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Abstract

Cancer genome sequencing has shown that driver genes can often
be distinguished not only by the elevated mutation frequency but
also by specific nucleotide positions that accumulate changes at a
high rate. However, properties associated with a residue’s poten-
tial to drive tumorigenesis when mutated have not yet been
systematically investigated. Here, using a novel methodological
approach, we identify and characterize a compendium of 180
hotspot residues within 160 human proteins which occur with a
significant frequency and are likely to have functionally relevant
impact. We find that such mutations (i) are more prominent in
proteins that can exist in the on and off state, (ii) reflect the iden-
tity of a tumor of origin, and (iii) often localize within interfaces
which mediate interactions with other proteins or ligands. Follow-
ing, we further examine structural data for human protein
complexes and identify a number of additional protein interfaces
that accumulate cancer mutations at a high rate. Jointly, these
analyses suggest that disruption and dysregulation of protein
interactions can be instrumental in switching functions of cancer
proteins and activating downstream changes.
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Introduction

Cancer genome sequencing has had a major role in mapping cellular

pathways leading to tumorigenesis (Lawrence et al, 2014; Leiserson

et al, 2015) and in elucidating diverse molecular mechanisms that

can drive oncogenic transformation (Alexandrov et al, 2013) and

drug resistance (Garraway & Lander, 2013). These mechanisms

include genomic rearrangements, smaller insertions and deletions,

or single point mutations. Eventually, they all lead to changes in the

expression levels or to altered functions of cancer driver genes and

their products. Analysis of different cancer genomics datasets has

further underscored a high degree of heterogeneity in the mutation

frequency and spectrum among different cancer types (Garraway &

Lander, 2013; Lawrence et al, 2013) and uncovered a long tail of

low-frequency driver mutations (Garraway & Lander, 2013). As a

corollary, in spite of the great progress in charting mutational events

that define different cancer types, the task to distinguish driver and

passenger mutations in an individual genome remains a formidable

challenge. Furthermore, even when a high mutation rate across a

number of patients indicates the gene is a cancer driver, functional

impact of individual mutations and their connection to the affected

cellular pathways are not readily evident (Garraway & Lander,

2013; Cancer Genome Atlas Research, 2014b; Alvarez et al, 2016).

Large-scale cancer genome initiatives, specifically The Cancer

Genome Atlas (TCGA, https://cancergenome.nih.gov/) and Interna-

tional Cancer Genome Consortium (International Cancer Genome

et al, 2010; ICGC, http://icgc.org/), have increased statistical power

in the analyses of cancer mutations and have driven the develop-

ment of innovative approaches for the study of patient data (Dees

et al, 2012; Hofree et al, 2013; Kandoth et al, 2013; Lawrence et al,

2013, 2014; Chen et al, 2014; Sanchez-Garcia et al, 2014). In particu-

lar, a number of recent methods address the fact that even within a

specific driver gene not all mutations will have an equal effect (Kan

et al, 2010; Burke et al, 2012; Porta-Pardo et al, 2017). To account

for this, they implement positional mutation biases as criteria for the

detection of candidate driver genes (Davoli et al, 2013; Tamborero

et al, 2013; Kamburov et al, 2015; Tokheim et al, 2016; Gao et al,

2017). Some of these approaches are agnostic to prior knowledge

(Araya et al, 2016), while others focus on regions of known func-

tional relevance, such as protein domains (Miller et al, 2015; Yang

et al, 2015), phosphosites (Reimand & Bader, 2013) or interaction

interfaces (Porta-Pardo et al, 2015; Engin et al, 2016). Recently,

Vogelstein et al (2013) have shown that oncogenes often contain not

only regions but also specific residues which accumulate a high frac-

tion of the overall mutational load within a gene. In addition, Chang

et al (2016) developed a statistical model for detecting residues with

a high mutation frequency and applied it to the pan-cancer data.
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Importantly, both approaches demonstrated that the sheer presence

of such residues was often sufficient to identify cancer driver genes.

Many of the individual cancer mutations are not well studied in

terms of how they influence the properties of proteins (Cancer

Genome Atlas Research et al, 2013). In addition, due to the artifact-

prone raw data and inconsistency in mutation calling, the genome-

sequencing information is still noisy (Alioto et al, 2015). Accordingly,

integration of relevant protein structural and functional annotations

with mutational patterns could help in distinguishing variants with a

likely impact. Here, based on previous observations (Vogelstein et al,

2013), we developed an approach for the detection of single protein

residues that accumulate point mutations at a significantly higher

rate than their surrounding sequence, which we refer to as “hotspot”

residues. Specifically, we used the developed approach to obtain a

comprehensive set of such protein residues and investigate protein

properties that associate with them. The methodology we used is

robust to gene length, background mutation rates, and presence of

common variants. We make this tool available as an open-source

DominoEffect R/Bioconductor software package (Code EV1).

In this study, we applied the tool to 40 cancer types with the

TCGA or ICGC sequencing data and identified 180 hotspot mutation

residues in 160 genes that had a likely functional impact. These

mutations alone had the power to cluster tumors based on the cell

type of origin, and many of the hotspots were found within proteins,

for example, enzymes, that are known to exist in the active and inac-

tive states. Importantly, we found that a significant fraction of the

hotspots resided within tumor suppressors. Furthermore, two-thirds

of the identified instances were not classified as known cancer genes

but many could be functionally linked to cancer pathways or were,

as exemplified by Poly(rC) binding protein 1 (PCBP1), previously

suggested to have a role in the regulation of cancer genes and

proteins. We next characterized the affected protein regions using

sequence annotations and associated data on their structural, func-

tional, and interaction features. These analyses showed that the

hotspot residues often fell within regions responsible for binding

ligands, nucleic acids, and other proteins. To further follow up on this

observation, we used available structural data and homology-based

3D models for human complexes. We mapped protein interfaces in

these and based on the presence of mutation clusters within the

mapped interfaces, we were able to identify 87 proteins in which

cancer mutations were likely to affect protein interactions. Again,

two-thirds of the instances were proteins that have not previously

been defined as cancer drivers. These, among others, included the

coactivator-associated arginine methyltransferase 1 (CARM1) and the

retinoid X receptor alpha (RXRA), which both also had hotspot resi-

dues. Overall, characterization of the recurrent functional mutations

suggests that a disruption and dysregulation of protein interactions

could be an important molecular mechanism for switching functions

of cancer proteins.

Results

Hotspot mutations point to known and candidate cancer
driver genes

We collected single nucleotide mutation data deposited as a part of

the TCGA and ICGC projects and mapped these nucleotide changes

to the encoded protein sequences using the Ensembl gene annota-

tions (Yates et al, 2016; see Materials and Methods). Collectively,

the data encompassed 40 different cancer types from 22 tissues,

with the sequencing information from ~10,000 tumor samples,

including ~1,300,000 mutations within coding sequences (see Mate-

rials and Methods).

Next, we developed and applied a tool we term DominoEffect

(Code EV1). The tool identifies and characterizes individual hotspot

protein residues that accumulate mutations at a significantly higher

rate than their surrounding protein sequence (Figs 1 and EV1). In

Mutations in cancer patients

Detection of hotspots with 
DominoEffect.R

Filtering for damaging mutations 
with a likely functional impact 

Detection of protein residues associated 
with cancer development

Detection of mutation 
clusters at the interfaces

Characterization of 
mutations’ likely effects

Mapping of interfaces in proteins 
that form stable complexes 

Figure 1. Outline of the approach.

Identification of hotspot mutations from the TCGA and ICGC data includes

detection of residues that accumulate mutations at a significantly higher rate

than their surrounding regions, followed by excluding common polymorphisms

and mutations that are not likely to have functional effects. To better

characterize protein elements that embed these mutations, we performed an

extensive annotation and analysis of both hotspot residues and proteins that

contained them. Furthermore, the approach applied to search for interaction

interfaces that accumulate cancer mutations at a high rate is shown. This

includes collection of structures and structural models for stable protein

interactions, mapping of interfaces in these and assessment if cancer mutations

are present within the interfaces at a significantly higher rate than elsewhere in

the protein sequence. Finally, thus identified proteins and interfaces are further

characterized.
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this study, we applied DominoEffect to search for protein “hotspot”

residues that accumulated a high mutation load (here defined as

15% of the mutations) within the windows of 200 and 300 amino

acids (see Materials and Methods for the explanation of thresholds).

Next, we filtered the obtained residues to avoid false assignments

and included only mutations that have a likely functional impact.

The largest sources of false positives should be sequencing errors

that repeatedly occurred at the same residues or individual poly-

morphisms, which were not detected in the paired healthy tissue.

To account for the latter, but not to exclude the germline risk vari-

ants, we filtered out all residues that were common polymorphisms

in the human population (i.e., genomic variants with a reported

population frequency higher than 1%). We based the filtering on

the available data from the 1000 Genomes Project (Genomes Project

et al, 2015), Kaviar (Glusman et al, 2011), Exome Aggregation

Consortium (Lek et al, 2016), and Ensembl-linked databases

(Sherry et al, 2001; Yates et al, 2016). To further filter out both,

sequencing errors and population polymorphisms, we applied the

PolyPhen-2 algorithm which assesses a likely mutation effect on the

protein function (Adzhubei et al, 2010). PolyPhen-2 uses a proba-

bilistic classifier with eight sequence-based and three structure-

based features. This filtering step can also exclude true disease

hotspots that do not have a sufficient structural or evolutionary

support for strong effects. However, to gain more confidence in the

individual predictions, we deemed it necessary to account for the

substantial presence of false positives in the initial set of hotspot

residues. For instance, nearly a third of the initially identified

“hotspots” (132 out of 451) were annotated as common variants,

which still likely represents an underestimate as a catalog of non-

disease human polymorphisms is still incomplete. Simulations of

randomly re-assigned mutations within titin, that is, a gene with

the highest overall mutation burden, did not report any hotspot

residues (1,000 repetitions). Thus, under the naı̈ve assumption that

each amino acid is equally likely to be mutated at random, back-

ground mutations should not strongly contribute to false positives.

Using the approach introduced here, we applied the DominoEf-

fect tool to the pan-cancer data and identified both known instances

of hotspot driver mutations as well as residues that were as yet not

annotated as such. In total, we identified 180 hotspots within 160

genes (Dataset EV1) for which the reported mutations were catego-

rized as deleterious by the PolyPhen-2. This set, thus, represents

frequently mutated residues that could be of particular functional

relevance in cancer development. The gene set was also enriched

for known cancer drivers (54 or 34% of the genes with hotspots

were in the Cancer Gene Census). For a comparison, a fraction of

known drivers among the genes that were selected by simply asking

for a high mutation load within a protein (more than 100 mutations)

or at an individual residue (more than 5 mutations) was 7.9% and

9.6%, respectively). Of note, on average, 88% of tumor allele

changes assigned as hotspot mutations were reported as heterozy-

gotic in the TCGA dataset. The most commonly mutated amino acid

was arginine (37% of the hotspot residues had arginine as a refer-

ence amino acid, while its overall frequency in the reference

proteome was 6%). The second most frequently mutated amino acid

was glutamate, which was predominantly mutated to lysine (11%

of all events). For an illustration, in a protein set with an equal

representation of all codons and an equal probability of nucleotide

changes, a frequency of such mutation would be only 0.61%. Inde-

pendently of the hotspot analysis, we additionally searched for

cancer mutation clusters in known and modeled protein interaction

interfaces (Fig 1).

Strikingly, 36% (3,679/10,118) of the analyzed cancer genomes

had at least one of the 180 hotspot residues mutated (Fig 2A). For a

comparison, the same size randomly selected gene set that

contained any of the protein positions with five or more pan-cancer

mutations was on average mutated in 14% of the patients

(P < 6 × 10�12, distance from the observed distribution of 1,000

random values). The major contributors to the highly prevalent

mutations were the well-studied oncogenes KRAS, BRAF, IDH1,

PIK3CA, NRAS, SF3B1, CTNNB1, and PTEN: More than one-quarter

(i.e., 27%) of all patients had a hotspot mutation in at least one of

these genes. However, in the whole set, a majority (106/160) of the

genes with hotspots were not previously annotated as cancer

drivers. Importantly, 18 (i.e., 17%) of these candidate genes had a

homolog in the Cancer Gene Census (Futreal et al, 2004). These

instances are listed in the Dataset EV2 and they included, among

others, RBL2, KLF5, and ARAF as homologs of cancer drivers RB1,

PBX1, and BRAF, respectively. The fraction of Cancer Gene Census

homologs in the background set of human genes was significantly

lower than among the hotspot genes (7 versus 17%, respectively,

P < 3 × 10�4, chi-square test). Therefore, the approach used here is

capable of suggesting biologically relevant cases for further follow-

up studies, while maintaining an overall low false-positive rate

(Marx, 2014).

▸Figure 2. Properties of proteins and residues with frequent hotspot mutations.

A A high fraction of the sequenced samples (i.e., 36%) have at least one of the detected hotspot residues mutated. Strong contributors to this signal are the listed
known cancer drivers with hotspots. Hotspots in one or more of these proteins are mutated in 27% of the analyzed tumor samples.

B Proteins with hotspot mutations (dark cyan) have a higher fraction of enzymes than other proteins in the Cancer Gene Census (light red, P < 0.015) or all other
human proteins (dark green, ***P < 10�4, chi-squared test). Color representation of proteins from the three sets follows the same scheme on all the following figures.

C Protein domains that are significantly overrepresented among the proteins with hotspot mutations compared to the non-cancer background proteins (adjusted
P ≤ 0.01, Fisher’s test).

D Protein annotations (GO terms) that are overrepresented among the proteins with hotspots compared to the non-cancer background proteins (adjusted P < 10�4,
Fisher’s test). Transcription factor binding and several other terms related to regulation of gene expression are more abundant among the other proteins in the
Cancer Gene Census than among the genes with hotspots.

E Hotspot mutations that mapped to the functionally similar protein segments in two or more different proteins are classified depending on whether the mutation
occurred within a protein domain with an enzymatic function (first column), another region in the protein that can mediate binding to other proteins, nucleic acids,
ligands or lipids, or in a region that contains a signaling motif or a transmembrane segment.

F Examples of individual proteins of interest. PCBP1, RXRA, and CARM1 are functionally related to cancer-relevant processes and have hotspot mutations (dark red
circles) within the RNA binding KH domain, ligand-binding segment, and enzymatic domain, respectively. Other missense mutations in these proteins are depicted as
blue circles. Pfam protein domains encoded by these genes are shown as colored boxes.
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Genes with hotspot residues can often exist in both an active
and inactive state

The obtained extensive set of known and candidate cancer-asso-

ciated genes with hotspot mutations provides an opportunity to

define gene and protein characteristics associated with such resi-

dues. Mutational impacts are well characterized for the few most

frequently mutated cancer hotspots, but general principles of protein

properties that associate with hotspot residues have not yet been

systematically investigated. From the biological view, hotspot
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residues should be enriched in single positions with the power, if

mutated, to affect the overall protein function. Among the most

prominent examples of cancer drivers with hotspot residues are

kinases and Ras proteins where the hotspot mutations frequently

act by switching the proteins to a constantly active state. Both of

these protein families have enzymatic activity, even though Ras

proteins need additional activators for this. We hence assessed if the

genes with hotspots overall contained a high fraction of enzymes.

For this, we used the Expasy Enzyme database annotations

(Bairoch, 2000) and compared genes with hotspot residues to the (i)

genes in the Cancer Gene Census (excluding the genes with hotspot

mutations and homologs of genes with hotspot mutations) and to

(ii) all other protein coding genes. We indeed observed that,

compared to the other two categories, genes with hotspots were

enriched in enzymatic functions (26% of the genes with hotspots

were annotated as enzymes; P ≤ 0.015 and P < 9.3 × 10�5, chi-

squared test, respectively, compared to the other two sets; Fig 2B

and Dataset EV3). Of note, Expasy Enzyme annotations did not

include the Ras proteins, as GTP hydrolysis does not represent their

main function (Dataset EV3). The fact that the observed trend was

also present in a comparison with the genes in the Cancer Gene

Census suggested that the observation should not be influenced by a

bias in protein annotations, which are likely to be more complete

for better-studied genes. Moreover, the fraction of enzymes was

even two times higher among the here-identified genes with hotspot

residues than among the genes in the Cancer Gene Census that were

involved in translocations (P < 0.0003). This suggests that different

gene classes could preferentially be activated through different

mutational processes (Latysheva et al, 2016). To confirm that this

observation was not influenced by the filtering of hotspots to

include only those with a likely deleterious effect (using PolyPhen-

2), we assessed a fraction of enzymes in the initial set of hotspots

after excluding only common polymorphisms. In this set, 21% of

proteins (i.e., 62 out of 290) were annotated as enzymes. This was a

lower fraction than in the final set, but still considerably higher than

the fraction of enzymes in the background set of human proteins

(P < 7.6 × 10�5, chi-squared test). Of note, a set of the Cancer Gene

Census genes without the hotspot genes may still contain drivers

with hotspot mutations that have not been detected by the approach

applied here.

In accordance with these observations, protein domains that

were most frequently encoded by the genes with hotspot residues

were kinase and Ras domains, Fig 2C and Dataset EV4; adjusted

P-values for the overrepresentation were < 6 × 10�9 and < 0.008,

respectively, Fisher’s test, when compared to the background set of

non-cancer proteins). In addition, the genes with hotspot residues

were also enriched in proteins involved in the related Rho GTPase

signaling: 10 genes were associated with this pathway, which repre-

sents four times higher fraction than in the set of non-cancer back-

ground genes (P < 10�3, Fisher’s test). Both Rho and Ras proteins

are known to often function as binary switches. Among the proteins

with hotspots were also those with bromodomains, which are func-

tional elements found in epigenetic regulators, and KH domains that

play a role in RNA binding. Both domain types were overrepre-

sented compared to the background set of non-cancer proteins (ad-

justed P < 0.03, Fisher’s test). Furthermore, genes with hotspot

residues were strongly enriched in the functional categories (GO

terms) associated with signal transduction; receptor signaling linked

to the fibroblast growth factors (P < 10�16, Fisher’s test, compared

to non-cancer proteins) and platelet activation (adjusted P < 10�4,

Fisher’s test), a process that is known to play a role in metastasis

(Gay & Felding-Habermann, 2011). These processes were also

enriched when compared to other proteins in the Cancer Gene

Census (P < 10�4 and P < 10�3, respectively, Fig 2C and Dataset

EV4), but several functions associated with cancer development,

such as cell proliferation, transcription factor binding, and regula-

tion of gene expression, were enriched only compared to non-cancer

background genes (P < 10�4). In fact, some of the categories, such

as transcription factor and chromatin binding, were more abundant

among those Cancer Gene Census genes that were not among the

here-identified “hotspot genes” (Fig 2D and Dataset EV4). Overall,

this shows that many of the genes with hotspot residues relate to

cancer-associated processes and that jointly more than a third of

them encode proteins that are known to exist in an active and inac-

tive state.

Hotspot residues frequently map to crucial functional elements
in proteins

Next, we sought to identify which functional elements within

protein sequences were common target sites for hotspot mutations.

For this, we first mapped annotated functional regions using the

Pfam predictions (Finn et al, 2016) and UniProt Knowledgebase

(KB) annotations (The UniProt, 2017). We then investigated

whether the hotspot residues were mapping to the same functional

domains in different proteins. We found that domains which were

targets of hotspot mutations in two or more proteins were often

associated with enzymatic activities, or with binding to proteins,

nucleic acids, or lipids (Fig 2E and Dataset EV1). Most frequently,

hotspot residues localized within kinase and Ras domains (12 and 9

times, respectively), which also represented a predisposition for

domain regions within these protein sequences. Namely, 86% and

100% of the mutations were within the respective domains, which

is higher than expected, considering the domain coverage of

proteins (P < 4 × 10�4 and P < 0.09, chi-squared test, respectively).

In addition, hotspot residues mapped to other domains known to be

associated with cancer proteins, such as the lipid binding PH

domain (Futreal et al, 2004), but also to enzymatic and binding

domains within proteins that are not yet in the Cancer Gene Census

(Dataset EV1). This, for instance, highlighted the Poly(rC) binding

protein 1 (PCBP1, Fig 2F) as a possible cancer gene candidate.

PCBP1 is as yet not classified as a driver (Futreal et al, 2004), but it

is involved in the regulation of the expression of a number of cancer

genes and has been previously implicated in tumorigenesis and

metastasis (Wang et al, 2010; Huo et al, 2012; Wagener et al, 2015;

Zhou & Tong, 2015). A hotspot residue within this protein mapped

to the KH domain that has a role in nucleic acid recognition and is

also a target of a hotspot mutation in the known cancer driver

FUBP1.

Further, mapping of hotspot residues onto UniProtKB functional

annotations showed that in several instances mutations were falling

within protein segments involved in ligand binding. These included

both well-known cancer drivers and proteins that are as yet not in

the Cancer Gene Census, such as nuclear receptor RXRA (Fig 2F and

Dataset EV1). As a following step, we analyzed the PDB structures

of proteins with the identified hotspot mutations (Berman et al,
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2000; www.rcsb.org). When structural data were available, we

aligned the segments with hotspot mutations onto the correspond-

ing PDB sequences (see Materials and Methods). Jointly, the analy-

ses of both UniProtKB annotated features and available structures

highlighted protein interaction interfaces as a functional element

class that was an important target of hotspot mutations (Dataset

EV1). These included the well-studied cases of CTNNB1, PIK3R1,

and SMAD4 proteins as well as proteins that are as yet not anno-

tated as drivers, but are functionally connected to cancer pathways.

An example of this are hotspot residues within the CARM1 and

METTL4 proteins that mapped to the interaction interfaces within

their protein arginine methyl transferase (PRMT) domains. The

PRMT domain is commonly found in epigenetic regulators and

mediates methylation of arginine residues on histone tails. The

observed hotspot mutations in CARM1 and METTL4 could thus

have an effect on the interactions between the CARM1 proteins that

together form a complex, or on the METTL4 binding to its interactor

protein METTL3. Both METTL4 and CARM1 (Fig 2F) are not yet in

the Cancer Gene Census. Finally, hotspot residues in the PBX2 and

MAX proteins mapped to their conserved DNA interfaces, suggesting

abolished or altered transcriptional regulation. Jointly, the ability of

mutations to affect protein interactions or nucleic acid and ligand-

binding properties suggests the means by which they could have a

potential to switch the protein function and influence downstream

processes in the cell.

An important role of hotspot mutations is the inactivation of
tumor suppressors

Tumor suppressor genes can be inactivated during the course of

disease either through mutations that affect their transcription

levels or through changes that influence protein expression, stabil-

ity, or function. In the case of the PTEN (Papa et al, 2014),

FBXW7 (Welcker & Clurman, 2008) and SMAD4 (Miyaki & Kuroki,

2003) genes, as well as several other tumor suppressors (de Vries

et al, 2002; Hanel et al, 2013), a frequent mechanism of inactiva-

tion is through point mutations that reoccur at the defined residues

and act dominantly on the molecular level. For these genes,

disease-causing effects of single inactivating mutations were

demonstrated by the follow-up functional studies and in animal

models (Taketo & Takaku, 2000; Welcker & Clurman, 2008). In

the cancer genomics studies, mutational clustering is often used as

a signature that is associated with oncogenes (Davoli et al, 2013;

Vogelstein et al, 2013). However, these individual examples show

that hotspots can also pinpoint to a preferential mechanism for

tumor suppressor inactivation. In order to categorize hotspot muta-

tions that could function by inactivating tumor suppressors, we

analyzed which of the here-identified genes were categorized as

tumor suppressors in the Cancer Gene Census, or were predicted

to be suppressors based on mutation signatures in an independent

study (Davoli et al, 2013). In addition, to further expand the set of

tumor suppressor candidates, we assessed the frequency of delete-

rious mutations within the here-defined set of hotspot genes using

the mutation data from the above-described TCGA and ICGC data-

sets. For this, we considered changes with a likely highly deleteri-

ous impact on the protein sequence (i.e., premature nonsense

mutations and out of frame insertions/deletions), and we

compared these to the synonymous mutations within the same

genes. The latter represented neutral mutations and served as a

measure of a background mutation rate in the sequences (see

Materials and Methods). Using a conservative threshold that

required an overrepresentation of deleterious over neutral changes

within a protein, we found that 15 genes with a hotspot mutation

also exhibited mutation patterns typical of tumor suppressors

(Dataset EV5). Collectively, together with the proteins that were

annotated as suppressors in the Cancer Gene Census or were

suggested as tumor suppressors in a previous pan-cancer study

(Davoli et al, 2013), this analysis highlighted 23 (i.e., 14%) of the

here-identified genes with hotspots that could, at least in some

contexts, act as tumor suppressors (Dataset EV5). In addition to

the known cancer drivers, this list included ARHGAP5 and RBL2

genes, which are homologs of the SRGAP3 and RB1 Cancer Gene

Census genes, respectively (Fig 3A and Dataset EV2). Of note, the

obtained list of tumor suppressors with hotspot residues is likely

still incomplete. For instance, literature evidence and mutation

patterns also highlight the KLF5, SPOP, and POLE genes as possi-

ble tumor suppressors even though they do not pass the set

thresholds (Fig 3A and Dataset EV5). Overall, this analysis

supports the notion that an important fraction of hotspot muta-

tions could act by turning the original protein function off.

Furthermore, to gain additional insights into the distribution of

functional effects of hotspot mutations, we classified genes in which

hotspot residues were mutated in 10 or more tumor samples into

the following three categories: (i) instances where mutations

occurred within a tumor suppressor and were likely inactivating,

(ii) instances where mutations affected protein binding properties

and were likely activating, and (iii) all other instances (Fig 3B and

Dataset EV6). These more frequently mutated instances encom-

passed in total 53 genes and included the experimentally character-

ized hotspots within the PTEN, FBXW7, SMAD4, EP300, and

CREBBP tumor suppressors. In the set of proteins with more

frequently mutated and better-characterized hotspots, 32% (i.e.,17

of 53) were tumor suppressor, 51% (i.e., 27 of 53) represented

instances where hotspot mutations were likely to affect protein

binding properties, and 17% (i.e., 9 of 53) were proteins in which

the impacts of hotspot mutations could not be readily classified.

Since a considerable fraction of better-characterized hotspots is

likely to function by inactivating a tumor suppressor, this should

also be considered as one of possible mechanisms of action for the

less well-characterized hotspots.

Proteins with mutation hotspots are often fundamental in
cancer interaction modules

It was suggested that proteins involved in cancer should play a

central role in cellular interaction networks (Davoli et al, 2013).

However, proteins interesting from a disease perspective are often

more intensively studied and, as a result of this, a larger number of

their interaction partners are catalogued compared to proteins with

an unknown function. Using a complementary approach, we

compared the presence of iPfam domains (Wang et al, 2012; Finn

et al, 2014), that is, Pfam domains that can mediate protein–protein

interactions, in the protein sets that we established above: (i)

proteins that contain hotspot mutations, (ii) other proteins encoded

by the Cancer Gene Census (described above), and (iii) all other

human proteins. The catalog of iPfam domains is built on the
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available PDB structures, but using sequence features should gener-

ally be less strongly affected by biases in previous knowledge than

the reliance on targeted interaction data. We observed that Pfam

interaction domains were more abundant in the two sets of cancer-

associated proteins, than in the background human proteins

(P < 10�4 and P < 10�13, respectively, chi-squared test), whereas no

significant difference between the first two sets was observed,

Fig 4A. Hence, this underlined that forming interactions with other

proteins was often an essential part for the function of proteins with

hotspots.

Proteins with similar functions are often close in interaction

networks, and functional and disease annotations of a protein’s

interaction partners can assist in determining its role in the cell

(Lundby et al, 2014; Menche et al, 2015). In accord with this, close-

ness to modules with known cancer drivers could assist in identify-

ing less well-studied proteins that could be functionally related to

cancer pathways. To address this, we searched interactions depos-

ited in the BioGRID database (Chatr-Aryamontri et al, 2015) classi-

fied as physical associations or direct interactions, and focused

specifically on the 106 proteins with hotspots that were not in the

Cancer Gene Census. We found that first interaction neighbors of

these proteins were indeed enriched in Cancer Gene Census proteins

(13% versus expected 3%, P < 10�166, when compared to random

networks, Fig 4B and C). Individually, 20 (i.e., 19%) of these 106

proteins had interaction neighborhoods strongly enriched in the

known cancer drivers (adjusted P < 0.05, Dataset EV7), and these

clusters often included other proteins with hotspot mutations

(Dataset EV7). Of note, known cancer drivers have on average a

higher number of interaction partners than other proteins so their

presence in the interaction neighborhood is not a direct evidence for

the protein’s association to cancer. However, it can be useful for

better understating of protein roles in the cell. The obtained

interaction network for the 19 proteins is shown in Fig 4D. This

included KLF5 and SOS1 proteins, which are both homologs of

known cancer driver genes (Dataset EV2), as well as transcriptional

regulators CARM1 and ZBTB7A, and signaling regulators RHPN2

and GPX1. Additionally, 27 interaction pairs in which one partner

was a candidate with a hotspot mutation and the other partner was

a Cancer Gene Census protein were also supported with a PDB

structure or a homology-based structural model that indicated a

stable interaction between the proteins (see Materials and Methods).

Notably, the RXRA protein was in protein complexes with RARA,

PPARG, NCOA1, NCOA2, and NCOR2 cancer drivers. All of these

complexes have been described at the structural level. The hotspot

mutation in this gene was originally reported in the TCGA study of

bladder cancer (Cancer Genome Atlas Research, 2014a), but its

impact has as yet not been characterized. The observation that a

number of the candidates with hotspot mutations were physically

associated with each other or with known cancer drivers suggests

their possible connections to interaction networks relevant in

disease development.

Recurrent mutations group cancer types by their cell type
of origin

We further assessed whether individual hotspot residues were

mutated across different tumor types, or whether they were more

often specific for a single origin of tumor. To address this, we first

grouped similar tumor types from the TCGA and ICGC datasets (see

Materials and Methods) and analyzed how a pan-cancer signal for

each hotspot was distributed across the different tumor types. We

found that 35 out of 180 hotspot residues were largely associated

with one tumor type, that is, more than 75% of the mutations on

these 35 positions were reported in a single tumor type (Dataset
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Figure 3. An important fraction of hotspot mutations has a role in inactivating tumor suppressors.

A A number of hotspot mutations are associated with tumor suppressors. Among these are RBL2 and KLF5 proteins that are not in the Cancer Gene Census, but are
homologs of cancer drivers. Hotspot mutations within these proteins are shown as dark red circles, while missense and highly deleterious mutations are depicted as
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B Almost a third (i.e., 32%) of the genes with better-annotated, more common hotspot mutations (observed in at least ten patients) are tumor suppressors. Another
prominent category is genes with apparently activating mutations that affect binding properties of oncogenes (51% of the total 53 genes).
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EV8). This included SPOP, which was exclusively mutated in pros-

tate adenocarcinoma, and RXRA, where 80% of mutations were

observed in the bladder urothelial cancer. However, a larger number

of positions were mutated in multiple tumor types. For instance, for

89 hotspot positions, a single tumor type never contributed to 50%

or more of the mutations (Dataset EV8).

Next, we performed a hierarchical clustering of the analyzed

tumor types, based on the percentage of patients that had a muta-

tion in each of the identified hotspots. Patterns of hotspot muta-

tions could also point to the shared and cell-type-specific pathways

in cancer. To account for the uncertainty in clustering, we used

the pvclust R package, as this method includes bootstrap resam-

pling of the detected clusters (Suzuki & Shimodaira, 2006). For the

visualization, we produced a heatmap with thus obtained tumor

clusters and included only hotspots that were mutated in 33% or

more of the patients in at least one tumor type (Fig 5). This

showed that many of the detected clusters represented well the

cancer etiology. For instance, the majority of adenocarcinomas

(ovarian, colorectal, lung, and pancreatic) were clustered together,

while squamous cell carcinomas (lung, cervical, and head and
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Figure 4. Proteins with hotspot mutations are often in the interaction networks with known cancer driver proteins.

A A fraction of genes with hotspot mutations (H) that encode interaction domains is comparable to the fraction of genes in the Cancer Gene Census that encode the
same domains (C) and is significantly higher (*P < 10�4, chi-squared test) than the fraction of other background genes (O), with these domains.

B Direct interaction partners of candidate cancer proteins with hotspot mutations (i.e., those that are not in the Cancer Gene Census) are significantly enriched in
known cancer drivers. Distribution of values for the random networks of the same size is shown as an orange histogram (1,000 networks obtained with resampling of
the interactors), and the observed physical interactions between the hotspot candidates and Cancer Gene Census proteins (i.e., 273) are indicated with a dark red
arrow (P < 10E-166, pnorm test).

C Candidate cancer proteins with a hotspot mutation often interact both with cancer drivers with a hotspot mutation as well as with other Cancer Gene Census
proteins.

D Candidate proteins with hotspot mutations whose interaction neighborhoods were enriched in cancer driver proteins (adjusted P < 0.05, Fisher’s test) are shown as
dark cyan circles and denoted in a bold font. Their Cancer Gene Census interaction partners are shown as red circles.
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neck) were in a separate cluster. The example of the lung cancer

reinforced the notion that a cell type of cancer origin (adenoma

versus sarcoma) was more strongly defining the mutation hotspot

pattern than a tissue. Uterine carcinomas which can have both

epithelial and sarcoma components were in a larger cluster that

contained both epithelial adenocarcinomas and sarcomas.
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Additionally, liver cancers were clustered together, but kidney

tumors of different origins did not show such a clear trend. Blood

tumors were largely defined by the scarcity of point mutations,

and skin cutaneous melanoma and thyroid cancer were clustered

together based on a high frequency of the BRAF hotspot mutation.

We included here only pan-cancer hotspots, but those identified on

the level of individual tumor types could also contribute to better

definition of relationships among the cell types of origin. Overall,

this analysis showed a strong power of hotspot mutations to reflect

the identity of a tumor of origin.

Interface mutation clusters reveal disease-relevant interactions

Characterization of functional protein segments affected by the

hotspot mutations has recognized binding interfaces as frequent

mutation targets (Figs 2 and 4). However, by focusing solely on

single residues that stand out from their surrounding regions, one

might miss clusters of adjacent mutations that only cross the signifi-

cance threshold in combination. To address this, we implemented a

workflow in which we investigated the presence of such clusters

within the protein interaction interfaces. For this, we used available

structures or homology-based structural models (Mosca et al, 2013)

for protein pairs that were predicted to be part of the same protein

complex or form stable interactions (see Materials and Methods).

From the representative structures, we extracted information on

protein interfaces and assessed whether cancer mutations occurred

at a much higher rate within the interaction interfaces than in the

rest of the sequence (see Materials and Methods). For the latter, we

adapted the ActiveDriver tool (Reimand & Bader, 2013), which was

initially developed to assess mutation rates in phosphosites by

implementing a logistic regression model.

Proteins in which the mutation clusters were identified with the

most significant P-values were cancer drivers for which it was previ-

ously shown that mutations in their interfaces can lead to disease

development by disrupting interactions with regulatory proteins

(PIK3CA and PPP2R1A) or by preventing GTP hydrolysis (KRAS,

HRAS, and GNAS); Dataset EV9, 87 proteins in total. Importantly,

this analysis additionally identified a number of instances that are

not in the Cancer Gene Census yet (Table 1), including RXRA and

CARM1 (Fig 6A and B). Both RXRA and CARM1 were among the

above-identified “hotspot genes”, and their hotspot residues were

within the interaction interfaces. We further used protein GO term

annotations (Harris et al, 2004) to assess whether proteins with

interface mutation clusters were enriched in any functional cate-

gories. Cellular processes that were overrepresented among these

proteins included proliferation, ubiquitin signaling, and complement

pathway activation (Dataset EV10, adjusted P < 0.01). Ubiquitin-

regulated signaling was represented with several relevant examples,

most notably with the oncogene CBL and with the CUL1 and CUL4B

homologs that are not yet in the Cancer Gene Census. CUL1 plays a

role in different cancer signaling cascades and in cell cycle progres-

sion (Nakayama & Nakayama, 2006). Of interest, both CUL1 and

CUL4B had a mutation cluster at one of the interface contacts with

the regulator protein CAND1 (Fig 6C). In addition, we used annota-

tions of protein complexes from the ConsensusPathDB (Kamburov

et al, 2013) and found a number of protein complexes relevant in

cancer that would be affected through these mutations (Dataset

EV10). Notably, heterotrimeric G protein complex had one of the

strongest signals. The complex is composed of the oncogene GNAS,

and the GNB1 and GNG2 proteins (G protein b and c subunits,

respectively). Of relevance, mutations in the GNB1 protein interface

were recently shown to promote cellular growth and transforma-

tion, as well as kinase inhibitor resistance (Yoda et al, 2015). Some

of the identified mutation clusters, including those within the GNB1

and GNG2 proteins, had a relatively low mutation count (Dataset

EV9). This reflects the fact that often there are multiple options for

activating or inactivating relevant cellular pathways and interaction

modules (Cancer Genome Atlas Research N, 2014b), which is also

one of the explanations of a long tail of cancer driver mutations.

In addition to finding mutation clusters within protein–protein

interfaces, the analysis identified a mutation cluster at the interface

of the PAX5 transcription factor with DNA, as well as a number of

contacts with small ligands, most commonly ATP and GTP. PAX5 is

a known tumor suppressor with a highly conserved DNA-binding

motif (Garvie et al, 2001) that is often involved in leukemia devel-

opment, however, most frequently through translocations. Overall,

mutation clusters in structural interfaces were able to highlight addi-

tional cancer-relevant proteins and protein regions, which can medi-

ate a switch in protein activity and function.

Discussion

Even with the abundance of cancer genomics data, discerning driver

and passenger mutations remains a major task (Glusman et al,

2017). Nevertheless, examples of driver genes from the commonly

◀ Figure 5. Hotspot mutations drive clustering of tumor types.

The depicted heatmap includes hotspots that weremutated in at least one-third of the patients in one or more tumor types. The coloring corresponds to the log2 value of the

percentage of patients with a mutation in each tumor type. The range goes from 0 to 78% of patients. The latter value corresponds to the percentage of patients with the

KRAS 12 mutation in pancreatic cancer (which is 6.28 on the log2 scale). Clustering of tumor types was performed independently with the pvclust method and it included

data for all hotspot mutations. The ordering of tumor types on the heatmap is based on the dendrogram obtained with the pvclust method. A simplified version of the

dendrogram above the heatmap indicates clusters that were reported up to the height of 0.5 (the full scale was from 0 to 0.7). In addition, themost distinct individual clusters

(corresponding to the height of 0.25) are colored and annotated. Different hotspots in the same gene tend to cluster together, and the clustering of tumor types is largely

based on the cell type of origin. Abbreviations: head and neck squamous cell carcinoma (HNSC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC),

lung squamous cell carcinoma (LUSC), bladder urothelial carcinoma (BLCA), esophageal cancer (ESCA), breast invasive carcinoma (BRCA), stomach adenocarcinoma (STAD),

uterine carcinosarcoma (UCS), pancreatic adenocarcinoma (PAAD), pancreatic cancer (PACA), lung adenocarcinoma (LUAD), rectum adenocarcinoma (READ), colon

adenocarcinoma (COAD), ovarian serous cystadenocarcinoma (OVAD), uterine corpus endometrial carcinoma (UCEC), esophageal adenocarcinoma (ESAD), liver cancers

(LICA, LIRI, LINC), liver hepatocellular carcinoma (LIHC), pediatric brain cancer (PBCA), bone cancer (BOCA), brain lower grade glioma (LGG), glioblastoma multiforme (GBM),

acutemyeloid leukemia (LAML), chronic myeloid disorders (CMDI), chronic lymphocytic leukemia (CLLE), sarcoma (SARC), kidney renal clear cell carcinoma (KIRC), oral cancer

(ORCA), pheochromocytoma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), thyroid carcinoma (THCA), adrenocortical

carcinoma (ACC), kidney renal papillary cell carcinoma (KIRP), kidney chromophobe (KICH), testicular germ cell tumors (TGCT), and uveal melanoma (UVM).
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mutated protein families, such as Ras proteins and kinases, do show

that similar molecular principles are often reused for the activation

of oncogenic processes. As a corollary, comprehensive cataloging of

residues, which can facilitate a switch in protein function, could

help in identifying additional cancer-associated genes. Here, based

on the sequencing data for more than 10,000 cancer genomes, we

composed a set of most common hotspot mutations with a likely

functional effect and characterized these using available structural

and interaction data, as well as protein sequence features and

residue annotations. Frequently, these mutations were located in

the protein regions that interacted with ligands, or at the interaction

interfaces with other proteins. This represents known mechanisms

of cancer development, where the altered ligand binding on one

hand, or escape from the regulation by interacting proteins on the

other hand, leads to oncogenic activation. The former is illustrated

with the BRAF, KRAS, and IDH1 and the latter with the PIK3R1,

CTNNB1, and CDK6 proteins. Recognizing which protein segments

are particularly important for disease development can be a starting

point for more focused studies of these, as we demonstrated here

with interaction interfaces. Such “hypothesis-driven” analyses will

have more power to detect functional elements mutated at a lower

frequency, compared to methods that do not include any biological

information.

An additional important role of hotspot mutations is likely to be

in inactivating protein function. This class of hotspot residues can

hence indicate the most efficient mechanisms for shutting down

tumor suppressors. On the cellular level, such mutations can (i) act

in a dominant negative manner with respect to the other protein

copy (Welcker & Clurman, 2008; Blattner et al, 2017), (ii) be suffi-

cient for inactivation if the gene is dosage sensitive, or (iii) be

combined with an inactivating mutation in the other gene allele.

Mechanistically, these mutations tend to disrupt the original protein

function, exemplified by the disrupted substrate binding in CREBBP

and EP300, or to prevent the activation of a tumor suppressor,

exemplified by mutations within the SMAD4 interface or CHEK2

activation loop (Dataset EV5). Alternatively, these mutations can

Table 1. Significant gene hits with mutation clusters at the
interaction interfaces that are currently not in the Cancer Gene
Census.

Gene name P-value

CARM1 3.43E-09

C5 6.05E-07

METTL14 1.30E-06

CUL1 2.83E-06

ABCD1 1.67E-05

SCN2A 1.82E-4

IL1RAP 2.07E-4

MAP1LC3A 3.66E-4

CNOT1 3.66E-4

ITGAX 0.001

CUL4B 0.001

UCHL1 0.001

SUPT5H 0.002

BMP2 0.002

CSF2RB 0.002

GNB1 0.002

LRRC4C 0.002

C6 0.003

WDR5 0.003

POLR1A 0.003

ILK 0.004

RXRA 0.004

FLT1 0.005

UBA3 0.005

IL6 0.006

PRKAG3 0.007

TLR4 0.009

MCM6 0.009

TNPO1 0.010

CYFIP1 0.011

ACTB 0.012

CHRNB2 0.013

MPO 0.013

MCM7 0.013

SERPINA10 0.014

EIF5A 0.014

KPNA1 0.014

CDC7 0.015

ITGA2B 0.019

F10 0.019

IRF7 0.019

RPA1 0.019

CHP2 0.020

RAMP2 0.024

Table 1 (continued)

Gene name P-value

COL4A2 0.024

GNG2 0.025

CAB39 0.026

C3 0.028

CFB 0.030

TAF1 0.031

KDM1B 0.034

TRAF2 0.034

SCAF8 0.037

MAPK8 0.037

IL21 0.037

XRCC5 0.045

TTC7B 0.046

PSMB3 0.046
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interfere with the oncogene regulation, exemplified by the PIK3R1

interface to PIK3CA. Analogously to this, oncogenes that are dosage

sensitive are likely to be activated through changes that will result

in the increased transcript and protein levels. Of note, some of the

genes with hotspots are also frequently found overexpressed in dif-

ferent tumor types (Dataset EV11). Overall, molecular principles of

activation and inactivation of genes in cancer will frequently be the

same as in other diseases, and interpretation of genomics data in

general would be strongly empowered with a comprehensive cata-

log of functional, structural, and interaction properties of individual

residues in human proteins.

As more cancer genomes get sequenced, we expect that the list

of genes with hotspot mutations will expand. Furthermore, greater

sample sizes can allow for a detection of residues that are mutated

only in certain tumor types. Many of the proteins with hotspot

mutations identified here do not have well-characterized functions

in the cell. In this context, it is interesting that some of the less-

studied genes with hotspot mutations were proposed to be impor-

tant in cellular decision-making in embryonic stem cells (ESCs). A

recent screen for the genes that contribute to the commitment of

ESCs to differentiation (Leeb et al, 2014) highlighted as hits the

PRKCI kinase, the DHX9 RNA binding protein, and the ZNF706

zinc finger protein, which were all identified here through their

hotspot residues. Notably, retinoic acid receptors are known to

play a key crucial role in cell differentiation, which again high-

lights the example of the RXRA protein (Fig 6A).

Cancer classification based on molecular data, which include

point mutations, copy number variations, and mRNA and protein

expression, has proven to be able to recapitulate pathological

subtypes and suggest finer subclasses within tumor types (Hoadley

et al, 2014). Remarkably, here we observed that clustering of tumor

types based on a small number of functional hotspot mutations was

able to largely mimic the behavior of much more complex molecular

datasets. This observation thus suggests a central role of hotspot

mutations in shaping downstream mRNA and protein expression

levels and cellular phenotypes. Of note, hotspots with a high muta-

tion frequency defined the major trends among the clusters, but

adding information on more residues was able to refine the relation-

ships among different tumor types. It is conceivable that additional

hotspots detected at the level of individual tumor types will also be

informative for this. However, the power to detect these hotspots

strongly depends on the cohort sizes. A higher number of sequenced

genomes should hence allow for a better granularity in discerning

cell-type-specific signaling networks, but also aid in recognizing the

shared mechanisms of cancer progression.

The hotspot residues identified here encompass only 180 amino

acids and represent a very small fraction of the coding genome. Still,

more than a third of the sequenced patients had a mutation in at

least one of these residues. Of relevance, many (i.e., 45) of the

proteins with hotspot mutations are classified as druggable (Dataset

EV12). Among these are the mentioned RXRA and PRKCI proteins.

Importantly, hotspot mutations can be of a high clinical relevance;

they are attractive therapeutic targets, both for small molecules and

for antibodies, as well as for immunotherapy. The former is exem-

plified with the BRAF, KIT, and EGFR proteins. Furthermore, these

mutations can be useful in diagnostics, either in gene panels or in

liquid biopsies. Hotspot mutations are also of high interest in

biomedical studies, as reducing the number of candidate mutations

for the follow-up studies simplifies experimental design and reduces

costs.

Here, using several resources, we compose a set of human

protein complexes and incorporate structural data to analyze these.

CARM1 dimerRXRA (brown) with PPARG (blue), 
NCOA2 peptide, retinoic acid and DNA

A

CAND1 (purple) and CUL1(blue) 
with RBX1 (yellow)

CB

Figure 6. Mutations at the interaction interfaces can affect regulation of cancer-associated processes.

A Residues within the interaction interface of the RXRA protein (brown) toward the PPARG receptor (peroxisome proliferator-activated receptor gamma, blue) are
shown as spheres. A signal for this interface was driven by the hotspot mutation in RXRA (shown as a red sphere). Other protein regions in the representative PDB
structure (3dzy) are shown as ribbons. The NCOA2 coactivator peptide is not visible from the shown angle, while the retinoic acid can be partly seen above the
interface and it is represented with dark red sticks.

B CARM1 protein dimer is shown within the representative PDB structure (5dx0). Again, the interface segments are depicted as spheres and the rest of the protein as
ribbons. Significant signal within the interface is driven by the CARM1 hotspot mutation that is shown in red.

C Interaction interfaces that gave a strong signal for the clustering of cancer mutations in the CAND1 (cullin associated and neddylation dissociated 1, purple) and
CUL1 (culling homolog 1, blue) proteins are shown as spheres and other protein segments as ribbons. The shown PDB structure (1u6g) represents a complex that
additionally contains the RBX1 protein (RING-box protein 1, yellow).
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In this way, we detect a number of additional interaction interfaces

that are significantly affected by cancer mutations. Of interest, many

of the identified candidate proteins belong to protein families that

already have cancer-associated members (such as MCM6 and

MCM7 proteins, MAPK8, or CDC7, Table 1). A larger set of interac-

tion pairs with structural models will likely identify many more

cases where formation or dissociation of specific protein interactions

has an important role in cancer. Finally, integration of cancer geno-

mics analyses with large-scale experimental approaches, such as

functional genomics screens (Boutros et al, 2015), protein interac-

tion (Aebersold & Mann, 2016), and genetic epistasis assays (Laufer

et al, 2013) as well as studies of mutation effects on pathway activa-

tion and proteome re-organization (Collins et al, 2013), can addi-

tionally help in narrowing down medically and clinically relevant

candidates. Eventually, a larger catalog of cancer-associated muta-

tions further characterized in vitro and in model organisms would

be invaluable for understanding different routes of disease emer-

gence and for identifying therapeutic opportunities.

Materials and Methods

DominoEffect R package

In order to automate detection and annotation of hotspot mutations

from the sequencing data, we developed an R/Bioconductor pack-

age DominoEffect. The package relies on the gene and protein anno-

tations from the Ensembl database, which can also be obtained

through the BiomaRt R package (Kinsella et al, 2011). Its central

part is an algorithm for the detection of significant hotspot muta-

tions in the protein segments of a defined length. For this, the

default is to use windows of 200 and 300 amino acid lengths that

are centered on the potential hotspot residues (i.e., residues with 5

or more mutations) and require that in both cases at least 15% of

mutations in the segment fall on the same residue. The length of

windows was chosen so to encompass an individual protein

domain. Domains are frequently independent functional and struc-

tural protein units and are typically 100–250 residues long (Chothia

et al, 2003). A threshold for the fraction of mutations was chosen

after assessing different values for the pre-defined window length

(i.e., both 200 and 300 aa) and asking for the resulting gene set to

be enriched in the genes involved in cancer pathways. The thresh-

old of 15% was associated with the lowest P-value for the enrich-

ment in “Pathways in cancer” according to the KEGG pathways

annotations (Kanehisa et al, 2016). The minimum number of muta-

tions (default 5), window lengths, and thresholds for the required

fraction of mutations can be easily adjusted in the package. In addi-

tion, the percentage of mutations can be replaced with a require-

ment for the high overrepresentation of mutations at a candidate

hotspot residue when compared to the overall mutation rate in the

window. The tool excludes common population variants, gives a

hotspot P-value (adjusted Poisson test), and overlaps the hotspot

residues with the instantly downloaded functionally annotated

regions in the UniProt/Swiss-Prot KB. For the latter step, when

transferring SwissProt annotations, it controls for the sequence

agreement between the UniProt and Ensembl protein sequences. In

this study, we used the package on the Pan-cancer data, but with

more permissive thresholds, it can also be used for finding hotspot

mutations relevant for individual tumor types. With the default

settings, only highly frequent mutations will be identified in the

smaller patient cohorts. Details and examples are provided in the

package vignette. In addition to cancer, the tool can be applied to

any other disease for which sufficient exon sequencing data are

available (Hoischen et al, 2014).

Mapping genomic mutations onto protein sequences

The results shown here are in part based upon data generated by

the TCGA Research Network: http://cancergenome.nih.gov/. We

obtained whole exome somatic mutation data deposited in the

TCGA and ICGC cancer genomics repositories and available in

September 2015. We retrieved somatic mutations sequencing level 2

files from the TCGA web service and proceeded with the analyses of

those files that passed the Broad Institute quality filters and were

listed on their MAF Dashboard site (https://confluence.broadinsti

tute.org/display/GDAC/MAF+Dashboard). This included the

following TCGA tumor types: acute myeloid leukemia (LAML),

adrenocortical carcinoma (ACC), bladder urothelial carcinoma

(BLCA), brain lower grade glioma (LGG), breast invasive carcinoma

(BRCA), cervical squamous cell carcinoma and endocervical adeno-

carcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarci-

noma (COAD), glioblastoma multiforme (GBM), head and neck

squamous cell carcinoma (HNSC), kidney chromophobe (KICH),

kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell

carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),

lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), ovarian

serous cystadenocarcinoma (OV), pancreatic adenocarcinoma

(PAAD), pheochromocytoma and paraganglioma (PCPG), prostate

adenocarcinoma (PRAD), rectum adenocarcinoma (READ), sarcoma

(SARC), skin cutaneous melanoma (SKCM), stomach adenocarci-

noma (STAD), testicular germ cell tumors (TGCT), thyroid carci-

noma (THCA), uterine carcinosarcoma (UCS), uterine corpus

endometrial carcinoma (UCEC), and uveal melanoma (UVM).

Additionally, we downloaded files with simple somatic mutations

from the ICGC data release 19. We excluded files with an unusually

high mutation rate and files that were also available as a part of the

TCGA set. This added further mutation data for the following tumor

types: acute lymphoblastic leukemia (ALL), bladder cancer (BLCA),

bone cancer (BOCA), breast triple negative/lobular cancer (BRCA),

chronic lymphocytic leukemia (CLLE), chronic myeloid disorders

(CMDI), colorectal cancer (COCA), esophageal adenocarcinoma

(ESAD), esophageal cancer (ESCA), ewing sarcoma (BOCA), gastric

cancer (GACA), liver cancers (LICA, LIRI, LINC, LIAD, LIHM), lung

cancer (LUSC), malignant lymphoma (MALY), neuroblastoma

(NBL), oral cancer (ORCA), ovarian cancer (OV), pancreatic cancer

(PACA), pancreatic cancer endocrine neoplasms (PAEN), pediatric

brain cancer (PBCA), prostate adenocarcinoma (PRAD), early onset

prostate cancer (EOPC), and renal cancers (RECA).

To consistently map these mutations onto protein sequences, we

downloaded gene and transcript annotations from the Ensembl data-

base (Yates et al, 2016), release 73. For each gene, we chose a

representative, that is, longest protein coding transcript and used an

in-house Perl script to map the genomic mutations to the corre-

sponding amino acids. For the genomic mutation coordinates that

were not aligned to the Human reference genome assembly build 37

(i.e., GRCh37), we used the UCSC LiftOver service (Kent et al, 2002)
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and transferred these to GRCh37. Jointly, the analyzed TCGA and

ICGC mutation datasets covered 40 different tumor types which

spanned 23 tissues of origin. Sequencing data reported mutations

for 10,118 samples in total. In the obtained cancer genomes, more

than a million single nucleotide somatic changes within protein

sequences were observed (1,356,533 single nucleotide mutations).

Seventy percent of these mutations (947,359) categorized as non-

synonymous and were predicted to result in an amino acid change.

Detection of hotspot mutations with a likely functional effect

We developed the R package DominoEffect that is described above

and that analyses mutation patterns within protein sequences and

finds hotspot residues which accumulate mutations at a much

higher rate than their neighborhood protein regions. We ran the

package on the compendium of the TCGA and ICGC data

described above and additionally on the TCGA data alone. The

latter was done to account for a possible difference in quality

between the files: The downloaded TCGA files passed a quality

check for entering the Broad firehose, but the individual ICGC files

did not have a reference for the quality. Lower quality of mutation

data in some of the files could thus result in the general back-

ground mutation noise and prevent detection of the less frequent

hotspots. However, merging the two datasets gives more power to

detect less prominent thresholds. Hence, we combined the signifi-

cant results from the both analysis.

A major source of false positives in the set of the identified

hotspot mutations is due to common variants that, incorrectly, were

not detected in the paired healthy tissue from the same patient. In

order to address this systematically, we combined information on

variants from several different resources. However, filtering out all

positions that vary in the reference genomes would affect true muta-

tions and germline risk variants. In order to keep these, we excluded

only hotspots that overlapped with the genome variants that

occurred in more than 1% of the population. This does not exclude

all false positives from the set, but it increases the quality of the

current predictions.

To obtain the information on the common variants, we down-

loaded Ensembl variation data using the BioMart tool (Ensembl

releases 75 and updated 82; the latter coordinates were transferred

with the LiftOver tool to the genome assembly build 37). This

included variation data from the 1,000 genomes (Genomes Project C

et al, 2015), dbSNP (Sherry et al, 2001), and other databases.

Furthermore, we downloaded the Kaviar database (Glusman et al,

2011) as well as coordinates of genomic variants collected by the

Exome Aggregation Consortium (release 1, a subset without the

TCGA variants) (Lek et al, 2016) and assessed overlaps with the

identified hotspot mutations. We excluded all hotspots that over-

lapped with a variant for which the associated general population

frequency in either of the reference populations was higher than

1%.

Next, we used the PolyPhen-2 tool (Adzhubei et al, 2010)

through the online batch submission and retrieved predictions for

the likely functional effects of the genomic changes corresponding

to protein hotspots. For all coordinates that were predicted to

result in a “deleterious” change, we kept the associated protein

hotspot position. All other predicted hotspots were excluded from

the further analysis in order to reduce possible false-positive

instances of hotspot mutations in the final set. This, however,

possibly also excluded some true positives. In addition, we submit-

ted the genomic coordinates of hotspots to the Provean tool (Choi

et al, 2012) and noted that positions, which were predicted as

“deleterious” according to this predictor largely agreed with the

used predictions.

To obtain estimates of random mutation events, we made a

simulation where amino acids were equally represented and all

nucleotides were equally likely to mutate. We repeated the simu-

lation 10,000 times and noted frequency of different types of

events. This gave an estimate for the expected mutation rate of

glutamate to lysine in a randomly composed and freely mutated

protein set.

Characterization of genes with hotspot mutations

We retrieved the list of genes annotated as the Cancer Gene Census

(Futreal et al, 2004) from the COSMIC web resource (Forbes et al,

2017). We used the list available on January 11, 2017. Based on this

catalogue, we classified the genes with the identified hotspot muta-

tions as known or candidate cancer driver genes. Next, through the

Ensembl BioMart service (Kinsella et al, 2011), we retrieved predic-

tions for all human genes that are homologous to those with hotspot

mutations, and assessed which of these were in the cancer Gene

Census or had a hotspot mutation themselves.

We composed two other sets of genes to which we compared

those with hotspot mutations: (i) all other genes in the Cancer Gene

Census, that is, excluding those with hotspots and paralogs of genes

with hotspot mutations (based on the Ensembl homology assign-

ments) and (ii) all other protein coding genes in the UniProtKB

reference set of human proteins (release 2016_06, July 2016), that

is, excluding all Cancer Gene Census genes or genes with hotspot

mutations. We used the UniProtKB and Ensembl BioMart to map

Ensembl, Uniprot, and Entrez gene identifiers for the genes in the

three sets.

Next, we obtained information on the proteins classified as

enzymes from the Expasy ENZYME nomenclature database

(Bairoch, 2000), release 06-July 2016. We compared the fractions of

enzymes in the three datasets using the chi-squared test in R.

Further, we retrieved GO annotations (Gene Ontology, 2015) for the

genes in the three sets using the Ensembl Biomart service. In addi-

tion, we obtained information on the domains encoded by the

proteins in the three sets by taking predictions for the human

proteins provided by the Pfam database (release 28.0, May 2015).

For the GO terms and Pfam domains associated with the set of genes

with hotspot mutations (i.e., with three or more genes), we

compared fractions of proteins annotated with the same terms and

domains among the three sets. For this, we used the Fisher’s test in

R and accounted for the multiple testing with the Benjamini–Hoch-

berg correction (https://www.r-project.org/).

Genes involved in the signaling by Rho GTPases were obtained

from the GenScript website where the assignments were based on

the Reactome annotations (Fabregat et al, 2016). Rho proteins often

function as binary switches that control a variety of biological

processes (Ellenbroek & Collard, 2007).

Annotation of the affected protein residues

We used the Pfam batch service (Finn et al, 2016) to predict exact

domain coordinates in the representative Ensembl protein

sequences, which the cancer mutations were mapped to. We
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overlapped positions of hotspot mutations with the boundaries of

individual domains. In addition, we retrieved data on functionally

annotated regions within the proteins with hotspot mutations from

the UniProtKB service. We aligned these protein regions to the

representative Ensembl proteins and looked for an overlap with the

hotspot mutations. UniProtKB annotations also provide information

on the PDB structures associated with each protein. For all proteins

with hotspot mutations, for which X-ray structural data were avail-

able, we obtained a representative PDB structure. Representative

structure was chosen so to cover the longest possible stretch of a

protein sequence and to have a resolution below 3 Angstroms (Å),

when possible. In addition, for the candidate proteins that were not

in the Cancer Gene Census, we analyzed all available PDB crystal

structures. For the selected PDB identifiers, we retrieved residue-

associated data from the PDBePISA database (Krissinel & Henrick,

2007). Of note, from the structural point of view, residues are classi-

fied as being either at the interface, buried inside the protein core or

exposed at the surface (Chothia, 1976; Levy, 2010). The PDBePISA

assignments provided information on the accessible and buried

surface area of each amino acid. In our analysis, we focused on the

PDBePISA annotated complex interfaces that had a complexation

significance score (CSS) higher than 0.3 when the interface contacts

were formed between two proteins, or CSS higher than 0.05 when

the interface was formed with a ligand or nucleic acid. The score

indicates how significant the interface is for the assembly formation,

and we used these thresholds to prioritize biologically relevant

interfaces for further analyses. We further classified protein residues

with the buried surface area larger than 25 Å² as interface residues.

We used a conservative threshold in order to obtain a more confi-

dent prediction of amino acids that contribute to the interface

formation. Interfaces encompassed protein–protein, protein–DNA,

and protein–ligand interactions. We mapped coordinates of inter-

faces in the PDB structures to Ensembl proteins by aligning interface

stretches to these and, when interface segments were shorter than

five amino acids, we included surrounding residues in the alignment

so to have segments of five amino acids or longer. To align the PDB

with the Ensembl protein sequences, we used a Perl script and a

Smith–Waterman local alignment algorithm from the Emboss pack-

age with the default parameters (release Emboss-6.6.0). Coordinates

were mapped when the sequence identity between the aligned

peptides was at least 80%, or—if the alignment was longer than ten

amino acids—at least 60%. We then assessed an overlap of hotspot

positions with the interaction interfaces in proteins.

Signatures of tumor suppressor genes

Somatic mutation files obtained from the TCGA and ICGC and

described above also contained information on the other types of

small-range mutations in the sequenced genomes. We analyzed

these changes and classified premature nonsense mutations and out

of frame insertions and deletions in the encoded proteins as highly

deleterious. We compared these to the synonymous amino acid

changes in the same proteins, which represented an imperfect

(Supek et al, 2014) approximation for the local background muta-

tion rate. Genes with a high number of the reported deleterious

changes (at least 25) and large contribution of these changes to the

overall mutation load (the ratio of deleterious over synonymous

changes was higher than 0.7) were considered as tumor suppressor

candidates.

To address whether a mechanism of action for any of the muta-

tions was interference with the activation of tumor suppressors

through phosphorylation, we obtained positions of phosphosites in

these proteins using the PhosphoSitePlus resource (Hornbeck et al,

2012). We obtained coordinates of phosphosites that were reported

by a small scale or two or more mass spectrometry studies and

assessed if they were in the vicinity of hotspots.

Interaction partners and neighborhoods of the proteins with hotspots

To compare a fraction of domains that mediate protein interac-

tions among the previously composed sets of genes (genes with

hotspot mutations, other genes in the Cancer Gene Census and

background human proteins), we obtained domain annotations

from the iPfam 1.0 (June 2013) and used chi-squared test in R.

Further, we used a Functional Annotation service from the

ConsensusPathDB-human database compendium (Kamburov et al,

2013). This resource integrates human interaction networks and

includes binary, complex, signaling, and other experimentally

identified interaction relationships. Specifically, for the uploaded

proteins with hotspot mutations, we used the Network neighbor-

hood-based entity set analysis, which finds network centers whose

direct interaction neighborhood is enriched with the provided

proteins. Overrepresentation is calculated based on the back-

ground of all human proteins for which the annotation necessary

for the analysis is available. The calculated P-value is based on

the hypergeometric test and corrected for multiple testing with the

false discovery rate method. Among the significant hits, we

searched for the protein centers that had a hotspot mutation them-

selves and for which other proteins with hotspots were overrepre-

sented in their interaction neighborhood.

In addition, we used publicly available annotated physical inter-

actions from the BioGRID database (BioGRID version 3.4.138), and

among these, we searched for the interaction partners of proteins

with hotspot mutations. We considered only interactions classified

as “physical association” or “direct interaction”, and this included

interaction pairs identified using the affinity chromatography or the

BioID method for the former, or using the two hybrid, pull down,

enzymatic studies, florescence energy transfer, Western blotting, or

protein complementation assays for the latter. We then calculated

the fraction of proteins from the Cancer Gene Census in the interac-

tion neighborhood of each individual protein. Enrichment of known

cancer drivers among the interaction neighbors of candidate

proteins could serve as an indication of their connection to the

cancer-relevant pathways.

Clustering of tumor types

We grouped the TCGA and ICGC tumor types that had the same

name abbreviation and excluded from the further analysis those,

which had sequencing data available for fewer than 50 patients. In

all other tumor types, we noted a number of patients with the

somatic mutation data. For each of the identified hotspot mutations,

we looked at the individual tumor types and calculated a fraction of

patients which had this residue mutated. On the thus obtained table,

we used the pvclust R package, which performs hierarchical cluster-

ing with bootstrap resampling (Suzuki & Shimodaira, 2006). We

used median distance as a clustering method and noted the resulting

clusters of tissue types that had high P-values after 10,000 boot-

strapping repetitions.
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We next drew a heatmap plot where the clustering of tissue

types was defined with the pvclust results and where, for the clar-

ity, we reduced the number of the visualized hotspots by includ-

ing only those mutated in one-third or more of the patients in at

least one tumor type. Clustering of hotspots was based on the

pvclust results. The original values for the fractions of patients

with each hotspot mutation were log2-transformed, and zeroes

were represented as the lowest values in the table. A heatmap in

Fig 5 depicts a simplified version of the pvclust dendrogram. R

packages gplots and RColorBrewer were used for the heatmap

drawing.

Interface mutation clusters

We obtained a representative dataset of stable human protein

interactors with a structural support from the Interactome3D data-

base version 2016_06 (Mosca et al, 2013). The Interactome3D

database contains experimentally observed protein interaction part-

ners for which either a PDB structure exists or a homology model

could be generated. In our analyses, we focused on those interac-

tion pairs that are likely to form stable complexes [i.e., interac-

tions that were reported within the same complex in the Reactome

database (Fabregat et al, 2016) or Corum (Ruepp et al, 2010), or

by three or more Affinity purification experiments (Chatr-

Aryamontri et al, 2015)]. We obtained a representative dataset

provided by the Interactome3D that corresponds to the top ranking

structures and models. For all the template PDB structures corre-

sponding to members of the above-defined complexes, we

retrieved residue annotations from the PDBePISA database

(Krissinel & Henrick, 2007). We further followed the procedure

described above in the Methods section “Annotation of the affected

protein residues” in order to identify interface residues in the

template proteins and, when possible, map the obtained interface

coordinates to the Ensemble protein sequences. Next, we used the

ActiveDriver tool (version 0.0.10) (Reimand & Bader, 2013) in

order to assess positional clustering of mutations reported in the

cancer genomics studies. ActiveDriver implements a logistic regres-

sion model. It was initially developed to identify phosphosites that

had a mutation pattern which significantly differed from the gene

background mutation rate, while accounting for the differences in

mutation rates between structured and disordered protein regions.

We used the package settings in which the user can provide coor-

dinates of the regions of interest and analyzed mutations clustering

at the interaction interfaces. For the required mutation data, we

provided the amino acid changes reported in the above-described

TCGA and ICGC datasets, and we specified intrinsically disordered

protein regions by using the IUPred tool (Dosztanyi et al, 2005;

version 1.0) with the settings for short disorder and a residue

disorder prediction threshold of 0.5. From the ActiveDriver

predicted proteins with significant interface mutation clusters, we

analyzed further those that had a multiple testing corrected P-value

lower than 0.05. For these proteins, we searched for the particular

interfaces that were likely to be affected with the reported muta-

tions. We used GO term protein annotations (Harris et al, 2004;

GO database annotations for UniProtKB proteins, release Novem-

ber 2017) to assess cellular processes in which these proteins

could play a role, and the ConsensusPathDB service for finding

larger affected complexes. For the former analyses, we compared

the GO term frequency between the set of proteins with frequently

mutated interfaces and the rest of the representative proteome

using the Fisher’s test and we adjusted the obtained P-values for

multiple testing using the Benjamini–Hochberg correction. In the

Dataset EV10, we reported significant terms which were associated

with three or more proteins.

Drug targets

We obtained information on the druggable proteins for the list of

genes with hotspot mutations using the DGIdb service (Griffith et al,

2013) (http://dgidb.genome.wustl.edu/).

Amplified and overexpressed genes

We used the cgdsr R package from the cBioPortal and obtained the

GISTIC values and the estimated z-scores for mRNA values from

the available TCGA studies, which included data from 35 and 32

tumor types, respectively. Using as thresholds CNV values > 1 and

mRNA z-scores > 2, we looked at the percentages of patients in

each tumor type that had the “hotspot genes” amplified and/or

overexpressed. To obtain comparable sizes of gene sets, we asked

for a gene to be either amplified in 5% or more or to be overex-

pressed in 10% or more of the patients of the same tumor type. We

excluded ovarian adenocarcinoma data from the former analysis as

the majority of genes had apparently unspecific and strong signals

in this tumor type.

Data availability

The code for identifying and annotating protein hotspot residues is

available for download as an R/Bioconductor software package

“DominoEffect” in Code EV1. The folder contains example datasets

and a vignette that explains the code usage in detail. We recom-

mend using the up-to-date version available from the Bioconductor

website: https://bioconductor.org/packages/3.7/bioc/html/Domino

Effect.html.

Expanded View for this article is available online.
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