma. Importantly, the changes of
oPMN counts were observed 1–2 days earlier than in blood
(59). Other studies indicated that oPMN counts, rather than
cPMN counts, provide better accuracy in prediction of clinical
events associated with myelosuppressive chemotherapy-induced
neutropenia (e.g., the onset and resolution of fever) (146).

ORAL NEUTROPHILS AS POSSIBLE
BIOMARKERS

Nevertheless, using neutrophils from blood or tumor tissue
as biomarkers has practical and technical limitations, most
importantly, there are often only modest changes in neutrophil

numbers in the peripheral blood of tumor patients, while tumor
biopsies are restricted in size, resulting in challenging analysis or
non-representative results.

In contrast, analysis of saliva could offer an alternative route
for the evaluation of tumor-induced changes of neutrophil
activity, especially in HNC situation. Salivary diagnostics is a
non-invasive procedure that offers easier applicability, lower cost
and less sensitivity to technical variations than blood draws
or tissue analysis (37). Saliva reflects local changes in the oral
cavity with higher accuracy than systemic parameters (18),
therefore oPMN could have higher prognostic value than cPMN
in HNC progression.

Numbers of neutrophils in blood and in tumor are known
to correlate with tumor stage and can be predictors for the
HNC prognosis (5, 7, 19). As numbers of neutrophils in saliva
possibly reflects the emergency granulopoiesis (18) and the
presence of tumor-derived chemoattractants in saliva, including
CXCL-8 (118, 119), may additionally impact the total amount
of oPMN, their numbers in saliva might be considered easily
accessible biomarker for tumor progression and prognosis of the
disease.

While data on oPMN in healthy state or in CP are
extensive, the available data about oPMNs in oral cancer
are scarce. Taking into consideration high concentrations
of cytokines and growth factors released by tumor into
oropharyngeal environment and saliva, one could expect the
additional activation of oPMN, similar to this described for
TANs (Figure 3). The markers considered to be prognostic
for HNC and expressed on TANs (such as LOX1) (5),
might also be expressed in oPMN and have prognostic
significance.

FIGURE 3 | The expected changes in oPMN phenotype and functions under tumor environment in oral cancer. Tumor influences cPMN development and functions
before their migration into oral cavity, and may drive the additional changes of oPMN in the local environment, similarly to the changes of tumor-associated
neutrophils. cPMN, circulating polymorphonuclear leukocytes; oPMN, oral polymorphonuclear leukocytes; TAN, tumor-associated neutrophils; MDSC,
myeloid-derived suppressor cells; ROS, reactive oxygen species; NETs, neutrophil extracellular traps.
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Diminished cytotoxic capacity of oPMNs in certain conditions
(aging, smoking) (89, 90) may indicate the lack of cytotoxic
activity against tumor cells, thus predisposing to tumor
progression. Further studies on oPMN functions in HNC are
required to verify this.

Early stages of HNC are characterized with increased NET
formation by cPMN. Moreover, tumor-derived factors stimulate
production of NETs in vitro (23). While oPMNs in healthy
are reported to produce high amount of NETs (63), and NET
formation is even increased in inflammatory conditions (73),
there are no data about NET formation by oPMN in HNC. NETs
released by neutrophils contribute to tumor spread (147), thus
NET formation by oPMN might also be a useful tool in the
evaluation of prognosis in HNC.

CONCLUDING REMARKS

In the recent years, the knowledge about neutrophils and their
role in the pathogenesis of various diseases has significantly
evolved. Originally characterized as short-living killers,
neutrophils are now considered to be important players in
the regulation of multiple vital processes. Numerous functions
of blood or tumor neutrophils during cancer progression
and metastasis have been revealed, including the support of
angiogenesis or modulation of the adaptive immune responses.
At the same time, very scarce information is available for
oral neutrophils.

Here, we are collecting the available evidence that a
combination of physiological (aging) and pathological conditions

(smoking, oral inflammation) leads to the disbalance of oral
neutrophil functions, resulting in the changes in the oral
ecosystem. This may contribute to immune evasion and
trigger the pro-cancerous mechanisms in the oral cavity.
The available data about neutrophils in the oral cavity
suggest the suppression of oPMN activity during oral cancer
progression, which could lead to microbial complications and
chemoradiotherapy side effects. Such changes of oPMN activity
might be monitored, providing a useful diagnostic tool for disease
progression.
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