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We propose a novel force-field-parametrization procedure that fits
the parameters of potential functions in a manner that the pair
distribution function (DF) of molecules derived from candidate
parameters can reproduce the given target DF. Conventionally,
approaches to minimize the difference between the candidate
and target DFs employ radial DFs (RDF). RDF itself has been
reported to be insufficient for uniquely identifying the parameters
of a molecule. To overcome the weakness, we introduce energy
DF (EDF) as a target DF, which describes the distribution of the
pairwise energy of molecules. We found that the EDF responds

more sensitively to a small perturbation in the pairwise potential
parameters and provides better fitting accuracy compared to that
of RDF. These findings provide valuable insights into a wide range
of coarse graining methods, which determine parameters using
information obtained from a higher-level calculation than that of
the developed force field. © 2019 The Authors. Journal of Compu-
tational Chemistry published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.26035

Introduction

Molecular dynamics (MD) simulation has become a powerful
and easy-to-use tool to understand the molecular processes.[1]

It simulates the temporal development of molecules according
to the equation of motion, using forces derived from energy
functions with their parameters for molecules, referred to as a
force field (FF). Parametrization is conducted so that the param-
eters can reproduce the target properties of molecules of inter-
est. The target properties employed depend on the
parametrization policy of a certain FF. Experimental and/or
computed information is used for the target properties. The
experimental information used includes crystallography, vibra-
tional spectroscopy, NMR, enthalpy of vaporization, density of
liquid phase, and partitioning coefficient of different liquids.[2,3]

Computed information is derived from higher-level calculation
than that of the developed FF, such as by quantum mechanical
calculation;[2–4] for some coarse-grained FFs, information
derived from a fine-grained FF is used.[5]

Parametrization of FFs is considered essential, and various
methods and variations of parameters are still being developed
actively. For example, the water molecule is the most active target
of parameterization.[6] A study regarding the SPC/E water model[7]

reported that a 1% increase in the length of the OH bond led to
accurate reproducibility of the translational and rotational diffusion
of pure water and proteins. This newly developed model was
named SPC/Eb.

[8] In the TIP4P/2005 water model,[9] an increase in
the dispersion term followed by adjusting the repulsive term
improved the structure reproducibility of disordered proteins,[10]

which was named as TIP4P-D and was revised recently.[11]

In this study, we propose an approach that can automatically
determine the parameters of a molecule. A molecule of interest
is described with energy functions of bonded and nonbonded
parameters in an additive fashion as done in common FFs such
as AMBER FFs.[12,13] The method uses pair distribution functions

(DFs) of the target molecule represented in the radial axis as
the radial distribution function (RDF), and/or in the energy axis
as the energy distribution function (EDF), which are calculated
by other computational methods. Using this approach, we can
automatically determine the parameters of a molecule using
the DFs obtained from a higher-level calculation than that of
the developed FF. This approach fits the candidates’ parameters
of the molecule so that the derived RDF and/or EDF can repro-
duce the target RDF and/or EDF to the greatest extent. This
method is based on the fundamental Henderson theorem,[14]

which proves the one-to-one correspondence between the
pairwise interaction potential of molecules and the
corresponding pair DF. So far, the RDF has been used as the tar-
get property for parameterization of additive FFs and its numer-
ous applications have been reported. In particular, it is used to
determine coarse-grained FF parameters from the RDF derived
with a fine-grained FF, using the iterative Boltzmann inversion

[a] S. Chiba, Y. Okuno, T. Honma, M. Ikeguchi
RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho,
Tsurumi-ku, Yokohama 230-0045, Japan
E-mail: shuntaro.chiba@riken.jp

[b] S. Chiba
RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-
minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan

[c] Y. Okuno
Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho,
Sakyo-ku, Kyoto 606-8507, Japan

[d] M. Ikeguchi
Graduate School of Medical Life Science, Yokohama City University, 1-7-29,
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

Contract Grant sponsor: JSPS KAKENHI; Contract Grant number:
JP17K12775

This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.
© 2019 The Authors. Journal of Computational Chemistry published by Wiley
Periodicals, Inc.

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library J. Comput. Chem. 2019, 40, 2577–2585 2577

https://orcid.org/0000-0002-5118-6373
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://WWW.C-CHEM.ORG


(IBI),[15] the inverse Monte Carlo approaches,[16] or the Newton
inversion.[17] However, some studies have reported that very
similar RDFs gave different interaction potentials.[18–20] To con-
fine the space to be searched for candidate parameters that
give similar RDFs, the use of additional information is proposed,
for example, the pressure of the system[18] and RDFs derived
from multiple thermodynamic states.[19]

We hypothesized that the EDF, compared to the RDF, would
respond more sensitively to changes in interaction parameters.
We then introduced the EDF as a target property, expecting
that the fitting would be more successful. Moreover, this EDF-
based approach can remove the dependency of fitting results
on the cutoff definition that the RDF-based approach has,[21]

because pairwise interaction energy falls within a limited range.
Note that the Henderson theorem holds true for various DFs,[14]

such as the EDF,[22] in addition to the RDF.
To test the validity of our approach, in this initial attempt, we

examined whether the approach could satisfy a necessary condi-
tion, that is, if the parameters of a molecule could be reproduced
based on their derived DFs. In particular, we examined whether
the TIP3P water model[23] could be reproduced using our optimi-
zation procedure starting from the parameters of the SPC/E water
model. First, we derived the RDFs and EDFs of the target mole-
cule from MD simulations. We then fitted the candidate parame-
ters so that they could reproduce the target DFs to the greatest
extent. The difference between the target DFs and those derived
from the candidate parameters was minimized using a black-box
(derivative free) optimizer, that is, the covariance matrix adapta-
tion evolution strategy (CMA-ES).[24,25] We needed an optimiza-
tion procedure that could distinguish DFs derived from similar
potentials such as those obtained from the SPC/E and SPC/Eb
water models. The detailed procedures and accuracy comparison
of the RDF- and EDF-based optimizations are discussed below.

Methods

Definition of distribution functions

We used pair DFs of the target molecule in liquid phase for
parameter determination. The DFs were represented in the
radial axis as the RDFs or in the energy axis as the EDFs.

RDF ρ(r) of molecules around the molecule i is defined as

ρ rð Þ= 1
4πr2ρ0

X
j

δ rij− r
� �* +

,

where ρ0 is the bulk density calculated from the total number
of molecules in the simulation box, h�i represents ensemble
average of the value, and rij is the distance between the center
of mass of molecules i and j.

For EDF ρ(e), we employed the following definition[22]:

ρ eð Þ=
X
j

δ u rij
� �

−e
� �* +

,

where u is the interaction potential energy of molecules i and j
calculated from their relative coordinates, rij. According to the

definition, the EDF is a distribution of pairwise energy of
molecules.

For numerical calculation, each DF was defined as a histo-
gram. Possible molecular pairs, i and j, were taken into account.

General optimization procedure

To assess the performance of the RDF- and EDF-based fittings
of parameters of a molecule of interest, we employed the TIP3P
water model[23] as an example and generated the RDF and EDF
as targets of fitting. Starting from parameters peripheral to
those of the SPC/E water model,[7] we assessed the fitted
parameters by comparing them with the target parameters,
that is, those of the TIP3P model. We fitted the vdW parameters
of the oxygen atom (σ, ε), fixed charge of the oxygen atom (q),
geometric parameters of the distance between oxygen and
hydrogen atoms (d), and the angle between the two OH bonds
(a). vdW parameters of hydrogen atom were set to zero
because they are zero in both the TIP3P and SPC/E models. The
fixed charge of hydrogen atoms was defined as −q/2. The
parameters (σ [nm], ε [kJ/mol], q [e], d [nm], and a [degree]) of
TIP3P and SPC/E are (0.315061, 0.636386, −0.834, 0.09572, and
104.52) and (0.316557, 0.650629, −0.8476, 0.1, and 109.47),
respectively. We also attempted fitting the three parameters (σ,
ε, and q) by fixing the geometry of the water molecule to that
of TIP3P.

To generate the RDF and EDF of the TIP3P water model, we
built a cubic box containing 1000 molecules with a density of
0.9971 g/cm3. We conducted three individual 100-ns equili-
brated molecular dynamics (MD) simulations, that is, Target-
Run1, Target-Run2, and Target-Run3, in the canonical ensemble
by using the periodic boundary condition; from each of these,
10 RDFs and EDFs were generated by dividing each trajectory
at an interval of 10 ns. RDFs and EDFs were generated using a
conventional method with a domain of 1.5 nm and ERMOD
0.3.5,[26] respectively. Detailed information regarding the simu-
lation is described in the Simulation settings section.

The target RDF or EDF was defined as the average of the
10 RDFs or EDFs. The uncertainty of the target RDF or EDF as a
function of the distance axis or energy axis was defined as the
standard deviation of 10 RDFs or 10 EDFs, respectively. In sum-
mary, we obtained three target RDFs and three target EDFs
with uncertainties for Target-Run1 to Target-Run3.

Parameter optimization was conducted as explained in
Figure 1 by using an evolution strategy, wherein the candidate
parameters were generated and evaluated by comparing the
corresponding DF to the target DF. The generation and evalua-
tion iterations were continued until a convergence criterion
was met.

CMA-ES and parameter fitting

The vdW parameters (σ [nm], ε [kJ/mol]), fixed charge (q [e]),
and geometric parameters (d [nm], a/500 [degree/500]) were
optimized as shown in Figure 1. Here, a was scaled by a factor
of 500 because the initial and target parameters of a are rather
larger than those of other parameters. In the optimization pro-
cess, the CMA-ES,[24,25] a black-box (derivative-free) optimization
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algorithm that exploits an evolution strategy was employed as
an optimizer. Here, we briefly explain the procedure; more
detailed information on the CMA-ES can be found else-
where.[24,25] In each optimization step, it generates a desig-
nated number of parameter sets, called population, wherein
each set is called an individual. Then, the objective function to
be minimized is evaluated for the individual, and it is called fit-
ness. Then, a new population is generated based on the ranking
of the fitness values of previous generations. We adopted the
CMA-ES of the combined version of the rank-μ-update and
rank-one-update algorithms[24,25] implemented in the evolu-
tionary computation framework, DEAP 1.2.2.[27] This combined
version exploits information from μ individuals ranked based on
fitness of the previous generation (rank-μ-update) and informa-
tion from rank-one individuals of previous generations (rank-
one-update). Here, the ranking is relevant and quantitative
information or units of fitness are disregarded. Because the sea-
rch space of each population is updated according to fitness,
less information is required on the domain of parameters and
the responses of fitness for a slight perturbation added to dif-
ferent parameters (See Fig. S1 of the Supporting Information, in
which the search space is adapted). When conducting the
CMA-ES procedure, we used the default settings of all

parameters in DEAP 1.2.2, except for the number of individuals,
which was set to 12 × the number of parameters to be fitted,
and the initial covariance matrix for generating the first individ-
uals around the parameters of the SPC/E model, the initial stan-
dard deviation for all parameters was set to 0.01 estimated
from the differences between TIP3P and SPC/E, that is,
0.001496 nm for σ, 0.014243 kJ/mol for ε, 0.0136 e for q,
0.00428 nm for d, and 0.0099 for the scaled a. We considered
that the initial standard deviation was applicable to the search
domains of the parameter to be fitted. Although identical stan-
dard deviation was used in this study, different standard devia-
tions can be used in the DEAP framework.

The fitness of the individuals used was defined as follows:

fitness =
X
i

ρcandi −ρtargeti

� �2
σcandi σtargeti

Δxi , ð1Þ

where ρcandi and ρtargeti are the DFs derived from candidate and
target parameters as a function of bin index i, for which the bin

size is Δxi. σcandi and σtargeti are the uncertainties of DFs at bin
index i. Divided by uncertainty, the fitness becomes more
robust against the problem caused by the shortness of sam-
pling, and hence the optimization process becomes more sta-

ble. σcandi was obtained by deriving standard deviation from
10 DFs derived from 10 divided trajectories. The benefits of
considering the uncertainty will be discussed later.

The fitness derived from MD trajectories still has a discrep-
ancy from the true value that would be obtained when suffi-
ciently large sampling was possible. This discrepancy could be
called as precision. Precision is not necessarily small when the
individual is far from the target parameters. In other words,
the simulation length for sampling is not necessarily large.
This is the case especially at the beginning of the optimization
process. Hence, we started with 250-ps sampling for calculat-
ing the DF. Moreover, we doubled the sampling time per indi-
vidual of a generation if the smallest fitness value, that is, best
fitness, of the current generation was larger than the previous
best fitness, and the scaling factor × the average fitness of the
current generation was greater than the average fitness of
two generations ago. If the sampling time per individual of a
generation exceeded 100 ns, the sampling time was reset to
100 ns. The scaling factor was defined as two (fitnessRDF or
fitnessEDF) or four (fitnessR × E, see eq. 2). The optimization was
iterated until the best fitness decreased more than the thresh-
old value. The threshold was determined by choosing the larg-
est value among fitnesses between the three target DFs
described in the General optimization procedure section. The
threshold value for the RDF- and EDF-based optimization pro-
cesses was 0.38, selected from (0.36, 0.38, 0.38), and 5.19
selected from (4.31, 4.87, 5.19), respectively. These values were
calculated by combining Target-Run1 and Target-Run2, Target-
Run1 and Target-Run3, and Target-Run2 and Target-Run3.

In the optimization process, satisfying the threshold value for
the RDF-based approach does not directly satisfy the threshold
value for the EDF-based approach, and vice versa because
fitnessRDF and fitnessEDF for a slight added perturbation

Figure 1. Optimization process of RDF- and EDF-based derivations of force-
field parameters. See the main text for definitions of individual, fitness
(eq. (1) or eq. (2)), threshold, precision, and scale. The best and average fitness
values are the lowest and average of fitnesses in a generation, respectively.
When the RDF-based derivation is adopted, the target distribution function
and the threshold regarding the RDF are employed. This holds true for the
EDF-based method. The CMA-ES module is represented by the double-lined
boxes, that is steps 1 and 4. This module generates individuals and receives
the corresponding fitness values. The number of parameters to be fitted
was five for fitting of σ, ε, q, d, and a and three for the fitting of σ, ε, and
q in step 1. Figure S1 of the supporting information illustrates this
optimization process.
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respond differently. To obtain fitted parameters that almost sat-
isfy both thresholds, we introduced the following definition of
fitness:

fitnessR× E = fitnessRDF fitnessEDF, ð2Þ

where the fitnesses calculated using RDF and EDF using eq. (1)
are multiplied. Optimization was conducted until the multiplied
value of both thresholds was satisfied.

Simulation settings

The initial cubic box containing 1000 water molecules was
structurally minimized using the steepest descent algorithm.
The minimized system was subjected to a three-step equilibra-
tion, that is, 50-ps MD simulation with a time step of 0.5 fs,
applying random initial velocity that gave the Maxwell–
Boltzmann distribution at 298 K, 50-ps MD simulation with a
time step of 1 fs, and 200-ps MD simulation with a time step of
2 fs. Small time steps were used to relax the system that was
unstable sometimes owing to the parameters assigned by the
CMA-ES module. The equilibrated system was subjected to a
production run with a time step of 2 fs with a snapshot struc-
ture recorded for analysis at every 0.5 ps. The simulation length
of the production run was set, as explained in the previous sec-
tion, or was set to 100 ns, when the target RDFs and EDFs were
generated.

During the simulation, the vdW interaction was smoothly
switched to zero starting from 0.9 to 1.0 nm. The electrostatic
interaction was calculated using the particle mesh Ewald[28,29]

with a real space cutoff of 1 nm, reciprocal space grids of 20 for
x, y, and z directions, an interpolation order of 4, and a Gaussian
width of 0.320163 nm. The equation of motion was integrated
using the leap-frog algorithm[30] by controlling the temperature
at 298 K by using the velocity rescaling algorithm[31] with a cou-
pling time of 0.1 ps. The distances between the oxygen and
hydrogen atoms and between the two hydrogen atoms were
fixed using the settle algorithm.[32] All minimizations and simu-
lations were conducted using GROMACS 2018.1[33] and were
terminated normally.

Results and Discussion

Comparison of fitted parameters and convergence

We conducted individual optimization three times (hereinafter
referred to as Opt-Run1 to Opt-Run3). Opt-Run1 to Opt-Run3
employed target DFs derived from Target-Run1 to Target-Run3,
respectively. After iterating generations and evaluations of opti-
mization processes several times, as described in Figure 1, the
fitness value for each fitness definition reached the
corresponding threshold. The comparison of the RDF- and EDF-
based fitnesses showed that the EDF provided more accurate
parameters for σ, ε, q, and d, but not for a, for which the more
accurate value was obtained using the RDF-based definition, as
shown in Figure 2. We found that the convergence of the RDF-
based fitness did not lead to the convergence of the EDF-based
fitness, as shown in Figure 3a and its inset. On the other hand,

convergence of the EDF-based fitness to its threshold value
almost made the RDF-based fitness converge to its threshold
value. Hence, we concluded that the EDF-based fitness provides
more accurate parameters than the RDF-based fitness.

We observed a small deviation from the threshold at the final
steps of the RDF-based fitness for the EDF-based optimization
(the inset of Fig. 3b). The deviation was quenched using the
R × E-based fitness (insets of Fig. 3c). The convergence of the
R × E-based fitness resulted in a smoother decrease of the RDF-
and EDF-based fitnesses. The accuracy of the obtained parame-
ters was improved or at least did not worsen more than those
obtained through the RDF- or EDF-based fitnesses. Hence,
among three fitness definitions, the R × E outperformed the
others on an average. The parameters obtained through
the R × E-based fitness approached the target parameters well.
The maximum ratios of errors obtained among the three indi-
vidual optimizations were 0.9 × 10−4, −1.4 × 10−3, −1.4 × 10−3,
0.9 × 10−3, and 4 × 10−4, which were at least 10-fold smaller
than the ratios of error for the parameters of SPC/E (initial
parameters), that is, 47 × 10−4, 22 × 10−3, 16 × 10−3,
−43 × 10−3, and 47 × 10−4 for σ, ε, q, d, and a, respectively.
These ultimately obtained error ratios showed that the optimi-
zation procedure can distinguish the DFs of highly similar water
models such as SPC/E and SPC/Eb, the difference between
which is a 1% increase in the OH bond length.[8]

We observed the correlation that when an error of a parame-
ter derived using a certain target DF was relatively larger, an
error of another parameter derived using the same target DF
also increased. The most correlated errors were those of σ and
ε with a correlation coefficient of −0.94, which was calculated
using the nine errors described in Figure 2 for σ and ε. The
second-most correlated errors were q and d with a correlation
coefficient of 0.93. These correlations were not related to the
final fitness compared to the corresponding threshold, as
shown in Figure 2. The correlation would occur because some
parameters correlate with each other, and the effect of correla-
tion would be eliminated by fixing one of the correlated param-
eters. We conducted optimization only for σ, ε, and q by fixing
d and a to those of TIP3P by using the same three target DFs.
We found a small improvement in the accuracy of the fitted σ

and ε compared with those obtained when all five parameters
were subjected to the optimization, as shown in Figure S2 of
the Supporting Information. On the other hand, the accuracy of
q improved by one to two orders of magnitudes. This suggests
that excluding the correlated parameters from the fitting would
be one option to obtain accurate parameters. In this case, the
EDF-based optimization was slightly better than the R × E-
based optimization.

Comparison of properties derived with fitted parameters

To evaluate how errors of fitted parameters affect the represen-
tative properties of the target molecule, we derived the molec-
ular dipole moment, pressure, and solvation free energy (SFE)
of a single molecule using the fitted parameters. The pressure
was derived from the simulation corresponding to the fitted
parameter during optimization. The SFE was calculated using
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the free energy perturbation combined with the multistate Ben-
nett acceptance ratio method[34] implemented in pymbar
3.0.3[34] and Alchemical Analysis 1.0.2,[35] the procedure and
obtained SFEs for which are detailed in Table S1 of the
Supporting Information.

The errors observed for parameters derived with the RDF-
based fitness were larger than those observed for the EDF-
based and R × E-based fitnesses, as shown in Figure 4. This
observation was consistent with the relative magnitude of
errors in parameters, as shown in Figure 2. The errors in the
molecular dipole moment and SFE, and in the EDF-based and
R × E-based optimizations were comparable. On the other
hand, the errors in the pressure derived using the R × E-based
optimization were smaller than those with the EDF-based opti-
mization. It is difficult to relate the errors in these properties
and the parameters used. However, a clear positive correlation
between the errors in pressure and the errors in σ were
observed. We also individually derived these properties using
the parameters obtained through the simultaneous optimiza-
tions for σ, ε, and q. As a result, the EDF-based optimization
outperformed the others as shown in Figure S4 of the
Supporting Information. In both the optimization for five and
three parameters, we concluded that considering the informa-
tion of EDF is essential for the accurate determination of
parameters.

Bin definitions and fitness of target parameters

We found that the fitness calculation depends on the bin defi-
nition of DF, for example, with smaller bin sizes, the DF can cap-
ture the details of true distributions, whereas the uncertainty

corresponding to each bin increases. We studied 11 types of
definitions for RDF, that is, bin size = (1, 2, 4, 5, 10, 20, 40, 50,
100, 200, 500) × 10−5 nm. The RDF was defined from 0 to
1.5 nm. For the EDF, 200 types of definitions were studied, as
listed in Table 1. In the previous sections, the employed bin def-
initions were selected based on the consideration mentioned in
the subsequent sections.

We conducted three individual 100-ns simulations of the
TIP3P water box, Target-Run1 to Target-Run3, and calculated
the fitnesses of three pairs from among them by using eq. (1).
Their maximum value was defined as representative of the fit-
ness for its bin definition. We observed a trivial dependency of
fitness on bin definitions, as shown in Figure 5. Smaller bin sizes
gave slightly smaller (better) fitness. The ratio between the
maximum and minimum RDF-based fitnesses calculated using
various bin definitions was 1.43. The corresponding value of the
EDF-based fitness was 1.01. The RDF-based fitnesses calculated
using bin sizes of 0.02 and 0.05 nm were significantly larger
than those calculated using smaller sizes. This could reflect the
loss of ability to capture the details of the true DF. Hence, bin
sizes between 0.00001 and 0.01 nm were selected for the RDF-
based fitness.

Interestingly, when uncertainty in eq. (1) was not considered,

that is, when σcandi = σtargeti = 1, the dependency was relatively
different. Better fitnesses could be obtained with larger bin
sizes. The ratio between the maximum and minimum RDF- and
EDF-based fitnesses was 361 and 23.5. This is simply because
larger bin sizes achieved statistically more stable values, and

ρcandi −ρtargeti

� �2
decreased. Without uncertainty, the details of

the true DF would be buried in this statistical effect. The results

Figure 2. Error ratios of fitted parameters, σ, ε, q, d,
and a, and the corresponding target parameters.
The error is defined as (fitted parameter—target
parameter). The plots also show the fitness relative
to the threshold of each fitness defined when these
parameters are determined.
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show that without uncertainty, the robustness of fitness for bin
definitions can deteriorate. Hence, we decided to consider
uncertainty, as in eq. (1). Note that the percentage of EDF-
based fitness values contributed from the regions not involved
in the analysis of bin definition, that is (−30.02) to (−0.22) and

0.22 to 30.22, was approximately 97%–98% when considering
uncertainty. This indicates that there would be a room for fine-
tuning of bin-size definition in future research.

Bin definitions and response of fitness for perturbation on
parameters

We evaluated the response of fitness when a perturbation was
added to a single parameter. We conducted a 100-ns simulation
using parameters including the perturbed one and evaluated
fitness between the derived DF and three target DFs derived

Figure 3. Convergence of fitness as a function of cumulative simulation time
over the generations per individual. Here, fitted parameters are σ, ε, q, d,
and a. The optimization used the (a) RDF-, (b) EDF-, and (c) R × E-based
fitnesses. In the insets, the (a) EDF-, (b) RDF-, and (c) RDF- and EDF-based
fitnesses are shown. The cumulative simulation times are tabulated in
Table S2 of the Supporting Information.

Table 1. Bin definition of energy-distribution-function searched for analysis of bin dependency of fitness.

Region (kcal/mol) −30.02 to
−0.22

−0.22 to −0.02 −0.02 to 0.02 0.02 to 0.22 0.22 to
30.22

Minimum bin size
(kcal/mol)

0.04 0.002 0.0002 0.002 0.04

Bin size (kcal/mol) 0.04 0.002 × Ii 0.0002 × Jj 0.002 × Kk 0.04
Variation of bin definition i = {1, …, 5}

Ii = {1, 2, 4, 10, 20}
j = {1, …, 8}

Jj = {1, 2, 4, 8, 20, 40, 100, 200}
k = {1, …, 5}

Kk = {1, 2, 4, 10, 20}

Bin definition ID = 5 × 8 × (i − 1) + 5 × ( j − 1) + k. Note that only in this table, unit for energy is kcal/mol (1 cal = 4.184 J).

Figure 4. Errors of properties derived using fitted parameters. (a) Errors of
the molecular dipole moment; (b) pressure obtained when the canonical
ensemble simulation was conducted; and (c) solvation free energy (SFE). The
error is defined as (property derived from fitted parameters—property
derived from the target parameters).
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beforehand as functions of various bin definitions. Their mini-
mum value was defined as the representative of fitness for its
bin definition. The perturbations that we employed
were �0.01% for σ, q, d, and a, and �0.05% for ε. As the
response of a perturbation of 0.01% for ε was too small both
for the RDF- and EDF-based approaches, we used the fivefold
larger perturbation for ε. In addition, the response of fitness
was evaluated when the SPC/E parameters were used.

The comparison of the fitnesses of the SPC/E parameters and
target parameters showed that any bin definition for both the
RDF- and EDF-based optimizations could distinguish them, as
shown in Figures 6a and 6c. For the RDF-based approach, we
observed the tendency of increased distinguishability for these
parameters when the bin size was increased. For the EDF-based
approach, the distinguishability improved remarkably when the
region of −0.02 to 0.02 was treated as a single bin with a bin
size of 0.04, which corresponded to j = 8 (J8 = 200) in Table 1.
This is because the uncertainty of the bins around 0 had
remarkably decreased, for example, the average of values and
standard deviations in this region for bin sizes of 0.0002
(J1 = 1), 0.02 (J7 = 100), and 0.04 (J8 = 200) were 3.11 � 0.0006,
311 � 0.026, and 622 � 0.005, respectively. This made the value

of Δxi= σcandi σtargeti

� �
in eq. (1) larger for the bin size of 0.04.

In the case that a small perturbation was added to each
parameter, the RDF-based approach showed dependency on
the bin definitions, as shown in Figure 6b. We observed a simi-
lar tendency of greater responses of σ, ε, and d with larger bin
sizes. However, the tendency was not observed, especially for a,
where the fitness responded oppositely. This means that bin
definition should be chosen carefully. In the parameter

Figure 6. Ratio of the fitness of perturbed parameters added to the target
parameters and the fitness between target parameters of individual
simulations are plotted for (a, b) RDF-based and (c, d) EDF-based
optimizations as functions of various bin definitions. Three target
distribution functions were derived from three individual runs (Target-Run1–
Target-Run3), respectively, and therefore, we had three fitnesses of the
perturbed parameters, among which the minimum was used for the ratio
calculation. The maximum among the fitnesses between target DFs was
used for the ratio calculation. The perturbation for σ, q, d, and a is �0.01%
and that for ε is �0.05%. The positively and negatively added perturbations
correspond to solid and dashed lines, respectively.

Figure 5. Fitness defined as eq. (1) of the target molecule, calculated using
various bin definitions, is plotted for the (a) RDF- and (b) EDF-based
approaches. In addition, fitness calculated without the uncertainty of
distribution function (eq. (1), w/o σ) is plotted. The fitness was defined as
the maximum fitness among three pairs of three individual simulations,
that is, Target-Run1 and Target-Run2, Target-Run1 and Target-Run3, and
Target-Run2 and Target-Run3.
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optimization, we used the bin size of 0.01 nm. In this case, the
RDF-based approach can distinguish parameters with a small
perturbation added to σ, ε, and d from the original. However, it
cannot distinguish parameters with a small perturbation added
for q and a from the original. For the EDF-based approach, the
shape of the dependency of bin definitions for q, d, and a was
similar to that obtained when SPC/E parameters were used, as
shown in Figures 6c and 6d. Interestingly, the responses
observed for σ and ε were relatively flat. For any perturbed
parameters, the EDF-based approach could distinguish them
from the original. We used the bin definition of i = 1, j = 8, and
k = 5 (the bin definition ID = 40) in Table 1. This definition
resulted in relatively smaller fitness values between the DFs
derived among individual simulations of the target parameters
(Fig. 5b) and a larger response when a small perturbation was
added (Fig. 6d).

According to the results in Figures 6b and 6d, the EDF-based
approach could achieve more accurate parameters. The results
correlate with the actual accuracies of the RDF- and EDF-based
approaches obtained through the optimization process, as
shown in the previous sections.

Conclusions

We confirmed that a set of force-field parameters for a target
molecule can be determined by adjusting candidate parame-
ters such that they reproduce the target DF of the pair of mole-
cules, taking the water molecule as an example target.
Conventionally, the DF represented in the radial axis (RDF) was
used for such purposes. In this study, we showed the benefits
of introducing the DF represented in the energy axis (EDF).

We fitted parameters of energy functions targeting the RDF
and/or EDF derived for the TIP3P water model starting from the
parameters of the SPC/E water model, employing a black-box
(derivative-free) optimizer, the CMA-ES, to search for candidate
parameters that can reproduce the target DFs. As a result, more
accurate parameters were yielded when the residual sum of the
squares of EDFs between the candidate and target DFs was mini-
mized, in which uncertainty in the DFs originating from the short-
ness of the structure sampling was considered. This incorporation
of uncertainty can improve conventional RDF-based fittings such
as the iterative Boltzmann inversion (IBI). A more accurate fitting
was achieved owing to the higher sensitivity of the EDF than that
of the RDF for a small perturbation added to a set of the parame-
ters of the molecule. The discovery of the benefits of introducing
the EDF provides valuable insights into the class of coarse-
graining approaches—the so-called bottom–up approaches[5]—
that fit parameters using information obtained from a higher-level
calculation than that of the developed force field. However, given
that this work was performed only under a limited set of condi-
tions, that is, determination of parameters to reproduce the DFs
of TIP3P water, the applicability of EDF-based optimization should
be tested in more demanding situations, such as the coarse
graining of a molecule by using the target DF obtained through
the corresponding fine-grained description; this would involve
the use of quantum mechanics. For example, the fragment
molecular orbital (FMO) method can be used to determine the

ab initio quantum mechanics-based pairwise interaction energies
of molecules (fragments) for a large system such as the one that
includes more than thousands of water molecules[36]; this can be
used to derive the EDF of the molecules.

The computational cost for searching the candidate parame-
ters that reproduced the target DF is not trivial. Thus, reducing
the computational cost must be investigated for practical appli-
cation of the force-field determination. The optimization requir-
ing the longest cumulative simulation time of 963 ns per
individual over the generations (Fig. 3c, Opt-Run3) resulted
from the repeated 100-ns samplings for the last several genera-
tions. This suggests that there is a room of improvement in the
optimization procedure, especially at the step where simulation
time was doubled, as shown in Figure 1. Likewise, pursuing a
more appropriate optimizer and a judicious minimizing algo-
rithm other than black-box optimization would be desirable.
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