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High-throughput (HT) in vitro to in vivo extrapolation (IVIVE) is an integral component in new
approach method (NAM)-based risk assessment paradigms, for rapidly translating in vitro
toxicity assay results into the context of in vivo exposure. When coupled with rapid
exposure predictions, HT-IVIVE supports the use of HT in vitro assays for risk-based
chemical prioritization. However, the reliability of prioritization based on HT bioactivity data
and HT-IVIVE can be limited as the domain of applicability of current HT-IVIVE is generally
restricted to intrinsic clearancemeasured primarily in pharmaceutical compounds. Further,
current approaches only consider parent chemical toxicity. These limitations occur
because current state-of-the-art HT prediction tools for clearance and metabolite
kinetics do not provide reliable data to support HT-IVIVE. This paper discusses current
challenges in implementation of IVIVE for prioritization and risk assessment and
recommends a path forward for addressing the most pressing needs and expanding
the utility of IVIVE.
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INTRODUCTION

Widespread implementation of risk assessment strategies based on in vitro methods requires
fundamental changes in how safety evaluations and decisions are made, along with well-defined
frameworks for the use of in vitro experiments coupled with high throughput (HT) computational
tools (new approach methods; NAMs) to meet the needs of the ever-evolving regulatory, scientific,
and legislative landscapes. Rapid progress in development of new in silico and in vitro methods is
facilitating the movement away from animal studies and should help to increase confidence in
chemical safety decisions based on new approach methodologies (NAMs). Recent case studies have
demonstrated that in silico tools, such as the threshold for toxicological concern (TTC), and HT
in vitro assays coupled with HT in vitro to in vivo extrapolation (HT-IVIVE) generally provide
conservative estimates for chemical points of departure (PoD), and therefore offer a viable alternative
to the use of traditional approaches for prioritizing chemicals based on potential risk (Patlewicz et al.,
2018).

HT-IVIVE, a critical tool for translating in vitro bioactivity into estimated human in vivo
exposures, uses values for parent chemical loss via metabolism, renal clearance, plasma binding, and
absorption to predict external exposures that would give rise to steady state parent chemical plasma
concentrations equivalent to active concentrations in the in vitro test medium (Rotroff et al., 2010;
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Wetmore et al., 2013; Sipes et al., 2017). To do this, in vitro
metabolism data is necessary, together with pharmacokinetic
(PK) modeling, in a process referred to as reverse dosimetry
(Clewell et al., 2008). While this process is essential to translating
in vitro bioactivity measurements to human in vivo exposures,
several limitations in the implementation of HT-IVIVE to the
broader chemical Universe exist. Due to challenges with
analytical chemistry, cell culture and financial limitations,
metabolism data is typically collected in short-term
incubations with microsomes or primary hepatocytes with
readouts for parent chemical loss. Thus, in the majority of HT
uses, IVIVE considers the parent chemical as the only potentially
bioactive moiety. Further, expansion of HT-IVIVE to chemicals
beyond the 301 chemicals measured in Wetmore et al. (2015) has
been limited by the cost and time required to develop necessary
analytical chemistry methods. Here, our main goal was to
evaluate approaches for incorporating metabolism information
into HT-IVIVE approaches, discuss their domains of applicability
and recommend research strategies for rapid improvement of
current HT-IVIVE capabilities.

Evaluation of Current Tools for Clearance
Predictions
Published in vitro Metabolism Data
For cost and time efficiency, it is common to examine literature
data as a source for metabolism characterization. Most published
metabolic clearance data are measured using subcellular
fractions, such as microsomes and cytosol, or primary cell
monoculture systems. These systems are typically derived from
the liver of the target species, though clearance from other tissues
such as intestine, lung, and kidney may be reported when
extrahepatic metabolism is known to be important for a
particular chemical. Incubation with subcellular fractions or
primary hepatocytes are generally performed over a few hours,
as loss of enzyme activity occurs quickly in vitro (Nussler et al.,
2001; Wilk-Zasadna et al., 2015; Cassim et al., 2017).

The greatest challenge in using existing literature data for
parameterizing IVIVE models resides is the fact that in vivo
metabolism is an integrated process involving several competing
and/or interacting reactions, which may not be completely
captured by the more simplified model systems that are
typically used. Thus, while microsomal fractions are used often
in the published literature, the domain of applicability for these
methods is limited to a subset of the chemical Universe that relies
on phase I cytochrome-P450-mediated oxidative reactions,
carboxylesterases and epoxide hydrolases achieved with
traditional microsomal incubations. While phase II
metabolism via glucuronide conjugation may also be captured
by microsomal preparations, other enzymes, such as the soluble
phase II enzymes (sulfotransferases, glutathione s-transferases,
etc.,) are neglected (Taylor and Triggle, 2007; Decker et al., 2009).
While isolated cytosolic fractions may be used to evaluate these
processes, this approach is far less common than the use of
microsomes. Additionally, since specific cofactors must be added
to facilitate some of the cytosolic enzymes, it can be difficult to
find published cytosolic enzyme data for all but the most

thoroughly studied chemicals. Liver S9 fraction or homogenate
can also be used as they contain the major phase I and II enzymes.
However their preparation is laborious (Pelkonen et al., 2009).
Human liver slices have the advantage of having a preserved basic
hepatic architecture, with an intact cell system and the major
phase I and II enzymes. The only drawbacks are the difficulty to
obtain the human liver slices and the specialized skills needed (de
Graaf et al., 2010).

For the reasons described above, freshly isolated primary
hepatocytes are regarded as the most relevant experimental
system to study both hepatic metabolism and metabolite-
mediated effects of chemicals and pharmaceuticals. Primary
hepatocytes express most of the proteins found in the human
liver, including those involved in metabolism, membrane
transport, and receptor-mediated processes (Li et al., 1995;
Vildhede et al., 2015; Yang et al., 2015). Primary hepatocytes
in suspension are the gold standard for incubation periods up to
4 h but their viability is time limited (Smith et al., 2012). Plated
primary hepatocytes are also the gold standard but for incubation
periods longer than 4 h (Smith et al., 2012; Ma et al., 2017).
However, a major drawback with plated primary hepatocytes is
the rapid change in phenotype observed in culture; enzyme
activity changes dramatically in the first hours after isolation
(for fresh hepatocytes) or thawing (for cryopreserved
hepatocytes). In most hepatocytes, the enzymatic activity
decreases by approximatively 50% in the first 5–6 h, with a
95% reduction in enzyme activity within 30 h for most
preparations (Nussler et al., 2001; Cassim et al., 2017). To
overcome the short-life span of these preparations, several
techniques have been developed to stabilize hepatic phenotype
over longer periods (Vinci et al., 2010a; Vinci et al., 2010b; Ballard
et al., 2016). However, these methods have not been routinely
used for metabolism studies. Thus, current published metabolism
data are subject to the limitations of short-term in vitro assays,
including an inability to measure clearance of slowly metabolized
compounds, which will be discussed in more detail in later
sections.

Another common issue encountered when using literature-
derived results for subcellular fractions or isolated hepatocytes is
the effect of incubation conditions, such as protein content and
substrate concentrations, on estimated intrinsic clearance (CLint).
Estimates can vary widely for the same compound due to
differences in the experimental protocol. To demonstrate this
variability, we compared the published human clearance data on
the conversion of the well-studied compound, bisphenol A
(BPA), to its glucuronide metabolite (Table 1). All of these
studies used different incubation conditions, and the resulting
intrinsic clearance rates differ by more than an order of
magnitude. It should be noted that different in vitro
conditions could lead to different in vitro binding, which may
be a significant source of variability, particularly depending on
how it is (or is not) addressed (Proença et al., 2021).

Thus, in identifying and using data from published studies,
care must be taken to evaluate the study conditions and avoid
using clearance predictions outside the bounds of the data. For
example, studies that report rates of clearance using a single
concentration should only be used if the chemical concentration
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was below the level of enzyme saturation. Another challenge is
that studies will often provide results with insufficient detail to
reproduce the calculations. These types of difficulties are quite
common when looking at in vitro metabolic literature and can
pose a significant challenge when using these results to perform
HT-IVIVE.

Available In Silico Metabolism Models
A large number of in silico models have been developed over the
years for predicting metabolism based on QSARs (Ekins and
Obach 2000; Lee et al., 2007; Li et al., 2009; Lombardo et al., 2014;
Sarigiannis et al., 2017; Sipes et al., 2017). These models typically
take advantage of the large (but often proprietary) data sets
developed during drug candidate screening, and are often
focused on the development of classification models (e.g.,
metabolized vs. not metabolized), enzyme substrate
identification (Holmer et al., 2021), metabolite identification
(de Bruyn Kops et al., 2021), or prediction of metabolism by a
particular class of enzymes (Mazzolori et al., 2019; Sweeney and
Sterner 2022), rather than quantitative prediction of total
clearance. Models developed primarily from pharmaceutical
compound data share a common deficiency from the
viewpoint of their application to chemicals other than drugs,
in that the characteristics that make a compound suitable for use
as a drug are often quite different from the characteristics of
compounds of environmental and occupational interest (Leanard
2019). The properties considered important for a potential oral
drug are those characteristics that will provide high bioavailability
(as described in Lipinski et al., 2016) as follows:

• nonvolatile
• water soluble
• moderate to high permeability
• low lipophilicity
• not highly ionized at pH = 7.4
• low to moderate clearance
• good stability in plasma

Environmental chemicals, however, are not subject to these
limitations as they are designed for many purposes other than
efficient biological uptake. Moreover, while there are more than
50 CYP450 enzymes, a small subset (1A2, 2B6, 2C8, 2C9, 2C19,
2D6, 3A4/5) metabolize 90% of drugs, and important CYPs for
environmental and occupational inhalation exposures (e.g., 1A1,

2E1, and 2F1) are seldom considered in drug development. Thus,
the utility of models based on drug data for predicting metabolic
transformations for environmental chemicals is uncertain.

We compared human in vivo CLint estimates from one of the
commonly used in silico models, ADMET predictor (Simulations
Plus, ver. 7.1), which is trained using data from pharmaceuticals,
for 301 ToxCast chemicals with CLint estimates derived from
in vitro hepatocyte metabolism studies (Wetmore et al., 2015) as
published in Sipes et al. (2017). The relationship between
experimentally measured and predicted CLint values is shown
in Figure 1. Overall, the in vitro experimental and predicted
values are not well-correlated (r2 = 0.00014), a finding that is at
least partially due to the fact that the training set for the predictive
tool was developed based on data from pharmaceuticals, while the
chemicals from ToxCast likely have a much broader range of
physicochemical properties. Additionally, inadequacies of the
in vitro assays to which the predictions are compared may
also play a role (see next section).

TABLE 1 | Metabolism kinetics of BPA found in the literature.

References Vmax KM (µM) CLint_invitro CLint_invivo (L/h)a Metabolic system

Kuester and Sipes (2007) 438 pmol/min/106 cells 9 56 μl/min/106 cells 590b Cryopreserved hepatocytes
Elsby et al. (2001) 5.9 nmol/min/mg protein 77.5 292c Pooled liver microsomes
Kurebayashi et al. (2010) 10.6 ml/h/106 cells 5.3 2 ml/h/106 cells 351b Cryopreserved hepatocytes
Trdan Lušin et al. (2012) 8.5 nmol/min/mg protein 8.9 0.95 ml/min/mg protein 3637c Liver microsomes
Mazur et al. (2010) 2077 pmol/min/mg protein 3.6 649 μl/min/mg protein 2486c Liver microsomes
Rotroff et al. (2010) 25.04 μl/min/106 cells 264b Hepatocytes

aCalculated Vmax = maximal velocity of metabolic clearance; KM, Michaelis-Menten parameter (half-maximal metabolism concentration)
bCLint_invivo = CLint_invitro × HPGL (hepatocytes per gram liver: 110 million cells/g liver) × Volume liver (1,596 g) × 60 min/h.
cCLint_invivo = CLint_invitro × MPPGL (mg of microsome protein/g liver: 40) × Volume liver (1,596 g) × 60 min/h.

FIGURE 1 | Comparison of measured (Wetmore et al., 2015) and
predicted (ADMET predictor, ver7.1, SimulationsPlus) intrinsic clearance
(CLint) for a subset of ToxCast chemicals. The red line represents the linear
regression with R2 = 0.00014. The solid yellow line represents
equivalence between predicted and measured values (y = x) and the dashed
yellow lines represent a 10-fold divergence between predicted and measured
values (y = 10 × x; y = x/10).
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Since many of the tools used for IVIVE analysis were originally
developed for pharmaceuticals, their performance against the
more diverse set of chemicals encountered in the environment
needs to be properly evaluated (Bell et al., 2017). To investigate
the similarity in the physical-chemical properties across
pharmaceutical and environmental chemicals, we used the
chemical descriptor information from the Collaborative
Estrogen Receptor Activity Prediction Project (CERAPP)

database (Mansouri et al., 2016) to visualize the relationship
between the chemical space of pharmaceutical and environmental
chemicals (Figure 2). Model descriptors were physical-chemical
properties from OPERA, as described in Mansouri et al. (2016):
vapor pressure (logVP), water solubility (logWS), and
lipophilicity (logP). Figure 2 demonstrates that
pharmaceuticals only represent a subset of the chemical space
that is associated, as expected, with low volatility, low lipophilicity
and high water solubility.

We further evaluated the chemical space of the 45,000
chemicals in the CERAPP database using principal component
analysis (PCA), which is useful for determining descriptors that
explain variance (Figure 3). Random Forest analysis was utilized
for predicting three exposure proximity classes: near-field (NF),
far-field (FF), and pharmaceutical (Rx), after which a principal
component analysis was employed using the highest performing
decision algorithm. A classification accuracy of 79% was achieved
when simultaneously utilizing two descriptor sets: 1) CERAPP
physicochemical property with Lapinski descriptors and 2)
structural signatures in the form of DSSTox Toxprint
chemotypes (Yang et al., 2015). The most important
descriptors identified by the analysis were molecular weight
and polar surface area, both of which had an importance of
greater than 0.9 for the first and second components, respectively,
while all other components were less than 0.3. The analysis also
indicated that molecule flexibility and lipophilicity were the
major factors distinguishing the pharmaceutical and
environmental chemical spaces, with drug-like compounds
being confined in a narrower space than environmental
chemicals. Many pharmaceutical compounds contain rigid
ring-type structures that limit their flexibility. This helps
enhance their affinity for the target enzyme by limiting the
entropic price of binding. Log p values for pharmaceuticals
tend to be moderate: high enough to allow passage through

FIGURE 2 | Scatter plot of the physicochemical properties of environmental chemicals (gold dots) and pharmaceuticals (blue dots) in the CERAPP database. The
axes represent vapor pressure (log VP), water solubility (log WS) and lipophilicity (log P). Two different views are shown to illustrate the properties of the environmental
chemicals, dioctyl phthalate (left) and PFOSA (right).

FIGURE 3 | Principal component analysis. All chemicals (CERAPP,
gray), environmental chemicals from ToxCast (red), and top prescribed drugs
(blue). The blue bubble surrounds the Top Pharmaceutical compounds that
are one standard deviation away from the mean. The red bubble
surrounds the ToxCast and Environmental compounds that are one standard
deviation away from the mean.
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cell membranes, while still low enough to avoid issues with
bioavailability and solubility (Lipinski 2016). As environmental
chemicals are not designed to meet the same criteria, they do not
have these features constrained. To assess the significance of this
discrepancy, we calculated the Frobenius distance (Euclidian
norm of (D1-D2)) between pairs of distributions. The
resulting distances (Rx-NF = 2.35, Rx-FF = 2.58, NF/FF =
0.48) support the conclusion that the Rx distribution can be
seen as distinctly different from the other two, indicating that
validation of an assay with pharmaceuticals may not adequately
ensure the usefulness of the assay for environmental chemicals.

A number of recent efforts have attempted to address the
insufficiency of pharmaceutical data for training quantitative
structure activity relationship (QSAR) prediction of CLint for
environmental chemicals by including available data on non-
pharmaceuticals, but with limited success (Pradeep et al., 2020;
Dawson et al., 2021a,b; Mansouri et al., 2021). Three models, all
freely available (including OPERA, which has a downloadable
graphic user interface) are described herein. Pradeep et al. (2020)
used a combination of read-across and QSAR to classify 524
pharmaceuticals, food-use chemicals, pesticides, and industrial
chemicals into low, medium, and high CLint groups. They then
used a series of machine learning methods with ≥ 79 descriptors
to develop predictive models for CLint, based on the “medium
CLint” chemicals (n = 337). Unfortunately, the fit to the observed
data was still fairly poor (test set r2 = 0.14), and the model was not
correlated to CLint predictions from the ADMET software (r2 =
0.17). Poor model performance was attributed to uncertainty and
variability in the underlying in vitro data, as well as the possibility
that important chemical descriptors had yet to be identified.
Mansouri et al. (2021) developed a similar capability in the
OPERA QSAR app (https://ntp.niehs.nih.gov/whatwestudy/
niceatm/comptox/ct-opera/opera.html). OPERA has a chemical
domain of 1,056 non-specific chemicals and utilizes QSAR,
classification (cleared vs. non-cleared), and then regression on
cleared chemicals to estimate CLint. Ultimately, Mansouri et al.
(2021) noted a bimodal distribution of estimated values for CLint
(centered around ~10−6.5 and ~101.5l/hr). The r2 value for this
model was 0.40, which still demonstrates a fair amount of room
for improvement, but is much improved over the previous
models. Dawson et al. (2021) built a QSAR model with 40
descriptors using both pharmaceutical and non-pharmaceutical
chemicals pulled from ToxCast and ChEMBL databases.
Chemicals were classified into very slow, slow, and fast/very
fast metabolism, and random forest regression was performed
to provide quantitative estimates of CLint. The overall average
accuracy for the full training set was 58.7% in the training set;
however, after filtering to ensure that chemicals were within the
applicability domain, the accuracy when applied to ToxCast
chemicals was 70.4%. Predictions were poor in the “very slow”
category, but this was likely due to a severe under-representation
of “slow” chemicals in the data (8% of the test set). The overall r2

of the observed vs. predicted random forest regression was 0.52,
which indicates some utility for application in early prioritization.
Overall, these efforts demonstrate the importance of using
relevant data model training and highlight the need for
additional CLint data collection in the environmental chemical

space. The lack of human in vivo metabolism data for chemicals
that are not pharmaceuticals is a limiting factor in determining
the domain of applicability for in vitro systems. To address this
deficiency, it will be necessary to conduct parallel evaluations in
human and rodent tissues to extend the available in vivo data.

Recommendations for Improving Intrinsic
Clearance Predictions
Using Improved in vitro Systems to Collect Data to
Support Expansion of Current in Silico Models
Twomajor areas for future development that were identified from
our analysis of current HT-IVIVE capabilities were 1) improved
in vitromodels that allow for in vivo -like metabolite profiles over
longer periods of time and 2) expanded domain of applicability of
clearance prediction models by collecting data from the
environmental chemical space. In particular, the prediction of
slowly cleared environmental compounds is hindered due to the
lack of experimental data. On the basis of a purely practical
consideration, it is not possible to determine CLint with
confidence if rates of metabolism are significantly less that the
life-span/duration of metabolic competence of in vitro
hepatocytes or metabolism assay preparations. Thus, the
limitations of enzyme viability in current in vitro models is a
clear technological gap that must be addressed if predictive
models are to be developed for the broader chemical Universe.

The short-lived nature of most existing in vitro models,
including the hepatocyte assay used for several HT-IVIVE
studies (Rotroff et al., 2010; Wetmore et al., 2015), limits their
utility for the broader Universe of compounds. Recent
developments in 3D and dynamic tissue cultures, e.g.,
bioreactors, have shown promise for improving estimates of
both chemical metabolism and toxicological response
(LeCluyse et al., 2012). For example, Phillips (2018) developed
a 3D primary human hepatocyte cell culture system using alginate
hydrogel beads with extended viability andmetabolic competence
that can be used for long-term primary human hepatocyte culture
model with slowly metabolized chemicals. Hepatocytes are viable
for more than 4 weeks in this system. Increasing the length of
time that hepatocytes could be exposed to chemicals would
contribute to addressing the major shortcoming of currently
available in vitro metabolic clearance determination tools in
accurately measuring slow clearance. These longer-lived
in vitro metabolism tools would also be useful in improving
coverage of Phase II metabolic processes and other clearance
pathways. As an example, we measured the expression of several
Phase I and Phase II metabolism genes in primary hepatocytes
cultured in a 3D alginate bead system (Phillips et al., 2018). As
opposed to standard suspension cultures that lose most of their
RNA expression in the first day and lose viability in less than
1 week (LeCluyse et al., 2012), the hepatocytes in this 3D model
showed increased expression of most of the measured genes after
4 weeks in culture (Figure 4). Such systems also hold tremendous
promise for measuring low abundance or slowly formed
metabolites. Bernasconi et al. (2019) showed in their study
that cryopreserved PHH and cryopreserved HepaRG cells are
reliable and relevant in vitro methods for the assessment of
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human CYP enzyme induction. HepaRG cell lines are metabolic
competent “hepatocyte-like but they only represent one donor
(Bell et al., 2017). Organoids based on primary hepatic material
are also systems that have a close resemblance to in vivo
physiological situation but there is limited information on
their performance (Gough et al., 2021).

Collection of metabolism data in these improved models is
nonetheless hindered by the lack of resources for generation of
in vitro clearance data, the high cost of analytical chemistry, and
the low-throughput nature of existing assays. However, we
propose that the domain of applicability of current in silico
metabolism models could be substantially improved while
minimizing costs, by strategically selecting a finite set of
chemicals that could be used to re-train/update current QSAR
models of metabolism. Using computational approaches for
defining chemical space, such as those demonstrated in the
included chemical space analyses, it is possible to select
specific chemicals for testing that target chemical domains of
interest. Further, using non-targeted analytical chemistry
techniques, we may be able to expand the throughput for
metabolism studies (Sobus et al., 2018).

In Vitro to In Vivo Extrapolation in a Risk
Assessment Context
HT-IVIVE estimates of human equivalent dose using only parent
chemical clearance have been successfully used to support
prioritization or screening-level risk evaluations from HT
in vitro bioactivity data (Rotroff et al., 2010; Yoon et al., 2012;
Wetmore et al., 2013; Wetmore et al., 2015; Sipes et al., 2017;
Casey et al., 2018; Wambaugh et al., 2018). However, when used
with data from biologically relevant fit-for-purpose assays
(Clewell et al., 2016; Hartman et al., 2018; Beames et al., 2020)
to derive quantitative estimates of risk, more sophisticated IVIVE
models (quantitative-IVIVE; Q-IVIVE) that account for issues
such as slow clearance, active transport, extra-hepatic
metabolism, and metabolic bioactivation are likely to be
necessary (Yoon et al., 2012; 2013; 2016).

In a tiered approach to NAM-based risk assessment as
described in Andersen et al. (2019), rapid computational
methods that allow for increased uncertainty may be used to
make rapid decisions on chemical prioritization (Level 1), andHT
or organotypic in vitro assays may be used to make more
quantitative assessments (Level 2–4). The progression between
bioactivity linked risk-based evaluations at different tiers is
governed by decision context and the degree of confidence
required for the decision. For example, if HT methods can
determine that human effect levels predicted using
computational methods or in vitro points of departure are
sufficiently large relative to likely human exposure (i.e., the
margin of exposure, MOE), a larger degree of uncertainty in
the metabolic characterization may be tolerated in decision-
making. Conversely, if an early-tier assessment predicts a
small margin of exposure with higher uncertainty, successive
tiered testing can be used to refine the risk estimate and gain
confidence in NAM-based decisions.

In this schema, HT-IVIVE supported by in silico predictions of
parent chemical clearance would support rapid prioritization and
data collection in more organotypic metabolism models would
support higher tier, quantitative assessments. However, as the
domain of applicability of current data and predictive models are
heavily biased toward the pharmaceutical chemical space, current
efforts suggest that even as a first pass, CLint predictions are in need
of improvement. This situation becomes even more pressing when
considering the lack of consideration of metabolite bioactivity.

Considering Metabolite Exposure With In
Vitro to In Vivo Extrapolation
It is important to make risk-based decisions based on the
exposure to the active form of the chemical, whether the
decisions relate to prioritization or some higher tier risk
assessment. In practice, it is not a simple process, because
both the tools for assessing in vitro bioactivity assays and for
measuring in vitro metabolism assays may lack the full
complement of enzymatic pathways required to activate a test

FIGURE 4 | Expression of Phase I and II metabolism genes in freshly plated rat hepatocytes (left) or rat hepatocytes cultured for 28 days in alginate beads.
Reproduced from Phillips et al., 2018.
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compound and would likely misrepresent the in vivo phenotype.
As described in Figure 5, when both parent and metabolites are
active, the results expected from in vitro assays would be true
positives. However, when the parent compound is active and the
metabolite inactive, the relevance of the results would depend on
the similarity of clearance in vitro and in vivo. If the compound is
cleared quickly in vivo, spurious effects by the parent might be
observed in a cell culture system that lacks the appropriate
metabolic capability. In contrast, when the parent compound
is inactive and the metabolite is active, the results from in vitro
screens that lack the appropriate metabolic capability could be
false negatives. For example, the phthalate esters (diethylhexyl
phthalate, di-n-butyl phthalate) are antiandrogenic in vivo due to
hydrolysis to the monoester metabolites. In vitro , the monoester
metabolites inhibit testosterone, but parent chemicals do not
(Balbuena et al., 2013; https://comptox.epa.gov/dashboard/
chemical/invitrodb/DTXSID2025680). In this case, a false
negative could be produced if the active metabolites were not
identified by QSAR of in vitro metabolism studies that included
esterase activity. Current in vitro bioactivity assays rarely consider
metabolism, and when they do, the assay conditions are unlikely
to mimic in vivo metabolite profiles. For example, the most
common approach to including metabolism is the addition of
S9 fractions from rat hepatocytes, often following induction of
specific Phase I pathways using chemicals such as Arochlor 1254
or phenobarbital (Elliott et al., 1992; Ooka et al., 2020.).
Recombinant expressed enzymes can also be applied to obtain
information onmetabolism, including the contribution of a single
metabolic enzyme or a combination of isozymes to the
biotransformation of the chemical, and the identification of
potential metabolites (Hariparsad et al., 2006). The results
from the expressed system can also support screening for
toxicity of the metabolites (Hariparsad et al., 2006). From the
QIVIVE point of view, another advantage of recombinant
systems is the capability of providing human variability
information when combined with enzyme abundance data
(Lipscomb et al., 2003; Punt et al., 2010).

While identifying every single metabolite is likely not feasible
for any given test compound or decision context, some
understanding of the potential for production of a reactive
metabolite and the rate of clearance of major metabolites that
raise structural alerts for toxicity is crucial for any NAM-based
risk assessment strategy. Hence, some combination of in silico
tools and in vitro assays will be essential to inform the number of
potential toxic metabolites, especially at early stages that are
intended to facilitate prioritization.

At this time, no single method for metabolite prediction would
be sufficient for assessing metabolite formation. Coupling
predictive tools with read-across from literature reviews should
aid in identifying the mostly likely metabolites to be formed. As a
result, metabolites found to be common across all three sources of
information—literature review, metabolite prediction software
and direct in vitro identification - would be the most likely
candidates for follow-up testing. To identify if metabolism
plays a major role in response, the most frequently identified
metabolites could be tested. For example, compounds with
characterized activity in HT screening efforts (e.g., Tox21,
ToxCast), having structural flags for genotoxicity, or that are
metabolites expected to be formed might be prioritized for
testing. Criteria for inclusion of predicted metabolites for
further testing would certainly vary according the decision
context. Additionally, if a metabolite had structural
characteristics that indicate that it could be more persistent or
bioaccumulative than the parent compound, this could also signal
the need for follow-up testing.

However, collection of literature data would likely prove to be the
best option only for those few compounds that that have been
extensively studied. An alternative to looking through various
literature data for poorly characterized compounds would be to
develop a more efficient experimental strategy for metabolite
identification. A rapid metabolite identification approach based
on computer-aided spectrum analysis has the potential to
significantly increase throughput and confidence in incorporating
metabolites in risk-based decision makings (Zamora et al., 2013).

FIGURE 5 |Relevance of in vitro assays that lack metabolism to the potential bioactivity of chemicals. Note that the top row (denoted *), will return a true positive but
for the wrong reason (because the metabolite is the entity of concern in vivo).
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CONCLUSION

Significant progress has been made internationally in redefining
the paradigm of toxicology testing to support reducing the use of
animals and enhancing human risk assessment through the
implementation of more human relevant in vitro-only
strategies. Considerable progress has also been made in
developing and applying screening approaches that integrate
HT methods with tiered-testing strategies to support a weight-
of-evidence approach to chemical safety decision making. HT-
IVIVE is an important tool that utilizes in vitro experimental data
to predict equivalent dose levels in vivo via dosimetry. However,
there remain significant gaps in both in vitro and in silico tools
related to metabolism that need to be addressed to improve the
efficiency and confidence in HT-IVIVE. To address these gaps,
the in vitrometabolism field requires significant improvements in
the rapid identification of likely metabolites, characterization of
metabolite formation and clearance processes, and estimation of
metabolite kinetics. This task will require a collaborative effort
across in silico, in vitro and analytical chemistry platforms.
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