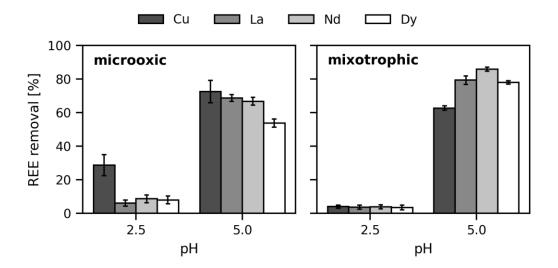
Supplementary Information to:

Roles of pH and Phosphate in Rare Earth Element Biosorption with Living Acidophilic Microalgae

Jens Kastenhofer¹, Oliver Spadiut², Vladimiros G. Papangelakis¹, D. Grant Allen^{1*}

¹ University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, ON M5S 3E5, Canada

² TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Straße 1a, 1060 Vienna, Austria


^{*} Corresponding author: D. Grant Allen, dgrant.allen@utoronto.ca

Supplementary Text 1

To synthesize solid LaPO₄, solutions of 1 M LaCl₃ and 1 M NaH₂PO₄ were prepared and 2.5 mL each were transferred to a 15 mL polypropylene tube. White precipitate formed immediately and the generated suspension was mixed on a vortexer for 5 minutes. The precipitated LaPO₄ was then aged for 24 hours at 25°C. Subsequently, the suspension was centrifuged for 5 min at $10000 \times g$ and 21°C and the solids were washed twice with ultrapure water. Solid LaPO₄ was then resuspended in ultrapure water, transferred to a glass petri dish, and dried in an oven at 95°C.

Table S1 Composition of modified Bold's Basal Medium

	Stock concentration [g/L]	Added per 1 L medium [mL]		Stock concentration [g/L]	Added per 1 L medium [mL]
NaNO ₃	250	1	Trace compound stock containing:		1
KH_2PO_4	175	1	H_3BO_3	2.86	
K_2HPO_4	75	1	$ZnSO_4 \bullet 7 H_2O$	0.22	
$MgSO_4 \bullet 7 H_2O$	75	1	$Na_2MoO_4 \cdot 2 H_2O$	0.39	
CaCl2 • 2 H2O	25	1	$CuSO_4 \bullet 5 H_2O$	0.08	
NaCl	25	1	$Co(NO_3)_2 \bullet 6 H_2O$	0.05	
Na ₂ EDTA • 2 H ₂ O (+ KOH)	10 (6.2)	1			
FeSO ₄ • 7 H ₂ O	4.98	1			
H_3BO_3	11.5	0.7			

Fig. S1 Efficiency of REE removal with *G. sulphuraria* from an acidic sulfate system containing 5 ppm each of Cu (79 μ M), La (36 μ M), Nd (35 μ M), and Dy (31 μ M).

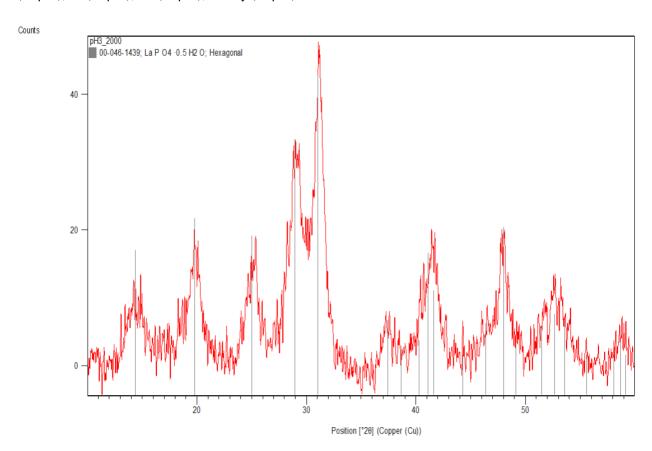
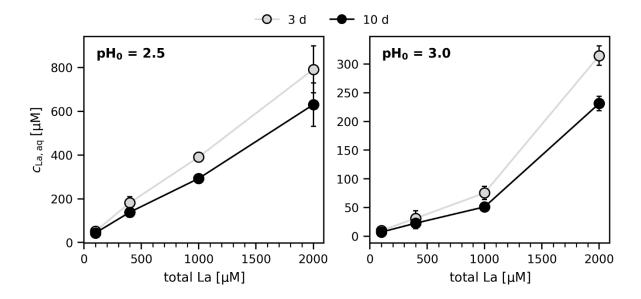



Fig. S2 XRD pattern of the precipitate formed in *Galdieria* medium at initial pH = 3, 72 h after spiking the solution with 2000 μ M LaCl₃. The grey lines are the reference pattern for crystalline LaPO₄ • 0.5 H₂O. The XRD pattern of the sample displays poorly defined peaks, indicating weak crystallinity.

Fig. S3 Dissolved La concentrations in *Galdieria* medium at two initial pH values, 3 and 10 days after adding LaCl₃.