
Inference of Cross-Level Interaction between Genes and
Contextual Factors in a Matched Case-Control Metabolic
Syndrome Study: A Bayesian Approach
Shi-Heng Wang1, Wei J. Chen1,2,3, Lee-Ming Chuang4,5, Po-Chang Hsiao1,2, Pi-Hua Liu6,

Chuhsing K. Hsiao1,3,7*

1 Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan, 2 Genetic Epidemiology Core Laboratory, Center

of Genomic Medicine, National Taiwan University, Taipei, Taiwan, 3 Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan,

4 Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, 5 Institute of Clinical Medicine, College of Medicine, National Taiwan University,

Taipei, Taiwan, 6 Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Guishan, Taiwan, 7 Bioinformatics and Biostatistics Core, Center of

Genomic Medicine, National Taiwan University, Taipei, Taiwan

Abstract

Genes, environment, and the interaction between them are each known to play an important role in the risk for developing
complex diseases such as metabolic syndrome. For environmental factors, most studies focused on the measurements
observed at the individual level, and therefore can only consider the gene-environment interaction at the same individual
scale. Indeed the group-level (called contextual) environmental variables, such as community factors and the degree of local
area development, may modify the genetic effect as well. To examine such cross-level interaction between genes and
contextual factors, a flexible statistical model quantifying the variability of the genetic effects across different categories of
the contextual variable is in need. With a Bayesian generalized linear mixed-effects model with an unconditional likelihood,
we investigate whether the individual genetic effect is modified by the group-level residential environment factor in a
matched case-control metabolic syndrome study. Such cross-level interaction is evaluated by examining the heterogeneity
in allelic effects under various contextual categories, based on posterior samples from Markov chain Monte Carlo methods.
The Bayesian analysis indicates that the effect of rs1801282 on metabolic syndrome development is modified by the
contextual environmental factor. That is, even among individuals with the same genetic component of PPARG_Pro12Ala,
living in a residential area with low availability of exercise facilities may result in higher risk. The modification of the group-
level environment factors on the individual genetic attributes can be essential, and this Bayesian model is able to provide a
quantitative assessment for such cross-level interaction. The Bayesian inference based on the full likelihood is flexible with
any phenotype, and easy to implement computationally. This model has a wide applicability and may help unravel the
complexity in development of complex diseases.
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Introduction

Both genetic and environmental factors play an important role

in the development of many diseases, often interacting in ways that

elevate disease risk, especially in complex diseases such as obesity,

cardiovascular disease, and psychopathology [1–3]. To investigate

genetic and environmental (GE) interactions [4–6], many studies

have focused on environmental factors measured at the individual

level, such as individual demographic information or lifestyle. It is

possible, however, that group-level environmental factors, usually

called contextual variables, also contribute to such risk. For

instance, community disparity in medical resources may affect the

availability and quality of treatment, and therefore living in a

deprived area may result in a somewhat modified effect on the

health risk incurred by individuals who engage in unhealthy

behaviors such as smoking [7]. This contextual exposure affects

the individual health status of each member of the group, and is

therefore called the contextual effect [8,9].

Difficulties arise when it is of interest to model the cross-level

interaction between the group and individual variables, especially

with data of nested structures. Traditional logistic regression

models with health status as the unit of analysis can include both

contextual variables and genes as the covariates, but this approach

is not appropriate for nested data where individuals within the

same group or under the same category may share a certain

degree of similarity in risk profile [8], not to mention when this

similarity is group- or category-specific. Even conditional logistic

regression models are not flexible enough to account for the nested

structure of heterogeneity in such a study design. Other issues

concern the evaluation and computation of the cross-level
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interaction. These issues differ from what has been considered in

most current research where GE interaction is evaluated at the

individual level based on a case-control study design. For cross-

level GE interaction in clustered data, one immediate computa-

tional complexity involves the existence of multiple sources of

variation. For example, homogeneity among individuals in the

same group may produce dependence [8], whereas the corre-

sponding matched controls for any case may induce further

correlation. In addition, the genetic effects may be modified by

group-level exposures and may, therefore, correlate with each

other. These nested sources of variability hamper the model

construction and parameter inference. Several research groups

adopted Bayesian or non-Bayesian hierarchical models to alleviate

the problem of nested variability [10,11], but these models are not

for matched case-control studies and not for group-level GE

interaction [12–15].

To accommodate the nested structure of variation in both the

individual- and group-level variables, and to model directly the

interaction between individual genetic factors and group-specific

variables, Bayesian hierarchical models with random effects can be

formulated for inference. By employing hierarchical models with

mixed effects, inference of these multiple variance components

becomes feasible and may help elucidate whether cross-level

interaction does exist, and/or quantify the strength of this

interaction from a probabilistic perspective based on posterior

distributions.

This research was motivated by a matched case-control study of

metabolic syndrome [16], a condition which is characterized by a

group of metabolic conditions and risk factors. In that metabolic

disorder study, the effects of community exercise facility as well as

five candidate SNPs (rs1801282, rs7799039, rs12535708,

rs822390, and rs182052) were investigated. These factors were

selected based on previous publications of association studies

linking them to obesity and body mass index (BMI). Many studies

have recognized the association between metabolic disorder and

both diabetes and coronary heart disease [17,18], while a few

studies have shown that both genes and contextual variables, such

as community disadvantage, income inequality, and factors

affecting community development [19–22], associate strongly with

the risk of metabolic syndrome. In a densely populated country

such as Taiwan where the boundary between residential areas and

commercial districts is blurred, an individual household may not

have enough space for exercise. Even at the community level,

there may not be sufficient exercise facilities such as gymnasiums,

track fields, parks, or playgrounds for residents to use. This may

restrict an individual’s accessibility to an exercise facility and

influence one’s degree of physical inactivity. Although such group-

level environmental variables can exert an effect on the risk of

metabolic syndrome in addition to the effect exerted by individual

environmental factors [19–23], it is not certain whether the

contextual variable will interact with the genetic effect in the same

manner as the individual environmental variable does [24–29]. In

the rest of this article, we reserve the abbreviation GE for the

cross-level interaction at the contextual-level, and Ge for the gene-

environment interaction at the individual-level.

The purpose of this paper is to explore the cross-level GE

interaction in this matched case-control study via a Bayesian

hierarchical model with an unconditional likelihood approach. We

illustrate our approach with the aforementioned study concerning

five candidate SNPs and GE which involves a contextual variable

measuring the availability of exercise facilities. The posterior

samples of the parameters of interest, the group-specific random

effects and the variance among them, will be used to examine the

existence of cross-level GE interaction.

Methods

Motivating Example: The Metabolic Syndrome Study
This study was conducted by Wang and colleagues in Tao-Yuan

County in Taiwan in 2004 [16]. Here we briefly summarize the

collection procedures of samples, while other details are referred to

their original paper. This study recruited 6463 community

residents aged greater than 40 years old in an adult health

check-up program, and collected a questionnaire and blood

sample from each participant. Among the recruited subjects, 1263

were classified with metabolic syndrome based on US National

Cholesterol Education Program Adult Treatment Panel III (NCEP

ATP III) criteria, with BMI replacing waist measurements. That is,

an individual was considered to have metabolic disorder if three or

more of the following criteria were met: BMI $ 27 kg/m2;

triglycerides $ 150 mg/dl; HDL ,40 mg/dL in men and

,50 mg/dL in women; blood pressure $ 130/85 mmHg or

medication for hypertension currently taken; and fasting glucose $

110 mg/dL or medication for diabetes currently taken. Next, two

hundred- and sixty-eight cases were randomly selected and

matched with one or two controls by sex, age, educational level,

ethnicity, and a contextual variable measuring the availability of

exercise facilities. Exercise facilities included swimming pools,

parks, bowling alleys, golf courses, fitness centers, and activity

centers for the elderly. For each residential area, the exercise

facility density was defined as the number of facilities divided by

the number of residents, and this density was categorized into four

different levels of availability in exercise facility: level I for very low

availability, II for low, III for medium, and IV for high. The final

data set for analysis contained 268 metabolic syndrome cases and

322 individually matched controls. The terms ‘‘cases’’ and

‘‘controls’’ here do not intend to indicate that metabolic syndrome

is a disease. It is indeed a group of metabolic conditions that

associate strongly with increased risk of cardiovascular disease and

diabetes. In other words, metabolic syndrome is a clustering of risk

factors. Discussions and debates about its definition, inclusion

criteria, and usefulness in clinical practice have drawn much

attention [30,31]. Here we call these identified individuals ‘‘cases’’

simply for ease of presentation.

Candidate Genes and Odds Ratios
Three candidate genes, the adiponectin gene APM1 on

chromosome 3q27, the peroxisome proliferator-activated receptor

c gene PPARG on 3p25, and the leptin gene LEP on 7q31, were

selected as candidate susceptibility genes for human obesity and

Type 2 diabetes [32–34], and five SNPs (rs1801282 on PPARG,

rs7799039 and rs12535708 on LEP, and rs822390 and rs182052

on APM1, respectively) were genotyped for this study. Based on

preliminary analysis of genotype-specific odds ratios, we employed

an additive model for each of the three SNPs, rs1801282,

rs182052 and rs822390, and a recessive model for the other two.

Table 1 lists the distributions of the SNP genotypes as well as their

genetic effects in terms of conditional odds ratios of GE interaction

under each category of the contextual variable. It can be observed

that the category-specific genetic effect seems to vary across the

four levels, indicating a possible GE interaction. Furthermore,

because linkage disequilibrium (LD) was observed between

rs12535708 and rs7799039 (D’= 0.89, R-square = 0.46), the

SNP-SNP interaction between them is considered in later analysis.

In addition, because a protective effect in carriers of the Ala allele

of rs1801282 (PPARG_Pro12Ala) against Type 2 diabetes and its

association with lower body mass [35,36] has not been consistently

reported [37], possible environmental modifiers like exercise may

be considered [38]. Therefore, in the following we focus on the

Cross-Level Gene-Environment Interaction
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cross-level interaction between rs1801282 and exercise facility

availability in the residential environment.

Bayesian Hierarchical Model with Unconditional
Likelihood

To examine if the effect of the SNP rs1801282 varies among

different categories of the contextual covariate, along with the

SNP-SNP interaction between rs12535708 and rs7799039 in the

same gene LEP on 7q31, we adopt a Bayesian generalized linear

mixed-effects model (GLMM). This Bayesian GLMM assumes

that each response variable Yijk, the binary disease status (1 for

case and 0 for control) of the k-th individual in the j-th pair of the

i-th category, follows a Bernoulli distribution with the parameter

pijk indicating the probability of having metabolic syndrome,

Yijk Dpijk*Bernoulli pijk

� �
,

where the probability of being diseased pijk is associated in the logit

scale with the 5 (SNP) genetic components S(1),:::,S(5) (following

the same order and coding as in Table 1) and a SNP–SNP

interaction S(2,3), in addition to other covariates X ,

logit pijk

� �
~
X5

g~1

b(g)
i |S

(g)
ijk zc|S

(2,3)
ijk zh|Xijkzbizbij :

The implication of each parameter is explained in the following

paragraphs, and outlined in the supporting information Table S1.

All considered explanatory variables are summarized as well.

Cross-level GE Interaction
The covariate S

(g)
ijk indicates the coding of the SNP g for the k-th

individual in the j-th pair of the i-th category. Its associating

parameter b(g)
i represents the SNP effect under the i-th category

for the SNP g. For instance, the evaluation and comparison of the

4 (i~1,:::,4) posterior distributions of b
(1)
1 , b

(1)
2 , b

(1)
3 , and b

(1)
4 can

reveal if the effect of the first SNP (g = 1) rs1801282 varies among

the 4 different categories of the contextual covariate. Therefore,

the variance var(b
(g)
i ) = s2

(g) can model directly the heterogeneity in

SNP effects among 4 categories for each SNP g. This variance

measures the degree to which the genetic effect differs across

different categories of the contextual variable. This is thus the

parameter of interest when the cross-level GE interaction is to be

evaluated.

SNP-SNP Interaction and Other Effects
The SNP-SNP interaction between the second SNP rs7799039

and the third SNP rs12535708 in the same gene is measured by c.

The parameter h represents the effect of other explanatory

variable X . The random intercept bi stands for the category-

specific effect accounting for the sampling variability among

residential areas. The second random intercept bij is for the pair-

or cluster-specific random effect. This bij represents the matching

relation within each pair. In other words, subjects in the same pair

share the same baseline characteristics and pairs are taken to be

independent. The random coefficients are all assumed to follow

normal distributions with a large variance representing vague

information. A complete model specification including all prior

distributions is detailed in the supporting information (Text S1).

Computation
The analysis was conducted based on posterior samples

obtained from Markov chain Monte Carlo (MCMC) methods

with WinBUGS 1.4.3. The chain contained 50,000 iterations

following a burn-in of 5,000 samples to reduce the impact from

initial values and the final posterior sample was derived at the

thinning rate of 10 to reduce dependence among posterior points.

The code in WinBUGS is detailed in the supporting information

(Text S2).

Results

Cross-level Gene-Environment Interaction
To investigate the existence of the cross-level GE interaction, we

list in Table 2 the posterior means and standard deviations of the i-

th category-specific genetic effects b
(g)
i and variance s2

(g) for each

SNP g, and display the posterior distributions of the b(g)
i for SNPs

g = 1, …, 5 in Figure 1(a)–(e). From Table 2, it is apparent that for

rs1801282 (g = 1) the four category-specific means b
(g)
i ,i~1,:::,4,

differ the most. This implies a relatively large variation of genetic

effect across the 4 areas. The same pattern can be observed in the

Table 1. The observed genotype counts of metabolic cases
(cs) and controls (cn) under each category of exercise facility
availability.

Category Total

SNP I II III IV

genotypes
(coding) cs/cn cs/cn cs/cn cs/cnl cs/cn

S(1) , rs1801282, PPARG_Pro12Ala

C/C (0) 46/52 84/109 63/68 51/64 244/293

C/G (1) 5/1 10/13 4/8 5/7 24/29

Conditional OR 5.7 0.9 0.7 0.9

S(2) , rs7799039, LEP_G2548A

A/A, A/G (0) 40/45 77/108 54/69 42/62 213/281

G/G (1) 11/8 17/17 13/7 14/9 55/41

Conditional OR 1.4 1.4 2.7 3.3

S(3) , rs12535708, LEP_H1328082

C/C, C/A (0) 50/50 83/114 60/73 52/68 245/305

A/A (1) 1/3 11/8 7/3 3/4 23/17

Conditional OR 0.4 2.3 2.9 1.8

S(4) , rs822390, APM1_G_7950T

T/T (0) 41/47 83/114 58/72 45/65 227/298

T/G (1) 6/5 6/4 6/4 2/3 20/16

G/G (2) 4/1 5/4 3/0 9/3 21/8

Conditional OR 1.7 1.6 3.2 2.0

S(5) , rs182052, APM1_A_10066G

A/A (0) 6/8 13/26 7/18 11/15 37/67

A/G (1) 28/23 46/62 30/38 25/38 129/161

G/G (2) 17/22 35/34 30/20 20/18 102/94

Conditional OR 0.9 1.5 1.8 1.3

Total 51/53 94/122 67/76 56/71 268/322

doi:10.1371/journal.pone.0056693.t001

Cross-Level Gene-Environment Interaction
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corresponding four posterior distributions of b
(g)
i in Figure 1. The

curves in Figure 1(a) are more scattered, as compared with the

other four plots (Figure 1(b), (c), (d) and (e)), indicating substantially

larger heterogeneity in the genetic effect of rs1801282 across the

four categories. Another supporting evidence lies in the inference

of s2
(g) for g = 1, …, 5. The last column in Table 2 lists the posterior

means of s2
(g) where the first SNP rs1801282 has the largest mean

(1.31), implying again a larger heterogeneity. Figure 2 displays

their corresponding distributions. Indeed, s2
(g) for rs1801282 is the

most right skewed, representing an observable difference among

areas. Further evidence manifests through the evaluation of the

difference in risk across the four categories. For instance, for SNP

g = 1, if the posterior probabilities of the risk, P(b
(1)
1 .0|y),

P(b(1)
2 .0| y), P(b(1)

3 .0| y), and P(b(1)
4 .0| y), deviate from each

other, then this SNP has divergent effects among areas. Again, for

rs1801282, the corresponding four posterior probabilities contain

the largest degree of variation (Table 3).

These findings consistently imply the existence of the cross-level

interaction between this SNP and the contextual variable. To be

specific, the analyses suggest that, even among those residents with

the same genotype C/G for rs1801282, living in an area with low

availability of exercise facilities (category I) leads to a higher risk of

being metabolically diseased. In other words, the G allele (also

called the Ala allele in PPARG_Pro12Ala) is considered protective

under categories II-IV, but not under category I. In fact, we have

conducted Bayesian model selection using the deviance informa-

tion criterion (DIC) to compare the model with GE interaction

and without (assuming b(1)
1 ~b(1)

2 ~b(1)
3 ~b(1)

4 ). The former model

containing the cross-level GE interaction term was selected.

This pattern of interaction, however, is not shown for other

SNPs. For example, the second SNP (rs7799039) in Figure 1(b)

and the fourth SNP (rs822390) in Figure 1(d) reveal only mild

variation; while the third SNP (rs12535708) in Figure 1(c) and the

Figure 1. The posterior distributions of b
(g)
i (i = 1,…,4) for four categories are displayed in (a)–(e) for SNP g = 1, g = 2,…, g = 5,

respectively, under the Bayesian unconditional likelihood model.
doi:10.1371/journal.pone.0056693.g001

Figure 2. The posterior distributions of s2
(g) for g = 1, …, 5 SNP,

respectively, under the Bayesian unconditional likelihood
model.
doi:10.1371/journal.pone.0056693.g002

Cross-Level Gene-Environment Interaction
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fifth SNP (rs182052) in Figure 1(e) show almost no difference in

the 95% credible intervals across the four categories. In addition,

the density functions of s2
(1), s2

(2), …, and s2
(5) differ from each

other, which implies different patterns in heterogeneity among the

5 SNPs.

SNP-SNP Interaction
To evaluate the existence of interaction between SNPs, we

examine the posterior distribution of c for the SNP-SNP

interaction between rs7799039 and rs12535708. Notice that the

posterior distribution of c is left-skewed with a mean of 210.70

and a 95% credible interval (221.8, 23.5), indicating a protective

effect when these two SNPs simultaneously carry the G/G and A/

A genotypes, respectively (Table 2 and Figure 1(f)). The overall

aggregation of effects, however, shrinks toward zero when

accounting for both single-SNP effects. For instance, in category

I, the sum of the average odds ratios for genotype G/G for

rs7799039, A/A for rs12535708, and their interaction is about

exp(0.25+9.90–10.70) = exp(20.55), resulting in an odds ratio of

approximately 0.58( = exp(20.55)). In other words, the interaction

diminishes the two strong first-order genetic effects.

Discussion

The research reported here was motivated by a matched case-

control metabolic syndrome study where interest lay in the

interaction between genes and contextual variables, as well as

SNP-SNP interaction. Such cross-level GE interaction can be as

important as the individual level Ge interaction, and thus its

influence should not be overlooked. The statistical inference of

GE, however, is not straightforward. We adopted here a Bayesian

model with random effects to investigate the genetic and

environmental interactions by examining the extent to which the

allelic effects differ across various categories of the contextual

variable. Though many studies have been proposed to test the

interaction between genes and environment at the individual level,

this Bayesian approach, to the best of our knowledge, is the first

Bayesian analysis to infer the cross-level interaction between

individual genetic and contextual residential area effects. The

advantages of employing a Bayesian unconditional likelihood

model are its flexibility in model construction for complex models;

the straightforwardness in deriving the posterior distribution of the

variance s2
g to assess cross-level interaction; and the ability to

estimate multidimensional parameters simultaneously.

Biological Implications
The results indicated that the effect of rs1801282 is likely to be

modified by the contextual factor in the sense that individuals with

the mutant genotype have higher risk, particularly when living in

an area with low availability of exercise facilities. On the basis of

the large posterior variability in genetic effects across areas, we

conclude that this effect is modulated by the residential

environmental factor. Similar observations have been previously

reported in other studies where the rs1801282 SNP was shown to

exacerbate the negative effect of poor individual exercise habits

[24–27]. Others have observed that physical inactivity and

sedentary lifestyle may interfere with optimized expression of the

‘‘thrifty’’ genes [28] and that the availability of recreational

resources can relate directly to an individual’s physical activity

level [39]. These findings are in agreement with our finding that

the availability of recreational resources will interact with the effect

of rs1801282 on metabolic syndrome in such a way that living in

areas with lower exercise facility availability will increase the risk of

disease, particularly for individuals carrying the mutant type of

rs1801282.

The model we have introduced here for the matched design can

accommodate SNP-SNP interaction as well. For instance, SNPs

rs12535708 and rs7799039 locate closely in the gene LEP on

chromosome 7q31, where rs7799039 is in the 59 regulatory

promoter region and rs12535708 is at the transcription-factor

binding site. The strong LD between these two SNPs has been

documented earlier [40], and the existence of their statistical

interaction indicates that these two SNPs may be involved in

similar functional pathways. An existing study reported that

rs7799039 cannot add further information when other multi-

marker haplotypes containing rs12535708 have been included for

analysis [40]. Our results replicate the finding that, when both

SNPs are present in the model, rs12535708 exhibits strong

association (the posterior modes of b(3)
1 *b(3)

4 are all around 10),

while the influence of rs7799039 is mild (posterior modes of

Table 2. In the upper half of the table, numbers in each row
are the posterior means and standard deviations of the area-
specific genetic effects (b(g)

i ) and variance (Var(b(g)
i ) = s2

(g)) for
each candidate SNP g.

Posterior mean (se)

SNP Covariates b(g)
1 , I b(g)

2 , II b(g)
3 , III b(g)

4 , IV s2
(g)

S(1) , rs1801282
(PPARG_Pro12Ala)

1.01
(0.83)

0.03
(0.45)

20.91
(0.66)

20.20
(0.60)

1.31
(0.94)

S(2) , rs7799039
(LEP_G2548A)

0.25
(0.71)

0.49
(0.60)

0.65
(0.65)

0.21
(0.84)

1.03
(0.68)

S(3) , rs12535708
(LEP_H1328082)

9.90
(5.11)

10.02
(5.06)

10.71
(5.09)

10.92
(5.11)

1.22
(0.84)

S(4) , rs822390
(APM1_G-7950T)

0.52
(0.55)

0.18
(0.44)

0.64
(0.57)

0.61
(0.52)

0.97
(0.64)

S(5) , rs182052
(APM1_A-10066G)

20.08
(0.27)

0.27
(0.20)

0.54
(0.25)

0.12
(0.26)

0.91
(0.56)

SNP-SNP interaction

S(2,3) , rs77990396 rs12535708 c 210.70
(5.06)

Other variance components

Among areas, Var(bi ) s2
area

0.62
(0.40)

Among pairs, Var(bij ) s2
pair

0.22
(0.05)

The bottom half of the table contains posterior means and standard deviations
for parameters of the SNP-SNP interaction, and for variance component
parameters.
doi:10.1371/journal.pone.0056693.t002

Table 3. Numbers are P(b(g)
i w0Dy), the posterior probability

of (b(g)
i w0), for the g-th SNP in the i-th category (area) under

the unconditional model.

SNP, S(g) Category I Category II Category III Category IV

rs1801282 0.90 0.53 0.07 0.37

rs7799039 0.63 0.80 0.84 0.60

rs12535708 1.00 1.00 1.00 1.00

rs822390 0.83 0.66 0.87 0.89

rs182052 0.38 0.91 0.99 0.67

doi:10.1371/journal.pone.0056693.t003

Cross-Level Gene-Environment Interaction
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b
(2)
1 *b

(2)
4 are between 0 and 1). When accounting for both

markers along with their interaction, the estimated odds ratios of

being metabolic, for persons carrying genotype G/G for

rs7799039 and A/A for rs12535708, are 0.57, 0.83, 1.02, and

1.54 for the four categories, respectively. Each of the resulting

values implies the existence of SNP-SNP interaction, and the

heterogeneity among the four odds ratios provides evidence for

GE interaction. Further research about the functional polymor-

phism of these two SNPs, or haplotype analysis, would be worth

pursuing to unravel their biological interplay.

Other Statistical Models for GE interaction
1. Bayesian conditional logistic regression model. If only

some of the previously mentioned parameters are of interest, then

their inference can be made under the Bayesian conditional

logistic regression (BCLR) model assuming pijk = eijk=
P

k eijk, and

a log link formulation on eijk

log eijk~
X5

g~1

b(g)
i |S

(g)
ijk zc|S

(2,3)
ijk zh|Xijk,

where for each SNP g, b
(g)
i

~NNormal m(g),s
2
(g)

� �
,i~1,:::,4. Table S2

displays the model and parameters for comparison. Table 4 lists

the posterior means and standard errors of s2
(g) for g~1,:::,5. The

posterior distributions of s2
(g) under the Bayesian conditional

logistic regression do not vary much from that under the Bayesian

unconditional likelihood model. In addition, we have investigated

the pattern based on a limited simulation study with only 10

replications, each containing five SNPs for 100 cases and 100

matched controls in every one of the 4 areas. The consistency in

the inference of variance between the Bayesian unconditional and

conditional models stays clearly. However, as compared with the

previous unconditional model, the disadvantages are that one is

unable to infer the sampling variability among areas or within

each pair under this BCLR, and the computational difficulty is

greatly elevated under this setting if the number of genetic markers

is large. Our experience shows that even when the computation

under BCLR reaches convergence, the computation time for

BCLR is about 4.5 times that of the Bayesian full likelihood model,

when computed with an Intel core i7-2620M (2.7/3.4GHz) dual-

core processor.

Although the BCLR model could be viewed as a workable

alternative model in this case, its computational burden and

lack of information on sampling variability within clusters

hinder its use in such a cross-level GE study. The unconditional

likelihood approach uses matched-pair specific random effects to

account for the selection bias, while the conditional approach

adopts matched-pair specific intercepts [41]. Another reason for

favoring the Bayesian unconditional likelihood approach is that

the full likelihood model can accommodate complex nested

structures easily and intuitively, such as those involving matched

cases and controls in the same category. These various sources

of dependence can be modeled straightforwardly.

2. Models with cross-product terms. Other alternative for

handling the cross-level GE interaction in a matched design is

through the use of cross-product terms of dummy variables for

areas and SNP covariates. Some possibilities are outlined in the

supporting information (Text S3).

We do not recommend however the use of these other models

with cross-product terms, because the large number of coefficients

of GE interaction often leads to failure in the MCMC

computations. Other non-Bayesian multi-level models with the

MQL option in MLwiN and glmmPQL in R are theoretically

possible, but the computation for this matched case-control

metabolic syndrome study collapses when it runs into a non-

positive definite matrix during the iteration procedure.

Further Notes
Some further notes are worth mentioning. First, for the

sensitivity analysis of the posterior inference, we have tried other

prior distributions. For example, we have used different gamma

distributions for the precision parameters (the inverse of the

variance components), and obtained similar conclusions. Sec-

ond, we have adopted a Bayesian hierarchical model with no

GE interaction for rs1801282, and performed model selection

with DIC. The model with the cross-level GE was selected, and

therefore the posterior probability under the GE model was

evaluated for inference. Last but not least, although Bayesian

models may at first seem complicated with respect to their

formulation and computation, the advancement of MCMC

methods has greatly enhanced the feasibility of using Bayesian

inference in daily practice. Several software applications, such as

WinBUGS, R, and MLWin, are handy for carrying out

Bayesian analysis. The model presented here for analyzing

interaction between genes and contextual variables could

achieve broad applicability with the aid of these statistical

analysis tools.

Supporting Information

Table S1 The formulation and parameter interpreta-
tion of the unconditional likelihood Bayesian model.

(DOCX)

Table S2 The formulation and parameter interpreta-
tion of the Bayesian conditional logistic regression
model.

(DOCX)

Text S1 Complete specification of the Bayesian model.

(DOC)

Text S2 WinBUGS code of the Bayesian model.

(DOCX)

Table 4. The variance parameters represent the variability
among areas for each SNP.

Corresponding SNPs s2
(g)

S(1) , rs1801282
(PPARG_Pro12Ala)

1.34 (1.02)

S(2) , rs7799039
(LEP_G2548A)

1.03 (0.64)

S(3) , rs12535708
(LEP_H1328082)

1.28 (0.93)

S(4) , rs822390
(APM1_G-7950T)

1.00 (0.61)

S(5) , rs182052
(APM1_A-10066G)

0.93 (0.56)

Numbers are posterior means and standard deviations of variance components
under the Bayesian conditional logistic regression model.
doi:10.1371/journal.pone.0056693.t004
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Text S3 Model formulation and parameter interpreta-
tions with cross-product terms for cross-level interac-
tion.

(DOCX)
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