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Abstract

Purpose

To deeply analyze the basic information and disease information of adult patients in the

MIMIC-III (Medical Information Mart for Intensive Care III) database, and provide data refer-

ence for clinicians and researchers.

Materials and methods

Tableau2019.1.0 and Navicat12.0.29 were used for data analysis and extraction of disease

distribution of adult patients in the MIMIC-III database.

Result

A total of 38,163 adult patients were included in the MIMIC-III database. Only 38,156

patients with the first diagnosis were selected. Among them, 21,598 were males accounting

for 56.6% the median age was 66 years (Q1-Q3: 53–78), the median length of a hospital

stay was 7 days (Q1-Q3: 4–12), and the median length of an ICU stay was 2.1 days (Q1-Q3:

1.2–4.1). Septicemia was the disease with the highest mortality rate among patients and the

total mortality rate was 48.9%. The disease with the largest number of patients at the last

time was other forms of chronic ischemic heart disease.

Conclusion

By analyzing the patients’ basic information, the admission spectrum and the disease mor-

bidity and mortality can help more researchers understand the MIMIC-III database and facili-

tate further research.

1. Introduction

In order to understand the nature of the disease, many studies have been carried out to deter-

mine the pathogenesis, course, and complications of the disease [1–3]. MIMIC-III (Medical
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Information Mart for Intensive Care III) is a large, freely-available database comprising de-

identified health-related data associated with over forty thousand patients who stayed in criti-

cal care units of the Beth Israel Deaconess Medical Center between 2001 and 2012 [4]. The

data in the MIMIC-III database is more reliable and complete than the data in the MIMIC-II

database. Many researchers have conducted a lot of research on the MIMIC-III database. Kur-

niati A P [5] used process mining to study oncology. Mengling F’s [6] study was designed to

examine the association of transthoracic echocardiography with 28-day mortality specifically

in patients who suffered from sepsis. Parreco J P [7] used supervised machine learning to pre-

dict central line-associated bloodstream infection (CLABSI). Some scholars have used deep

learning [8,9] and visualization methods [10,11] to study the MIMIC-III database and get bet-

ter results. There are also many other researchers [12–15] using other methods to study the

MIMIC-III database.

Recent researches have leveraged machine learning techniques to predict the mortality rate

of various diseases. In order to solve clinical problems in a meaningful way, researchers need

to understand clinicians’ needs. Because clinicians lack knowledge of SQL programming and

EHR database programming [16–18], the clinical questions that they raised cannot be sup-

ported by data. Therefore, in order to promote the communication and cooperation between

clinicians and researchers [18], a detailed analysis of disease information based on the MIMI-

C-III database was conducted in this paper to provide data reference for researchers.

2. Materials and methods

2.1. Data source

This study used the publicly available Multiparameter Intelligent Monitoring in Intensive Care

(MIMIC) III database version 1.4 [4]. The MIMIC-III database is derived from the private

medical record of the ICU of the Boston Medical Center in the United States. All patients’ data

were anonymized prior to extraction and data analysis. The creation, maintenance, and use of

the MIMIC-III database were approved by the institutional review boards of the Massachusetts

Institute of Technology and Beth Israel Deaconess Medical Center [19]. The database contains

detailed information on patients’ vital signs, laboratory tests, and diagnosis codes for research

by global scholars. The MIMIC-III database contains 46,520 patients at the unique patient

level, of whom 38,163 are adult patients, 38,161 patients were last admitted to the ICU, and

38,156 patients have the first diagnosis.

2.2. Data selection

Because juvenile patients have different physical status from adult patients, this article only

selected adult patients to conduct data analysis. The research in this paper is based on unique

patient levels. All data were obtained at a unique patient level. Because a patient may have mul-

tiple admission records, we selected the last admission record. In the last admission record, we

selected the last ICU record for statistical analysis. 38,161 patients were last admitted to the

ICU. In this study, only the first diagnosis was selected as the object of data analysis, and the

disease classification was gradually refined according to the primary International Classifica-

tion of Diseases (ICD-9) codes [20]. Because the MIMIC-III database only includes the

patients’ admission time and discharge time, we used the discharge time minus the admission

time to obtain the patients’ hospitalization days. The date of death of each patient was recorded

in the MIMIC-III database. We used the date of death of each patient minus the date of dis-

charge to obtain how many days the patients died after being discharged. Then we selected

patients who died within 90 days for analysis.
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2.3. Research methods

The research in this article was divided into two parts the first part was the statistics and analy-

sis of basic information of all patients in MIMIC-III database, and the second part was the dis-

tribution of diseases. The first part describes the patients’ age, gender, ethnicity, admission

time and distribution of ICU types. We used SQL programming in Navicat12.0.29 to extract

the required indicator data from the database and then imported the extracted data into Tab-

leau2019.1.0. We used table query and calculated fields in Tableau2019.1.0 to filter unique data

and then performed the visual analysis to get the final result.

In the second part, we analyzed the basic information of ten diseases with the largest num-

ber of patients, and the mortality and the ICU distribution of the ten diseases. Firstly, accord-

ing to the ICD-9 coding standard, the number of patients and deaths of each disease were

counted, and the ten diseases with the largest number of patients and the ten diseases with the

highest mortality were screened. Then, we counted the basic information of patients for each

disease. According to the analysis methods mentioned in the first part of this section, the ICU

distribution of the ten diseases with the largest number of patients was made to reflect the

main diseases of each ICU.

3. Result

3.1. Basic information of all patients in MIMIC-III

We divided patients into three parts: death in hospital, 90-day death after discharge, and no

death within 90-day after discharge. We divided patients into three categories and gained their

information separately, so we can understand the disease characteristics of different popula-

tions more clearly.

We analyzed such as length of stay, age, gender. Age and length of stay are expressed in

median (inter-quartile range). Two of the 90-day-dead patients who were discharged from the

hospital had incorrect information that the time of death was greater than the time of admission.

Therefore, the basic information of the two patients was not counted in the statistics. It can be

seen from the Table 1 that the dead patients (include death in the hospital and 90-day death after

discharge) are older, 74 years (Q1-Q3: 60–83) and 76 years (Q1-Q3: 64–84), while the non-dead

patients are relatively young, 64 years (Q1-Q3: 51–76). The mortality of patients in the MIMI-

C-III database is 23.2%. Data analysis showed that older people were more likely to be admitted

to the ICU and had a higher risk of death. We should pay more attention to the physiological

indicators of patients above the median age of 74 years old to improve their survival rate.

We counted the distribution of patients in different ICUs (Fig 1). The ICU with the largest

number of patients is the Medical Intensive Care Unit (MICU), and the number of patients

who died in the hospital and the number of patients non-dead within 90-day after discharge in

Table 1. Patients’ basic information in MIMIC-III.

Type Age, years, median

(Q1-Q3)

Male (%) Days in hospital, median days

(Q1-Q3)

Days in ICU, median days

(Q1-Q3)

Number of patients

(%)

Death in the hospital 74 (60–83) 3046

(54.5%)

6 (2–13) 3.1 (1.3–7.5) 5697 (15.0%)

90-day of death after discharge 76 (64–84) 1690

(53.8%)

9 (5–16) 2.7 (1.5–5.3) 3140+2(8.2%)

No death within 90-day after

discharge

64 (51–76) 16862

(57.5%)

7 (4–11) 2.0 (1.2–3.5) 29324(76.8%)

Sum 66 (53–78) 21598

(56.6%)

7 (4–12) 2.1 (1.2–4.1) 38163(100%)

https://doi.org/10.1371/journal.pone.0232176.t001
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the MICU are also much higher than those in other ICUs. It shows that the internal disease is

the disease with the largest number of patients and the highest mortality rate. In subsequent

studies, we can study the physiological indicators of patients in MICU and use machine learn-

ing to predict the health of patients. Fig 1 also shows that the number of patients admitted to

Cardiac Surgery Intensive Care Unit (CSRU) was second only to MICU, but the number of

deaths in hospital and the number of 90-day deaths after discharge is the lowest compared to

other ICUs. In Fig 2, we counted the mortality of patients admitted to each type of ICU, and

we found that the highest mortality rate was 32.6% in MICU. Mortality exceeds 24% in both

CCU (24.3%) and SICU (24.4%).

We analyzed the ethnic mortality of patients (Fig 3). We find Asians have the highest mor-

tality rate, at 24.8%. Fig 4 depicts a pie chart of the ethnic distribution of all adult patients in

the MIMIC-III database. The ethnic distribution and proportion can be clearly seen. Because

the database does not completely record the race of patients, many patients only say their

nationality, so it is not possible to specify which race. Therefore, “UNKOWN” and “OTHER”

exist in the ethnic classification. In Fig 5 we have calculated the age distribution of patients in

MIMIC-III. On the whole, we can find that ICU patients are mainly elderly people. Specifi-

cally, we can see that the number of patients in the 71–80 age group is the largest, followed by

the 61–70 age group. Therefore, we think that the elderly at these ages have a high risk of dis-

eases, and it is particularly important to protect the elderly in their daily lives.

3.2. The distribution of diseases in MIMIC-III

According to the coding standard of ICD-9, this article counted the top 10 diseases with the

largest number of patients admitted to the hospital according to the first diagnostic criteria

(Table 2). A total of 38,163 patients were admitted, and 38,156 patients had the first diagnosis.

The total number of the top 10 diseases with the largest number of patients is 15020. Because

we only selected the patients’ first diagnosis as the data analysis, it is equivalent to each patient

Fig 1. ICU distribution of all patients admitted to the ICU (Total number of patients is 38161).

https://doi.org/10.1371/journal.pone.0232176.g001
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suffering from only one disease. No cross-replicated data for the diseases. The disease informa-

tion of patients was counted according to the first diagnosis. The most common disease of

patients admitted to hospital is Other forms of chronic ischemic heart disease, but the mortal-

ity rate of this category is the lowest in the ten diseases. The 90-day mortality rate and in-hospi-

tal mortality of Septicemia disease are the highest among the ten diseases. Heart failure has the

highest median age among the ten diseases it is 77 years (Q1-Q3:66–85).

Fig 2. ICU mortality of all patients (in-hospital + 90-day after discharge).

https://doi.org/10.1371/journal.pone.0232176.g002
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Fig 6 shows the mortality rate of the top 10 diseases with the largest number of patients.

The disease with the highest mortality rate is Septicemia, and the mortality rate is 48.9%. Fol-

lowed by Intracerebral hemorrhage and Other diseases of lung, the mortality rate of which also

exceeded 44%. Patients with Other diseases of lung have the longest ICU stay. The days

reached 4.68 (Q1-Q3: 2.1–9.8).

Fig 3. Mortality of different race (It is calculated as: The number of deaths per race/the total number of patients

per race).

https://doi.org/10.1371/journal.pone.0232176.g003
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Fig 4. Ethnic distribution of all patients (Total number of patients is 38161).

https://doi.org/10.1371/journal.pone.0232176.g004

Fig 5. Age distribution of all admitted patients (Total number of patients is 38163).

https://doi.org/10.1371/journal.pone.0232176.g005
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Fig 7 shows the distribution of ten diseases with the largest number of patients in ICU. The

disease with the greatest number of patients is Other forms of chronic ischemic heart disease

in the five ICUs. Followed by Other diseases of endocardium and Acute myocardial infarction.

In the CCU, the disease with the greatest number of patients is Acute myocardial infarction. In

the MICU, the disease with the greatest number of patients is Septicemia. In SICU and TSICU,

the number of patients is relatively small. The main diseases are Intracerebral hemorrhage and

Subarachnoid, subdural, and extradural hemorrhage, followed by injury and Occlusion of

cerebral arteries.

4. Discussion

The MIMIC-III database is the first large ICU database that is open to the public free of charge.

It has a really large dataset with rich types of medical data, providing high-quality data

resources for clinical research, mining and building a knowledge base. This study was based

on the latest version of the MIMIC-III database to analyze the information of diseases and the

basic information of adult patients who had entered the ICU for the last time.

The research in this paper was mainly divided into two parts. In the first part, we divided

the admission patients into three categories: death in the hospital, 90-day of death after dis-

charge, and no death within 90-day after discharge. Referring to some scholars’ research

[21,22], this paper divided patients into three categories, which can better understand the dis-

ease characteristics of patients in the MIMIC database. The second part was to introduce the

basic information about the top 10 diseases with the largest number of patients, including the

length of hospital stay, gender, age, in-hospital mortality, and 90-day mortality. Based on the

disease information of the admitted patients, the mortality of each disease and the distribution

of ICUs were calculated.

Table 2. Basic information of ten diseases with the largest number of patients.

No. Disease/ICD-9 Age, years,

median

(Q1-Q3)

Male (%) Days in hospital,

median days

(Q1-Q3)

Days in ICU,

median days

(Q1-Q3)

Death in the

hospital (%)

90 days of death

after discharge (%)

Number of

patients

1 Other forms of chronic ischemic

heart disease /414

68(60–75) 2371

(77.3%)

6(5–9) 2.0(1.2–3.1) 34(1.1%) 47(1.5%) 3069

2 Acute myocardial infarction/410 70(59–81) 1723

(64.1%)

6(3–10) 2.1(1.2–3.9) 305(11.3%) 173(6.4%) 2689

3 Septicemia/038 72(59–83) 1358

(52.5%)

7(4–13) 2.9(1.6–6.5) 952(36.8%) 314(12.1%) 2587

4 Other diseases of endocardium

/424

71(60–79) 865

(59.4%)

7(5–10) 2.1(1.2–3.3) 24(1.6%) 28(1.9%) 1456

5 Other diseases of lung/518 69(56–80) 544

(51.0%)

8(4–15) 4.7(2.1–9.8) 331(31.0%) 144(13.5%) 1067

6 Heart failure/428 77(66–85) 533

(56.2%)

8(5–13) 2.7(1.4–5.1) 182(19.2%) 153(16.1%) 948

7 Intracerebral hemorrhage/431 72(60–82) 491

(52.9%)

6(3–12) 2.1(1.1–5.1) 334(36.0%) 83(8.9%) 929

8 Subarachnoid, subdural, and

extradural hemorrhage, following

injury/852

76(58–85) 484

(54.8%)

5(3–10) 1.8(1.0–3.4) 164(18.6%) 69(7.8%) 883

9 Cardiac dysrhythmias /427 70(59–81) 463

(60.6%)

5(2–8) 1.9(1.1–3.4) 125(16.4%) 56(7.3%) 764

10 Occlusion of cerebral arteries/434 76(63–85) 292

(46.5%)

6(4–11) 2.1(1.2–3.9) 158(25.2%) 75(11.9%) 628

https://doi.org/10.1371/journal.pone.0232176.t002
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Fan [18] also made a statistical analysis of the MIMIC-III database. The distribution of dis-

ease spectrum in patients of the same age is described in detail. However, the whole study basi-

cally analyzed the patients as a whole and does not classify the patients. It is not clear about the

changes in patients at different stages. Therefore, we divided the patients into three parts for

the analysis of related indicators and mortality. This can help us understand the patients’ situa-

tion more clearly. And they selected the patients who were admitted for the first time. In our

study, we selected the patients who were admitted to the hospital for the last time and they

were more representative. Their research is based on the human body systems. There is no

analysis of specific diseases. In our study, the basic information and mortality of the top 10 dis-

eases with the largest number of patients were analyzed. We also calculated the prevalence of

the top 10 diseases with the largest number of patients in different ICUs, so that we can see the

types of the main diseases in each ICU more clearly.

This study was subject to some limitations: First, we extracted data from the MIMIC-III

database, which is a retrospective study with selective bias. Second, this study mainly involved

Caucasian, African American and Asians are very few. Due to ethnic differences, the results of

this study need to be further verified in other ethnic groups. Third, we did not conduct influ-

encing factors analysis and predictive analysis for these diseases. Influencing factors analysis

and predictive analysis can better remind people how to prevent the diseases from the onset,

predict the progression of the diseases according to the patients’ condition and basic physio-

logical characteristics, and provide patients with better prognosis and rational allocation of

medical resources. This will be the main direction of our next research.

Fig 6. Mortality of ten diseases with the largest number of patients (all dead patients: death in-hospital + 90-day

of death after discharge).

https://doi.org/10.1371/journal.pone.0232176.g006
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5. Conclusion

In summary, this study provides a detailed analysis and description of the case records and dis-

ease distribution of adult patients entering the ICU for the MIMIC-III database. It provides

the statistics of patients’ basic information and the top 10 diseases with the largest number of

patients and the distribution of the ten diseases. This paper implements a complete data analy-

sis process for the MIMIC-III database, and systematically paves the way for clinicians and

researchers to conduct data research in the medical field.
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