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Abstract: Monocytes (Mos) and macrophages (Mϕs) are key players in the innate immune system and
are critical in coordinating the initiation, expansion, and regression of many autoimmune diseases.
In addition, they display immunoregulatory effects that impact inflammation and are essential in
tissue repair and regeneration. Juvenile idiopathic arthritis (JIA) is an umbrella term describing
inflammatory joint diseases in children. Accumulated evidence suggests a link between Mo and
Mϕ activation and JIA pathogenesis. Accordingly, topics regarding the signals and mechanisms
regulating Mo and Mϕ activation leading to pathologies in patients with JIA are of great interest.
In this review, we critically summarize recent advances in the understanding of how Mo and Mϕ
activation is involved in JIA pathogenesis and focus on the signaling pathways and mechanisms
participating in the related cell activation processes.

Keywords: juvenile idiopathic arthritis; macrophage; monocyte

1. Introduction: Overview of the Pathogenesis of Juvenile Idiopathic Arthritis

Juvenile idiopathic arthritis (JIA) is the leading chronic rheumatic disease of child-
hood and occurs in children before their sixteenth birthday with symptoms of articular
inflammation for at least 6 weeks [1]. Based on the number of joints involved within the
first 6 months of disease onset and extra-articular manifestations, JIA is categorized into
seven subtypes according to the International League of Associations for Rheumatology
(ILAR) classification [2]. Although different subtypes are heterogeneous in presentation,
patients with JIA share a common phenotype of inflamed synovial membranes, which can
result in growth arrest, articular deformity, and disability [3].

The etiology and pathogenesis of JIA are still elusive. Joint infiltrating inflammatory
cells, residential synovial fibroblasts and osteoclasts, antibodies targeting autoantigens, and
various inflammatory mediators are some of the critical players that promote the chronic
inflammatory process [3–6]. In recent years, evidence suggests a distinct pathogenesis of
systemic onset juvenile idiopathic arthritis (sJIA) compared to that of the oligoarticular and
polyarticular forms of JIA [4]. sJIA is an autoinflammatory disease marked by universal
inflammation due to a dysregulated innate immune system [2,7,8]. The abnormal activation
of various phagocytes, including monocytes (Mos), macrophages (Mϕs), and neutrophils,
leads to a massive release of the proinflammatory mediators interleukin (IL)-1, IL-6, IL-18,
and S100 proteins in sJIA [4]. On the other hand, genetic variants in human leukocyte
antigen genes, the identification of cartilage-derived autoantigens, and the imbalance
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between regulatory T cells and autoreactive type 1 helper T (Th1)/type 17 helper T (Th17)
cells in patients with oligoarticular and polyarticular JIA suggest that the disorders in this
group are antigen-driven autoimmune diseases mediated by adaptive immune system
disorganization [4]. However, despite the presence of autoantibodies and autoreactive
lymphocytes, without the participation of innate immune mediators, the adaptive immune
system cannot fully account for the development of many autoimmune diseases [7–9].
Indeed, an activated Mϕ gene expression signature was detected in cells in synovial
fluid (SF) from early-onset oligoarticular JIA patients at risk of extending arthritis joint
counts [10]. Moreover, a Mo signature was found in the peripheral blood of patients
with older-onset oligoarticular JIA [11] and rheumatoid factor (RF)-positive polyarticular
JIA [12].

Mos/Mϕs are important players in the innate immune system and are critical in coor-
dinating the initiation, expansion, and resolution of many autoimmune diseases [8]. They
possess a wide range of inflammatory, immunomodulatory, and tissue-repairing capacities
via their secretion of numerous proinflammatory cytokines, growth factors, and proteolytic
enzymes to stimulate and recruit effector cells to inflamed tissues [7–9]. A growing number
of studies have highlighted the role of Mo/Mϕ activation and polarization in JIA patho-
genesis. In this review, we critically summarize recent advances in the understanding of
how Mo and Mϕ activation is involved in JIA pathogenesis and focus on the signaling
pathways and mechanisms participating in the related cell activation processes.

2. The Origin of Synovial Resident Macrophages

The origin and ontogeny of synovial Mϕs are incompletely characterized. Studies
suggest that tissue-resident Mϕs may be derived from the yolk sac, fetal liver Mos, or bone
marrow [13,14]. While evidence has documented that tissue-resident Mϕs derived from
embryos can sustain themselves for a long period via local proliferation independent of
hematopoietic stem cells [13–15], the classical mononuclear phagocytic system suggests
that tissue Mϕs are the final cells of the mononuclear phagocyte lineage derived from
circulating Mos originating from the bone marrow [16]. Under inflammatory conditions or
physiological stress, circulating Mos are believed to migrate from the bloodstream to tis-
sues in need and to differentiate into dendritic cells or tissue-resident Mϕs [16–18]. Potent
chemokines, such as monocyte chemoattractant protein-1 (MCP-1)/C-C motif chemokine
ligand (CCL)2, regulated upon activation, normal T-cell-expressed and, presumably, se-
creted (RANTES)/CCL5, and C-X-C motif chemokine ligand (CXCL)9 and CXCL10, were
found to be significantly elevated in the SF of patients with JIA, driving the chemotactic
activity of mononuclear leukocytes [19,20]. Colony-stimulating factors, such as granulocyte-
macrophage colony-stimulating factor (GM-CSF) is also important in this differentiation
process [21,22].

3. Characteristics of Monocytes and Macrophages in Juvenile Idiopathic Arthritis
3.1. Monocyte Subsets

Monocytes are a heterogeneous population of leukocytes circulating in the blood
until they are recruited to tissues upon signaling. The expression levels of the surface
molecules CD14 and CD16 determine the distinct subpopulations of human Mos [23,24].
Classical Mos are characterized by CD14++CD16− expression and represent 80–90% of the
Mos in the bloodstream of healthy individuals [25]. Nonclassical CD14+CD16++ Mos and
intermediate CD14++CD16+ Mos account for a much smaller proportion of circulating Mos
and can expand considerably under inflammatory conditions [25]. For example, while
no significant increase in classical and intermediate Mos has been observed in patients
with polyarticular JIA, the frequency of intermediate CD14++CD16+ Mos among both the
circulating and synovial Mos is expanded in patients diagnosed with enthesitis-related
arthritis (ERA) [26,27]. Recently, Schmidt, Cren and Gaur investigated the distribution of
Mo subsets in paired SF and blood samples from patients with oligoarticular JIA and
ERA. These authors discovered that while classical CD14++CD16− Mos dominate in the



Int. J. Mol. Sci. 2021, 22, 7960 3 of 21

circulation, intermediate CD14++CD16+ Mos were highly enriched in oligoarticular JIA and
ERA patient SF [28–30]. As CD14++CD16+ synovial Mos can be induced by cytokine-rich
SF and are found with similar patterns across Mo subsets, reports have suggested that
the increased CD16 expression in these cells may likely result from the cytokine milieu
of the synovial space and not the recruitment of intermediate CD14++CD16+ Mos from
circulation due to their unique features [28,31]. Specifically, cytokines, such as IL-10 and
transforming growth factor beta (TGFβ), in SF are potent inducers of CD16, an activating
Fcγ receptor (FcγR), expression in Mos [28,29].

As demonstrated by Macaubas et al., the Mo lineage is expanded in patients with active
sJIA [30,32]. While increased levels of CD14 and CD16 were found on sJIA Mos in both
the flare and quiescence status, the distribution of the CD14+CD16+ Mo subsets was not
altered compared to that in healthy controls [30,32]. Both classical CD14++CD16- Mos and
CD14+CD16+ Mos are activated in sJIA [30]. The increased expression of CD14, a pattern
recognition receptor that binds lipopolysaccharide (LPS) and other microbial molecules,
on sJIA Mos was proposed by Srivastava et al. to contribute to the apoptosis resistance of
Mos [33].

Seemingly important players in JIA, intermediate Mos are noted for their high surface
levels of class II molecules, CD40, CD54, and CD74, which are capable of inducing T cell
stimulation and proliferation [34,35]. Upon encountering damage-associated molecular
patterns or pathogen-associated molecular patterns, such as LPS, these Mos preferentially
produce IL-1β, IL-6, and tumor necrosis factor (TNF)α [36,37]. Furthermore, in response
to vascular endothelial growth factor (VEGF), CD14+CD16+ Mos form cell clusters and
exhibit proangiogenic behavior [38]. In a rheumatoid arthritis (RA) study, a coculture of
intermediate CD14++CD16+ Mos from arthritis patients with naïve T cells skewed the T
cells toward pathogenic Th17 cells via the production of IL-23. The increased frequency of
IL-17-producing natural killer (NK) cells, CD4, and gamma-delta T cells in patients with
ERA was also recently proposed to result from the expansion of intermediate CD14++CD16+

Mos due to their role as the major producer of IL-23, a key cytokine in the pathogenesis of
ERA [26].

3.2. Monocyte/Macrophage Polarization

Plasticity and heterogenicity are the hallmarks of Mos/Mϕs. Polarization is believed
to influence disease progression by altering effector function [37] and has been linked
to osteoclastogenesis in RA, to disease severity in osteoarthritis, and to distinct JIA sub-
types [29,34,39–41]. Demonstrated by the acquisition of distinct functional characteristics
directed by the immunological microenvironment and tissue milieu, polarized Mos/Mϕs
are referred to as classically activated (M1) or alternatively activated (M2) Mϕs, mirroring
the Th1/Th2 nomenclature [42]. Based on the induction of cytokines and clinical features
involving tissue repair, angiogenesis, and immune regulation, alternatively activated Mϕs
have been further subcategorized [39,43] (Table 1).

Table 1. Characteristics of monocyte and macrophage polarization in humans.

Macrophages Classically
Activated (M1)

Alternatively Activated (M2)

M2a M2b M2c

Mediators of
polarization

LPS, IFNγ, TNFα,
GM-CSF IL-4, IL-13 ICs + TLR/IL-1β IL-10, TGFβ,

steroid

Surface markers
CD68, CD80, CD86,

IL-1R, TLR2, TLR4, iNOs,
IFNγR, MHC-IIhigh

CD200R, CD206/MMR,
IL-1RII, Dectin-1,

MHC-IIlow
CD86, MHC-IIlow CD163, TLR1, TLR8

Transcription
factors and

cellular markers

NFκB, STAT1, STAT5,
IRF3, IRF5 IRF4, PPARγ, STAT6 IRF4, SOCS3 IRF4, SOCS3

Produced
cytokines

IL-1α, IL-1β, IL-6, IL-12,
IL-18, TNFα, M-CSF

IL-10, TGFβ,
IL-1Ra

IL-1β, IL-6, IL-10,
TNFα IL-10, TGFβ



Int. J. Mol. Sci. 2021, 22, 7960 4 of 21

Table 1. Cont.

Macrophages Classically
Activated (M1)

Alternatively Activated (M2)

M2a M2b M2c

Produced
chemokines

CXCL9, CXCL10,
CXCL11

CCL17, CCL18, CCL22,
CCL24

CCL1, CCL20, CXCL1,
CXCL2, CXCL3 CCL16, CCL18

Features
Proinflammatory,
microbicidal, and

tumoricidal

endocytic activity,
tissue remodeling, and

repair
immunoregulation immunoregulation

The polarization pattern of Mos/Mϕs and its consequences in patients with oligoartic-
ular JIA remain largely unclear. In a recently published report, Schmidt et al. suggested that
the inflammatory features of those who suffered from oligoarticular JIA may not fit into
the traditional dichotomous polarization categories and should be considered according
to their unique pattern [31]. Specifically, compared to circulating Mos, the synovial Mos
were polarized with a mixed classically and alternatively activated pattern. This was
evidenced by the increased expression of the surface molecules CD40, CD86, and CD206
and by mRNA profiling showing upregulated CD80, signal transducer and activator of
transcription (STAT)1, CXCL10, CD206, CCL18, and peroxisome proliferator-activated
receptor gamma (PPARγ) expression, but not CD163 or STAT6 expression [31]. Corre-
spondingly, a similar heterogeneous mixture of polarized Mϕs is also seen in RA synovium
and SF [40,41,44]. Interestingly, even though IL-1β, IL-6, IL-8, and IL-10 were found in JIA
SF, SF alone did not induce the in vivo polarization pattern observed [31]. It is therefore
hypothesized that Mos might obtain their polarization pattern, at least partially, from
an extra-articular environment before migrating to the synovial space [31]. Similarly, the
polarization of Mos in sJIA is highly dependent on environmental stimuli [45,46]. Although
the molecular mechanism remains to be elucidated, a mixed polarization phenotype was
noted in Mos isolated from patients with sJIA, possibly through interferon (IFN)/STAT
signaling and the activity of small noncoding RNAs, or microRNAs [30,45,47,48].

Immunoregulatory Mϕ activity was found in ERA patients, evidenced by the ex-
pression of CD163 [26,47]. CD163 is a scavenger receptor that is enhanced in response
to IL-10 [48] and has been linked to the pathogenesis of autoimmune disorders in adults,
especially spondyloarthropathies [49]. An increased production of the proinflammatory
cytokines IL-1β, IL-6, and TNFα and the immunoregulatory mediators IL-10 and nitrogen
oxide was elevated upon the cross-linking of CD163 [37]. In addition to the proinflam-
mation tendency, an immunoregulatory effect of CD163+ Mϕs has been suggested as
soluble CD163 can suppress the activation and proliferation of T lymphocytes upon stim-
ulation [50]. The anti-inflammatory heme metabolite production results from CD163
hemoglobulin transportation and the production of IL-10 together, also attributed to the
immunosuppressive Mϕ phenotype [51,52]. Collectively, Mϕs with high CD163 expression
have been hypothesized to downregulate the inflammatory response in the late inflamma-
tion phases [47].

4. Mediators Directing Monocyte/Macrophage Activation and Polarization
4.1. Cytokines

Cytokines play a critical role in the activation and polarization of Mos/Mϕs. As sum-
marized in Table 1, while GM-CSF, TNFα, and IFNγ drive these cells to a proinflammatory
state, IL-10 is especially important for the immunoregulatory Mo/Mϕ polarization in JIA.

4.1.1. GM-CSF

GM-CSF, a hemopoietic growth factor, is secreted by myeloid cells, T and B lym-
phocytes, and tissue residential cells, such as fibroblasts, chondrocytes, osteoblasts, and
epithelial and endothelial cells. GM-CSF interacts with the GM-CSF receptor and acti-
vates the Janus kinase (JAK)2-STAT5- suppressor of cytokine signaling (SOCS) as well as
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mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3 kinase, and nuclear
factor kappa-light-chain-enhancer of activated B cells (NFκB), resulting in the activation
of tissue-resident cells and the recruitment of inflammatory cells [53]. The production
of IL-6 and IL-23 upon GM-CSF receptor signaling activates T cells and promotes the
differentiation of Th17 cells to induce additional GM-CSF and IL-17 secretion, forming a
feedback loop [53]. While the role of GM-CSF in JIA is not as well studied as that in RA [53],
the frequency of GM-CSF-producing T helper cells was significantly enriched among SF
mononuclear cells, and the culturing of Th17 cells in the presence of IL-12 resulted in
upregulation of GM-CSF and IFNγ, recapitulating the phenotype of GM-CSF-expressing
cells within the JIA joints [54].

4.1.2. TNFα

TNFα is a pleiotropic cytokine that promotes the expression of adhesion molecules,
inflammatory cytokines, prostaglandin E2, collagenase, and collagen by synovial cells [55].
As Mos/Mϕs are the main producers of TNFα, its production serves as an autocrine
stimulator and a potent paracrine inducer of inflammatory cytokines, including IL-1, IL-6,
IL-8, and GM-CSF [56–58]. TNFα triggers NFκB and MAPK activation and/or cell death
via apoptosis or necroptosis via either death domain adaptor or TNF receptor associated
factor (TRAF) depending on the distinct receptor type (TNFαR1 and TNFαR2) to which it
binds [59]. Significantly higher TNFα expression was found in JIA patient plasma without
stratifying for disease activity or JIA subtype, and increased levels of serum TNFα and
soluble TNFαR1 and TNFαR2 were noted in patients with active sJIA, including those
complicated with macrophage activation syndrome (MAS) [20,60]. Upon treatment with
TNF blocking agents, the inflammatory Mϕs were shifted toward an immunoregulatory
phenotype with reduced production of inflammatory cytokines and increased phagocytosis
and apoptosis [61–64].

4.1.3. IFNγ

IFNγ, the sole member of type II IFNs, is produced by multiple cell types, including T
cells (Th1 cells in particular), B cells, Mos/Mϕs, and NK cells [65]. It regulates more than
9000 genes to orchestrate the production of cytokines and reactive oxygen species, enhance
antigen presentation, cellular differentiation, and Mϕ activation as well as cell growth
and survival [65]. Upon binding to its receptor, JAK1, JAK2, and STAT1 are recruited
and activated via phosphorylation to modulate gene transcription [65]. An enhanced
responsiveness to IFNγ stimulation was reported with increased STAT1 and/or STAT3
phosphorylation in classical Mos in patients with polyarticular JIA [27]. Although no
obvious differences in IFNγ levels were noted in oligoarticular, polyarticular, and sJIA
patients under distinct activity statuses when compared to controls [20], altered RNA
profiling with upregulation of the IFNγ pathway and increased expression of tripartite
motif containing eight was identified in a distinct subpopulation of bone marrow Mϕs in
sJIA patients complicated with MAS [66]. Interestingly, Macaubas et al. recently discovered
impaired IFN/STAT1 signaling in sJIA Mos during active disease, skewing them away
from a classically activated phenotype [67]. However, this hyporesponsiveness to IFN was
restored and inverted in treated, quiescent subjects [67].

4.1.4. IL-10

IL-10 is a critical cytokine in the negative feedback loop that limits inflammation and
increases phagocytosis [68]. IL-10 induction often occurs along with proinflammatory
cytokines, although pathways that induce IL-10 often negatively regulate inflammatory
effects [68]. The rapid transcription of IL-10 mRNA was reported during proinflammatory
Mo/Mϕ activation [61]. IL-10 inhibition resulted in a dramatic deprivation in immunoreg-
ulatory surface markers with a concomitant increase in inflammatory surface markers [61].
Upon the binding of IL-10 and its receptors (IL10RA and IL10RB), STAT3 signaling is
induced through phosphorylation by JAK1 and tyrosine kinase 2 [61,68].
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4.2. Toll-Like Receptor Signaling

Toll-like receptors (TLRs) belong to the group of protein recognition receptors and
are type I transmembrane proteins serving as the first-line defense against microbes. They
recognize both invading pathogens and endogenous danger molecules and are crucial in
bridging innate and adaptive immunity [69]. Upon ligand interaction, the dimerization of
most TLRs triggers the recruitment of myeloid differentiation primary response protein
88 (MyD88), which interacts with IL-1R-activating kinase (IRAK)4 and IRAK1/IRAK2,
activates TRAF6, and enhances the transcriptional activity and production of a number of
proinflammatory cytokines and chemokines through the NFκB protein complex [69]. In
addition, TLR3 and TLR4 interact with TIR-domain-containing adapter-inducing interferon-
(TRIF)β, activate TRAF3, and promote type 1 IFN production [69].

Studies in experimental models have documented the ability of microbial TLR ligands
to trigger arthritis in animals [70]. Increased TLR2 and TLR4 expression was found on ERA
peripheral blood mononuclear cells (PBMCs) and SF Mos [71], and an increased TLR/IL-1R
signature and TLR2 expression were revealed by analyzing gene expression in PBMCs from
patients with sJIA [72,73]. Endogenous TLR ligands, such as S100A8/A9 (calprotectin),
S100A12, high mobility group box 1, and serum amyloid A, are significantly elevated in
JIA cases, particularly in sJIA [74–76], and are likely to lead to disease progression [77].
Specifically, the binding of TLR4 with S100A8/A9 on Mos/Mϕs was found to induce the
transcription of chemokine IFNγ inducible protein 10 (IP-10)/CXCL10 via TRIF signal-
ing [78]. Local injection of exogenic S100A8 into the knee joints of mice resulted in enhanced
expression of the FcγR on synovial Mϕs via TLR4 [79]. Moreover, in experimental models,
S100A8/A9 has been shown to play an essential role in the induction of autoreactive CD8+
T cells and the development of systemic autoimmunity [80]. Interestingly, TLR signaling
can be altered according to different disease statuses. During disease remission and off
treatment, dysregulated responses to TLR4, TLR8, and TLR7 stimulation were observed in
sJIA Mos [81].

4.3. Autoantibodies and Immunocomplexes

By definition, the presence of autoantibodies, RF and anti-citrullinated protein anti-
bodies (ACPA) is the hallmark of RF-positive JIA [82]. RFs are autoantibodies targeting
the fragment crystallizable portion of immunoglobulins, mostly in the IgM isotype [83].
ACPAs interact with a variety of citrullinated proteins and are associated with greater
articular damage and a poorer response to therapy [83]. They interact with self-antigens,
form immunocomplexes (ICs) and induce the production of TNFα or other cytokines by
PBMCs via FcγR engagement [5]. Cellular responses were synergized and augmented
when RF and ACPA were both presented [5]. In addition to FcγR engagement, ACPA ICs
also stimulate Mϕs via the dual engagement of TLR4/MyD88 and FcγR for the production
of TNFα [84]. Moreover, ACPAs can directly interact with surface-expressed citrullinated
proteins on RA Mos to facilitate inflammatory responses through the c-Jun N-terminal
kinase and NFκB pathways [84].

4.4. Hypoxia

The hypoxic nature of JIA synovium and the induction of chemokine CCL20 in JIA
synovial Mos within the hypoxic milieu of inflamed joints suggests that hypoxia likely
increases inflammatory cell infiltration and contributes to the development of local in-
flammation [85,86]. As the expression of hypoxia-inducible factor (HIF)-1α and HIF-2α
was constitutively detected in Mos recruited to inflamed joints in JIA patients, the ability
of these key regulators to alter metabolic reactions and protein transcription potentially
impacts the activation and polarization of Mos/Mϕs in JIA [85]. Specifically, HIF-1α
increases the transcription of glycolytic enzymes and promotes the production of the proin-
flammatory cytokine IL-1β [87]. In addition, decreased myeloid cell joint infiltration and
delayed disease progressions were observed in an inflammatory arthritis model utilizing
HIF-1α-deficient Mϕs [88]. Interestingly, Raggi et al. discovered that synovial Mϕs in the
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hypoxic inflamed joints of oligoarticular JIA patients express high surface levels of trig-
gering receptors expressed on myeloid cells (TREM)-1 [89]. As a hypoxia-inducible gene,
TREM-1 reverses the immunoregulatory-polarizing effect of hypoxia and drives proinflam-
matory reprogramming in a hypoxic microenvironment [89]. Hypoxic synovial Mos in
JIA also release VEGF and osteopontin. These proangiogenic mediators within inflamed
joints drive neoformation of blood vessels through stimulation of epithelial cell survival,
proliferation, and chemotaxis, as well as monocytic cell recruitment and activation [85].

4.5. MicroRNAs

The polarization of Mos/Mϕs in sJIA was also found to be driven by epigenetic
factors, such as negative transcriptional regulation by microRNAs [50,52,90]. Through a
microRNA array analysis comparing the expression of microRNAs in Mos from patients
with inactive sJIA, active sJIA, new-onset sJIA, and active polyarticular JIA, Schulert et al.
discovered that miR-125a-5p was highly upregulated in active and new-onset sJIA patients
and correlated with their systemic features but not the degree of joint involvement [45].
Through microRNA overexpression and inhibition assays, miR-125a-5p was shown to drive
Mos toward alternatively activated polarization with an enhanced M2b phenotype, in line
with the Mos observed in sJIA in clinical settings [45]. Further investigation suggested
that miR-125a-5p and miR-181c overexpression in patients with active sJIA significantly re-
duced the expression of CD163 on Mϕs [91]. Specifically, miR-181 targets CD163 mRNA for
degradation and miR-125a-5p decreases IL10RA, the receptor required for IL-10-mediated
CD163 expression [91]. Moreover, miR-155 promotes Mϕ proinflammatory polarization
and suppresses alternatively activated features [92]. miR-155 targets SOCS1 transcription,
altering cytokine and surface molecule expression [92]. Compared to controls or patients
with clinically inactive sJIA, miR-155 is increased in Mos from children with active sJIA [45].
Together, these data explain how microRNAs aid sJIA Mos toward polarization to an im-
munoregulatory phenotype [91]. In addition, significantly higher levels of plasma miR-233,
a microRNA regulating inflammation, cell differentiation, and oncogenesis, were found
in JIA patients. miR-233 promotes the polarization of Mϕs toward an immunoregulatory
phenotype via direct targeting of PBX/Knotted 1 Homeobox 1 and controls Mϕ inflamma-
tory responses by inhibiting NOD-, LRR-, and pyrin domain-containing protein 3 (NLPR3)
inflammasome activity [93,94].

5. Effect of Monocyte/Macrophage-Produced Cytokines and Chemokines

Activated Mos and Mϕs in JIA synovial space secrete a variety of proinflammatory
cytokines, including TNF-α, IL-1β, IL-6, IL-12, IL-18, and IL-23 [12,22,95]. While the levels
of these mediators may vary between different JIA subtypes [96], the interactions of these
cytokines and chemokines with leukocytes and residential mesenchymal cells, such as
synovial fibroblasts, chondrocytes, and osteoclasts contribute JIA pathogenesis [90].

5.1. TNFα

The importance of TNFα in inflammatory arthritis has been highlighted in numerous
clinical observations and experimental settings. In addition to its autocrine feedback role in
propagating an inflammatory response [56–58], TNFα is capable of stimulating fibroblasts
to express adhesion molecules, such as intracellular adhesion molecule 1 (ICAM-1), to
enhance leukocyte adhesion [56]. Considering that bone destruction is also a hallmark
of JIA, TNFα stimulates osteoclast differentiation via NFкB signaling and upregulates
several proinflammatory cytokines, including receptor activator of NFκB (RANK), leading
to increased RANK/RANK ligand (RANKL) signaling and osteoclast activity [97,98].
Moreover, aside from its soluble form, as a transmembrane protein, TNFα on both Mϕs
and fibroblasts has been shown to induce arthritis in transgenic mice [95]. Currently, the
success of treating JIA patients with various biologics interfering with TNFα signaling has
confirmed the importance of TNFα in the pathogenesis of JIA [99–101].
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5.2. IL-1β

Innate proinflammatory cytokines, such as IL-1, IL-6, IL-18, and TNF, account for many
of the features observed in sJIA [46]. Specifically, IL-1β, a pleiotropic proinflammatory
cytokine, can upregulate its own transcription as well as that of IL-6 [102]. Moreover,
a possible positive feedback loop involving IL-1β and S100 proteins has been proposed
to contribute to the perpetuation of chronic inflammation in sJIA [103]. Interestingly,
Cepika et al. discovered that the stimulation of Mos in patients with sJIA resulted in an
increase in activin receptor signaling, which in turn inhibited IL-1β secretion without
altering the accumulation of intracellular IL-1β within sJIA Mos [81]. Moreover, IL-1β
induces the expression of ICAM-1 on synovial fibroblasts and activates osteoclasts to
display a high degree of resorbing activity [104,105]. The critical role of IL-1β in JIA has
been demonstrated by the use of the IL-1β blocking agents anakinra and canakinumab in
sJIA treatment with success [106–109].

5.3. IL-6

IL-6 is a multifunctional cytokine that drives JIA development via immune response
regulation, hematopoiesis, and bone metabolism [98]. IL-6 elevation in active sJIA modu-
lates the levels of proteases and their regulators, such as matrix metalloproteinase (MMP)-9
and its tissue inhibitors of metalloproteinases-1, in synoviocytes and chondrocytes [110,111].
IL-6 also alters the cytokine profile in JIA synoviocytes in both a proinflammatory and
anti-inflammatory manner [20]. Moreover, IL-6 plays a role in T cell survival and pro-
liferation and promotes the differentiation of Th17 cells [112]. Interestingly, two distinct
groups of sJIA patients with specific clinical features were identified based on their IL-6 and
IL-18 levels [113]. Patients with dominant IL-6 cytokines have more severe joint disease,
and those with dominant IL-18 cytokines are more likely to develop MAS [114]. As the
severity of experimental inflammatory arthritis is greatly suppressed in IL-6-/- transgenic
mice [115], a promising result was also noted by applying tocilizumab, an IL-6 receptor
targeting agent, for the treatment of polyarticular JIA and sJIA [116,117].

5.4. IL-18

In patients with active sJIA, the level of IL-18 is significantly elevated [118]. As docu-
mented in the RA joint, IL-18 may induce an inflammatory process because it promotes
leukocyte extravasation by upregulating endothelial cell adhesion molecules, releasing
chemokines from RA synovial fibroblasts, and serving as a chemoattractant for various
leukocytes [119]. Moreover, IL-18 helps develop and maintain the inflammatory pannus by
binding and activating endothelial cells and inducing synovial fibroblasts to produce angio-
genic chemokines and VEGF, contributing to the vascularity of inflamed pannus [119,120].

5.5. IL-12/IL-23

IL-12 and IL-23 are mainly produced by inflammatory myeloid cells and are criti-
cal mediators influencing the differentiation of Th1 and Th17 cells [121]. While IL-23 is
specifically important for the development of Th17 and plays a pathogenic role in seroneg-
ative spondyloarthropathies, including ankylosing spondylitis (AS), psoriatic arthritis,
and ERA [122,123], IL-12 initiates the differentiation of naïve CD4 T cells to Th1 cells and
promotes a shift of Th17 cells toward Th17/Th1 and non-classic Th1 cells [124]. These cells
are all involved in the pathogenesis of JIA [4,125,126].

Specifically, increased numbers of Th1 and Th17 were reported in the synovial space
of patients with oligoarticular JIA and ERA [124,127]. IL-17A and TNFα produced by
Th17 and Th1 cells promotes the release of IL-6 and IL-8 by synoviocytes and endothelial
cells in the joint space [128]. These cytokines induce expression of adhesion molecules,
enhance leukocytes recruitment, and maintain joint inflammation [129]. Moreover, IL-17
produced by Th17 cells stimulates the release of MMPs by synovial fibroblasts and increases
osteoclast differentiation, leading to cartilage breakdown and bony erosion [128]. Notably,
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IL-17 is capable of maintaining articular inflammation independent of TNFα once the
arthritis is initiated [125].

5.6. IL-10

IL-10 is a potent cytokine that represses proinflammatory responses and limits un-
necessary tissue damage caused by inflammation [126]. IL-10 hinders Mo trafficking into
synovial tissue through the downregulation of ICAM-1 expression on synovial cells; sup-
presses the release and function of the proinflammatory cytokines IL-1, TNFα, and IL-6;
and reverses cartilage degradation by mononuclear cells in patients with RA [126,130]. As
IL-10 polymorphism confers the susceptibility to JIA [131], animal studies have suggested
that insufficient IL-10 production is a mechanism underlying the pathogenesis of sJIA [132].

5.7. Chemokines

Increased levels of chemokines were found in JIA SF, favoring the migration of Mos to
the inflamed tissue while promoting their activation and differentiation. While synovial
fibroblasts are important sources of proinflammatory cytokines and chemokines [133],
synovial Mos/Mϕs also secrete a variety of chemokines. CCL2/MCP-1 principally recruits
Mos, dendritic cells, and memory T cells to sites of inflammation [19,134]. The expression of
CCL18 is upregulated in JIA synovial Mos and is capable of recruiting cells of the adaptive
immune system to maintain homeostasis [31,135]. Secreted CCL20, so-called macrophage
inflammatory protein-3, is also important in driving Th17 recruitment to the inflamed joints
in patients with JIA [92,136,137]. Other chemokines, such as CXCL8 and CXCL10, mediate
the recruitment of neutrophils, T lymphocytes, NK cells, dendritic cells, and Mos/Mϕs
into the joint space, coordinating an inflammatory response [31,96].

5.8. Vascular Endothelial Growth Factor

VEGF is the most critical regulator of angiogenesis and mediates inflammatory and
bone-destructive activities [138,139]. Synovial Mos/Mϕs in the hypoxic microenvironment
are a source of VEGF and the concentration of VEGF was significantly increased in the SF
of JIA patients compared with that in the serum [85,140]. While a number of studies have
clearly documented a reduction in disease severity and synovial angiogenesis when treating
RA patients with VEGF-blocking agents [141], VEGF also serves as a useful marker for
assessing the disease activity of oligo/polyarticular JIA during the remission phase [136].
The tapering of medication in oligo/polyarticular JIA is recommended if the level of VEGF
remains low [136].

6. Available Treatments and Emerging Therapeutic Opportunities

Based on the clinical relativity and the current knowledge on the pathogenesis of
Mos/Mϕs in JIA, different strategies have been explored or are currently under investiga-
tion for JIA patients and/or have been tested in arthritic animal models. The induction of
anti-inflammatory human Mos is a unique property of glucocorticoids [137]. In arthritic
rodent models, the local injection of triamcinolone acetonide strongly enhanced Mϕ activa-
tion toward an immunoregulatory phenotype [142]. This was supported by the enhanced
surface expression of CD163 and enhanced IL-10 expression at the mRNA level in ex vivo
Mϕs [142]. Methotrexate (MTX), a commonly prescribed disease-modifying antirheumatic
drug (DMARD) for JIA, exclusively modulates gene expression in proinflammatory Mϕs
polarized by GM-CSF [143]. Further study revealed that MTX increases the expression of
A20, an NFκB suppressor, which inhibits TLR signaling in GM-CSF-polarized Mϕs [144].
Moreover, MTX has been reported to dampen the production of TNFα and IL-12 in classi-
cally activated Mϕs [145]. On the other hand, MTX enhances IL-10 synthesis and inhibits
NFκB signaling on immunoregulatory Mϕs [145]. Chronic exposure to sulfasalazine, an-
other widely used DMARD, markedly sensitized human Mos/Mϕs to steroid treatment
via the NFκB signaling pathway, upregulated glucocorticoid receptor α and glucocorticoid
expression levels and induced apoptosis [146].
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Biological therapies targeting the Mo/Mϕ-producing cytokines TNFα, IL-1β, and IL-6
are now recommended as the standard of care for JIA patients with an advanced disease
course [147]. While these biologics significantly dampen the proinflammatory response
mediated by Mos/Mϕs, anti-TNF agents not only inhibit the inflammatory functions
of Mϕs but also favor the resolution of inflammation by inducing cellular polarization
toward alternative features involving the IL-10/STAT3 axis [61]. A decline in Mϕs was
clearly noted in the inflamed joints of mice shortly after the introduction of infliximab,
a TNFα blocking agent [148,149]. Moreover, tocilizumab, an anti-IL6 receptor antibody,
shifts Mos/Mϕs toward an anti-inflammatory phenotype and induces the apoptosis of
Mos [150,151]. Tofacitinib, a small molecule JAK inhibitor, was recently shown to reduce
disease flares and improve disease activity and physical function in patients with polyartic-
ular JIA [152]. It abrogates TNF induced STAT1 activation and inhibits proinflammatory
mediator production [153].

The effectiveness of existing anti-rheumatic regimens and novel therapeutic agents
targeting Mos/Mϕs in patients with inflammatory arthritis has been investigated. A brief
summary of Mo/Mϕ-related therapies is shown in Table 2.

Table 2. Therapeutic agents targeting monocytes/macrophages and their functional activities.

Agent Targets Actions Developmental Stage Ref.

Etanercept TNF receptor

Blocks TNFα signaling; shifts Mos/Mϕs
toward an anti-inflammatory phenotype

and induces
apoptosis of Mos/Mϕs

JIA–marketing [61,62]

Adalimumab TNF

Blocks TNFα signaling; shifts Mos/Mϕs
toward an anti-inflammatory phenotype;

induces apoptosis of Mos/Mϕs and reduces
Mo migration into the joint

polyarticular
JIA–marketing [63,149,154]

Infliximab TNF

Blocks TNFα signaling; shifts Mos/Mϕs
toward an anti-inflammatory phenotype and

induces apoptosis of Mos/Mϕs; increases
circulating nonclassical Mos and decreases

circulating classical Mos;
reduces CCR2 and CXCR4 expression on the

nonclassical Mo subpopulation

JIA–marketing [62–64]

Certolizumab TNF

Blocks TNFα signaling; induces HO-1 mRNA
and protein production in Mos; inhibits IL-1β

production at the mRNA and protein level
upon LPS stimulation

polyarticular JIA–phase
III [154]

Anakinra IL-1β receptor Blocks IL-1β signaling sJIA–marketing [109]
Canakinumab IL-1β Blocks IL-1β signaling sJIA–marketing [106,107]

Rilonacept IL-1β/IL-1α Blocks IL-1 signaling; skews Mos toward an
alternatively activated phenotype sJIA–phase II [155]

Tocilizumab IL-6 receptor

Blocks IL-6 signaling; shifts Mos/Mϕs
toward an anti-inflammatory phenotype

and induces
apoptosis of Mos

sJIA/polyarticular
JIA–marketing [150,151]

Sarilumab IL-6 receptor Blocks IL-6 signaling polyarticular JIA–phase II [156]

Ustekinumab IL-12/IL-23 Blocks IL-12/IL-23 signaling psoriatic
arthritis–marketing [157]

Secukinumab IL-17A
Blocks IL-17 signaling; decreases serum IL-6,
S100A8, S100A9, VEGF, TNFα, osteopontin,

and MMP

ERA/juvenile
psoriatic arthritis

–phase III
[158]

Ixekizumab IL-17A Blocks IL-17 signaling
ERA/juvenile

psoriatic arthritis
–phase III

[159]

Emapalumab IFNγ Blocks IFNγ signaling sJIA–phase II [160]
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Table 2. Cont.

Agent Targets Actions Developmental Stage Ref.

Abatacept CTLA-4

Blocks ACPA and RF mediated cytokine
production in human Mϕs; modulates

proinflammatory Mϕ
responses upon cytokine-activated T cell and

TLR stimulation

Polyarticular
JIA–marketing [161,162]

Tofacitinib JAK1/JAK3

Small molecule that abrogates TNF- induced
STAT1 activation; inhibits

proinflammatory mediator
production

polyarticular
JIA–marketing [153]

Baricitinib JAK1/JAK2 Decreases expression of the inflammatory
IP-10 and increases IL-10 production JIA–phase III [163]

Upadacitinib JAK1 Selectively targets JAK1 dependent disease
drivers such as IL-6 and IFNγ

Polyarticular JIA–phase
I [164]

Mavrilimumab
(CAM-3001) GM-CSF receptor α Blocks GM-CSF signaling and classically

activated polarization RA–phase IIb [165]

Otilimab
(MOR103) GM-CSF Blocks GM-CSF signaling and classically

activated polarization RA–phase III [166]

Givinostat
(ITF2357)

histone deacetylase
inhibitor

Prevents LPS-induced TNFα gene
transcription and secretion of IL-1β JIA–phase II [167]

Gamma-
linolenic

acid

n-6
polyunsaturated

fatty acids

Inhibits inflammatory responses through
inactivation of NFκB and AP-1

by suppressing
oxidative stress and the ERK and JNK signal
transduction pathways in LPS-induced Mϕs

JIA-phase I [168]

Sinomenine plant alkaloid
Attenuates CD11b+F4/80+CD64+ resident

Mϕs in the synovial tissue and reduces
number of CD14+CD16+ circulating Mos

Herbal medicine [169]

Thapsigargin inhibitor of SERCA
Decreases the number of TNF-induced

classically activated Mϕs and increases the
number of alternatively activated Mϕs

preclinical [170]

Withaferin-A steroidal lactone Promotes classically activated Mϕ to
alternatively activated Mϕ repolarization preclinical [171]

Berberine antimicrobial agent

Increases the proportion of alternatively
activated Mϕs and decreases the proportion

of classically
activated Mϕs, downregulates HIF-1α

expression in synovial Mϕs

Preclinical [172]

Ramucirumab VEGF Blocks VEGF signaling preclinical [173]
Ranibizumab VEGF Blocks VEGF signaling preclinical [174]

2-benzoyl-
phenoxy

acetamide

benzophenone
analog Targets VEGF and HIF-1α preclinical [175]

Paclitaxel (PTX) tubulin,
chemotherapy Targets VEGF and HIF-1α preclinical [176]

pLVX-shRNA-
HIF-1α

shRNA targeting
HIF-1α

Inhibits HIF-1α and VEGF expression,
leading to decreased proinflammatory

cytokine expression
Preclinical [177]

Clodronate
liposomes

release
chlorophosphate Mϕ depletion Preclinical [178]

Human
umbilical cord
blood-derived
mesenchymal

stem cells

stem cells Polarizes naive Mϕs toward an alternatively
activated phenotype preclinical [179]
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7. Conclusions and Future Perspectives

The present review summarizes recent understanding of the phenotype of Mos/Mϕs
and the mechanisms regulating their activation to elicit inflammation in patients with JIA.
As discussed, the activity and phenotype of Mos/Mϕs play an important role in patho-
genesis across different JIA subtypes. Recruited to the joints by chemokine MCP-1/CCL2
and RANTES, Mos infiltrate the inflamed synovium and add to the tissue-resident Mϕ
pool orchestrating a local and global inflammatory reaction resulting in tissue damage.
Upon the stimulations of cytokines, immunocomplexes, TLR ligands, the hypoxic mi-
croenvironment, and microRNAs, a mixed polarization of Mϕs toward an inflammatory
phenotype was mediated via the JAK-STAT, MAPK, NFκB, TRIF, and HIF signaling path-
ways. Proinflammatory cytokines, including IL-1β, IL-6, IL-12, IL-18, IL-23, and TNFα
were secreted to stimulate activation of osteoclasts and synovial fibroblasts and to promote
T lymphocyte polarization. VEGF, in addition, drives synovial angiogenesis, contributing
to JIA pathogenesis (Figure 1).

Figure 1. Therapeutic targets related to monocyte and macrophage activation in juvenile idiopathic arthritis. Monocytes
(Mos) were recruited to the joints by CCL2 and differentiated into tissue macrophages (Mϕs) under inflammatory conditions.
IL-1β, TNFα, IFNγ, GM-CSF, and IL-10 are especially important for the differentiation process. Upon stimulation with
cytokines, immunocomplexes, TLR ligands, the hypoxic microenvironment, and microRNAs, the mixed polarization
of Mϕs toward an inflammatory phenotype was mediated via the JAK-STAT, MAPK, NFκB, TRIF, and HIF signaling
pathways. Proinflammatory cytokines, including IL-1β, IL-6, IL-12, IL-18, IL-23, and TNFα were secreted to stimulate
activation of osteoclasts and synovial fibroblasts and to promote T lymphocyte polarization. VEGF drives synovial
angiogenesis, contributing to JIA pathogenesis. Available therapeutic targets are marked with red asterisks *. Abbreviations:
RF, rheumatoid factor; ACPAs, anti-citrullinated protein antibodies; CCL2, monocyte chemoattractant protein 1; TLRs,
Toll-like receptors; FcγR, Fc gamma receptor; JAK, Janus kinase; STAT, signal transducer and activator of transcription;
MAPKs, mitogen-activated protein kinases; TRIF, TIR-domain-containing adapter-inducing interferon; NFkB, nuclear factor
kappa-light-chain-enhancer of activated B cells; HIF, hypoxia-inducible factor; Th1, type 1 T helper cells; Th17, type 17 T
helper cells; RANKL, receptor activator of nuclear factor kappa beta ligand.

While investigations into strategies targeting Mo recruitment, Mo/Mϕ polarization,
cell depletion, and cytokine blockade have been recently performed (Table 2), uncovering
the heterogenicity and regulatory mechanisms of Mo/Mϕ in JIA pathogenesis is crucially
needed for the development of novel approaches aiming at Mo/Mϕ for the control of
the disease.
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Abbreviations

ACPA anti-citrullinated protein antibody
AS ankylosing spondylitis
CCL C-C motif chemokine ligand
CXCL C-X-C motif chemokine ligand
DMARD disease-modifying antirheumatic drug
ERA enthesitis-related arthritis
FcγR Fcγ receptor
GM-CSF granulocyte-macrophage colony-stimulating factor
HIF hypoxia-inducible factor
IC immunocomplex
ICAM-1 intracellular adhesion molecule 1
IL interleukin
ILAR International League of Associations for Rheumatology
IFN Interferon
IP-10 IFNγ inducible protein 10
IRAK IL-1R-activating kinase
IRF interferon regulatory factor
JAK Janus kinase
JIA juvenile idiopathic arthritis
LPS lipopolysaccharide
MAPK mitogen-activated protein kinase
MAS macrophage activation syndrome
MCP-1 monocyte chemoattractant protein-1
MMP matrix metalloproteinases
Mϕ macrophage
Mo monocyte
MTX methotrexate
MyD88 myeloid differentiation primary response protein 88
NFκB nuclear factor kappa-light-chain-enhancer of activated B cells
NK natural killer
NLRP3 NOD-, LRR-, and pyrin domain-containing protein 3
PBMCs peripheral blood mononuclear cells
PPARγ peroxisome proliferator-activated receptor gamma
RA rheumatoid arthritis
RANTES regulated upon activation, normal T cell expressed and presumably secreted
RF rheumatoid factor
RANK receptor activator of NFκB
RANKL RANK ligand
SF synovial fluid
sJIA systemic onset JIA
SOCS suppressor of cytokine signaling
STAT signal transducer and activator of transcription
TGFβ transforming growth factor beta
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Th1 type 1 helper T cells
Th17 type 17 helper T cells
TLR Toll-like receptor
TNF tumor necrosis factor
TREM triggering receptor expressed on myeloid cells
TRAF TNF receptor associated factor
VEGF vascular endothelial growth factor
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