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Abstract

Cancer genome sequencing has shown that driver genes can often
be distinguished not only by the elevated mutation frequency but
also by specific nucleotide positions that accumulate changes at a
high rate. However, properties associated with a residue’s poten-
tial to drive tumorigenesis when mutated have not yet been
systematically investigated. Here, using a novel methodological
approach, we identify and characterize a compendium of 180
hotspot residues within 160 human proteins which occur with a
significant frequency and are likely to have functionally relevant
impact. We find that such mutations (i) are more prominent in
proteins that can exist in the on and off state, (ii) reflect the iden-
tity of a tumor of origin, and (iii) often localize within interfaces
which mediate interactions with other proteins or ligands. Follow-
ing, we further examine structural data for human protein
complexes and identify a number of additional protein interfaces
that accumulate cancer mutations at a high rate. Jointly, these
analyses suggest that disruption and dysregulation of protein
interactions can be instrumental in switching functions of cancer
proteins and activating downstream changes.
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Introduction

Cancer genome sequencing has had a major role in mapping cellular
pathways leading to tumorigenesis (Lawrence et al, 2014; Leiserson
et al, 2015) and in elucidating diverse molecular mechanisms that
can drive oncogenic transformation (Alexandrov et al, 2013) and
drug resistance (Garraway & Lander, 2013). These mechanisms
include genomic rearrangements, smaller insertions and deletions,
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or single point mutations. Eventually, they all lead to changes in the
expression levels or to altered functions of cancer driver genes and
their products. Analysis of different cancer genomics datasets has
further underscored a high degree of heterogeneity in the mutation
frequency and spectrum among different cancer types (Garraway &
Lander, 2013; Lawrence et al, 2013) and uncovered a long tail of
low-frequency driver mutations (Garraway & Lander, 2013). As a
corollary, in spite of the great progress in charting mutational events
that define different cancer types, the task to distinguish driver and
passenger mutations in an individual genome remains a formidable
challenge. Furthermore, even when a high mutation rate across a
number of patients indicates the gene is a cancer driver, functional
impact of individual mutations and their connection to the affected
cellular pathways are not readily evident (Garraway & Lander,
2013; Cancer Genome Atlas Research, 2014b; Alvarez et al, 2016).
Large-scale cancer genome initiatives, specifically The Cancer
Genome Atlas (TCGA, https://cancergenome.nih.gov/) and Interna-
tional Cancer Genome Consortium (International Cancer Genome
et al, 2010; ICGC, http://icgc.org/), have increased statistical power
in the analyses of cancer mutations and have driven the develop-
ment of innovative approaches for the study of patient data (Dees
et al, 2012; Hofree et al, 2013; Kandoth et al, 2013; Lawrence et al,
2013, 2014; Chen et al, 2014; Sanchez-Garcia et al, 2014). In particu-
lar, a number of recent methods address the fact that even within a
specific driver gene not all mutations will have an equal effect (Kan
et al, 2010; Burke et al, 2012; Porta-Pardo et al, 2017). To account
for this, they implement positional mutation biases as criteria for the
detection of candidate driver genes (Davoli et al, 2013; Tamborero
et al, 2013; Kamburov et al, 2015; Tokheim et al, 2016; Gao et al,
2017). Some of these approaches are agnostic to prior knowledge
(Araya et al, 2016), while others focus on regions of known func-
tional relevance, such as protein domains (Miller et al, 2015; Yang
et al, 2015), phosphosites (Reimand & Bader, 2013) or interaction
interfaces (Porta-Pardo et al, 2015; Engin et al, 2016). Recently,
Vogelstein et al (2013) have shown that oncogenes often contain not
only regions but also specific residues which accumulate a high frac-
tion of the overall mutational load within a gene. In addition, Chang
et al (2016) developed a statistical model for detecting residues with
a high mutation frequency and applied it to the pan-cancer data.
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Importantly, both approaches demonstrated that the sheer presence
of such residues was often sufficient to identify cancer driver genes.

Many of the individual cancer mutations are not well studied in
terms of how they influence the properties of proteins (Cancer
Genome Atlas Research et al, 2013). In addition, due to the artifact-
prone raw data and inconsistency in mutation calling, the genome-
sequencing information is still noisy (Alioto et al, 2015). Accordingly,
integration of relevant protein structural and functional annotations
with mutational patterns could help in distinguishing variants with a
likely impact. Here, based on previous observations (Vogelstein et al,
2013), we developed an approach for the detection of single protein
residues that accumulate point mutations at a significantly higher
rate than their surrounding sequence, which we refer to as “hotspot”
residues. Specifically, we used the developed approach to obtain a
comprehensive set of such protein residues and investigate protein
properties that associate with them. The methodology we used is
robust to gene length, background mutation rates, and presence of
common variants. We make this tool available as an open-source
DominoEffect R/Bioconductor software package (Code EV1).

In this study, we applied the tool to 40 cancer types with the
TCGA or ICGC sequencing data and identified 180 hotspot mutation
residues in 160 genes that had a likely functional impact. These
mutations alone had the power to cluster tumors based on the cell
type of origin, and many of the hotspots were found within proteins,
for example, enzymes, that are known to exist in the active and inac-
tive states. Importantly, we found that a significant fraction of the
hotspots resided within tumor suppressors. Furthermore, two-thirds
of the identified instances were not classified as known cancer genes
but many could be functionally linked to cancer pathways or were,
as exemplified by Poly(rC) binding protein 1 (PCBP1), previously
suggested to have a role in the regulation of cancer genes and
proteins. We next characterized the affected protein regions using
sequence annotations and associated data on their structural, func-
tional, and interaction features. These analyses showed that the
hotspot residues often fell within regions responsible for binding
ligands, nucleic acids, and other proteins. To further follow up on this
observation, we used available structural data and homology-based
3D models for human complexes. We mapped protein interfaces in
these and based on the presence of mutation clusters within the
mapped interfaces, we were able to identify 87 proteins in which
cancer mutations were likely to affect protein interactions. Again,
two-thirds of the instances were proteins that have not previously
been defined as cancer drivers. These, among others, included the
coactivator-associated arginine methyltransferase 1 (CARM1) and the
retinoid X receptor alpha (RXRA), which both also had hotspot resi-
dues. Overall, characterization of the recurrent functional mutations
suggests that a disruption and dysregulation of protein interactions
could be an important molecular mechanism for switching functions
of cancer proteins.

Results

Hotspot mutations point to known and candidate cancer
driver genes

We collected single nucleotide mutation data deposited as a part of
the TCGA and ICGC projects and mapped these nucleotide changes
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to the encoded protein sequences using the Ensembl gene annota-
tions (Yates et al, 2016; see Materials and Methods). Collectively,
the data encompassed 40 different cancer types from 22 tissues,
with the sequencing information from ~10,000 tumor samples,
including ~1,300,000 mutations within coding sequences (see Mate-
rials and Methods).

Next, we developed and applied a tool we term DominoEffect
(Code EV1). The tool identifies and characterizes individual hotspot
protein residues that accumulate mutations at a significantly higher
rate than their surrounding protein sequence (Figs 1 and EV1). In

Detection of protein residues associated
with cancer development

Mapping of interfaces in proteins

Mutations in cancer patients that form stable complexes

Y
VPV -

TCGAE) &8 IcGe

Detection of hotspots with
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Detection of mutation
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Characterization of
mutations’ likely effects

Filtering for damaging mutations
with a likely functional impact
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Figure 1. Outline of the approach.

Identification of hotspot mutations from the TCGA and ICGC data includes
detection of residues that accumulate mutations at a significantly higher rate
than their surrounding regions, followed by excluding common polymorphisms
and mutations that are not likely to have functional effects. To better
characterize protein elements that embed these mutations, we performed an
extensive annotation and analysis of both hotspot residues and proteins that
contained them. Furthermore, the approach applied to search for interaction
interfaces that accumulate cancer mutations at a high rate is shown. This
includes collection of structures and structural models for stable protein
interactions, mapping of interfaces in these and assessment if cancer mutations
are present within the interfaces at a significantly higher rate than elsewhere in
the protein sequence. Finally, thus identified proteins and interfaces are further
characterized.

© 2018 The Authors
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this study, we applied DominoEffect to search for protein “hotspot”
residues that accumulated a high mutation load (here defined as
15% of the mutations) within the windows of 200 and 300 amino
acids (see Materials and Methods for the explanation of thresholds).
Next, we filtered the obtained residues to avoid false assignments
and included only mutations that have a likely functional impact.
The largest sources of false positives should be sequencing errors
that repeatedly occurred at the same residues or individual poly-
morphisms, which were not detected in the paired healthy tissue.
To account for the latter, but not to exclude the germline risk vari-
ants, we filtered out all residues that were common polymorphisms
in the human population (i.e., genomic variants with a reported
population frequency higher than 1%). We based the filtering on
the available data from the 1000 Genomes Project (Genomes Project
et al, 2015), Kaviar (Glusman et al, 2011), Exome Aggregation
Consortium (Lek et al, 2016), and Ensembl-linked databases
(Sherry et al, 2001; Yates et al, 2016). To further filter out both,
sequencing errors and population polymorphisms, we applied the
PolyPhen-2 algorithm which assesses a likely mutation effect on the
protein function (Adzhubei et al, 2010). PolyPhen-2 uses a proba-
bilistic classifier with eight sequence-based and three structure-
based features. This filtering step can also exclude true disease
hotspots that do not have a sufficient structural or evolutionary
support for strong effects. However, to gain more confidence in the
individual predictions, we deemed it necessary to account for the
substantial presence of false positives in the initial set of hotspot
residues. For instance, nearly a third of the initially identified
“hotspots” (132 out of 451) were annotated as common variants,
which still likely represents an underestimate as a catalog of non-
disease human polymorphisms is still incomplete. Simulations of
randomly re-assigned mutations within titin, that is, a gene with
the highest overall mutation burden, did not report any hotspot
residues (1,000 repetitions). Thus, under the naive assumption that
each amino acid is equally likely to be mutated at random, back-
ground mutations should not strongly contribute to false positives.
Using the approach introduced here, we applied the DominoEf-
fect tool to the pan-cancer data and identified both known instances
of hotspot driver mutations as well as residues that were as yet not
annotated as such. In total, we identified 180 hotspots within 160
genes (Dataset EV1) for which the reported mutations were catego-
rized as deleterious by the PolyPhen-2. This set, thus, represents
frequently mutated residues that could be of particular functional

Figure 2. Properties of proteins and residues with frequent hotspot mutations.
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relevance in cancer development. The gene set was also enriched
for known cancer drivers (54 or 34% of the genes with hotspots
were in the Cancer Gene Census). For a comparison, a fraction of
known drivers among the genes that were selected by simply asking
for a high mutation load within a protein (more than 100 mutations)
or at an individual residue (more than 5 mutations) was 7.9% and
9.6%, respectively). Of note, on average, 88% of tumor allele
changes assigned as hotspot mutations were reported as heterozy-
gotic in the TCGA dataset. The most commonly mutated amino acid
was arginine (37% of the hotspot residues had arginine as a refer-
ence amino acid, while its overall frequency in the reference
proteome was 6%). The second most frequently mutated amino acid
was glutamate, which was predominantly mutated to lysine (11%
of all events). For an illustration, in a protein set with an equal
representation of all codons and an equal probability of nucleotide
changes, a frequency of such mutation would be only 0.61%. Inde-
pendently of the hotspot analysis, we additionally searched for
cancer mutation clusters in known and modeled protein interaction
interfaces (Fig 1).

Strikingly, 36% (3,679/10,118) of the analyzed cancer genomes
had at least one of the 180 hotspot residues mutated (Fig 2A). For a
comparison, the same size randomly selected gene set that
contained any of the protein positions with five or more pan-cancer
mutations was on average mutated in 14% of the patients
(P <6 x 1072, distance from the observed distribution of 1,000
random values). The major contributors to the highly prevalent
mutations were the well-studied oncogenes KRAS, BRAF, IDHI,
PIK3CA, NRAS, SF3B1, CTNNBI1, and PTEN: More than one-quarter
(i.e., 27%) of all patients had a hotspot mutation in at least one of
these genes. However, in the whole set, a majority (106/160) of the
genes with hotspots were not previously annotated as cancer
drivers. Importantly, 18 (i.e., 17%) of these candidate genes had a
homolog in the Cancer Gene Census (Futreal et al, 2004). These
instances are listed in the Dataset EV2 and they included, among
others, RBL2, KLF5, and ARAF as homologs of cancer drivers RB1,
PBX1, and BRAF, respectively. The fraction of Cancer Gene Census
homologs in the background set of human genes was significantly
lower than among the hotspot genes (7 versus 17 %, respectively,
P <3 x 10*, chi-square test). Therefore, the approach used here is
capable of suggesting biologically relevant cases for further follow-
up studies, while maintaining an overall low false-positive rate
(Marx, 2014).

A A high fraction of the sequenced samples (i.e, 36%) have at least one of the detected hotspot residues mutated. Strong contributors to this signal are the listed
known cancer drivers with hotspots. Hotspots in one or more of these proteins are mutated in 27% of the analyzed tumor samples.

B Proteins with hotspot mutations (dark cyan) have a higher fraction of enzymes than other proteins in the Cancer Gene Census (light red, P < 0.015) or all other
human proteins (dark green, ***P < 10~ “, chi-squared test). Color representation of proteins from the three sets follows the same scheme on all the following figures.

C Protein domains that are significantly overrepresented among the proteins with hotspot mutations compared to the non-cancer background proteins (adjusted

P < 0.01, Fisher’s test).

D Protein annotations (GO terms) that are overrepresented among the proteins with hotspots compared to the non-cancer background proteins (adjusted P < 10~ %,
Fisher’s test). Transcription factor binding and several other terms related to regulation of gene expression are more abundant among the other proteins in the

Cancer Gene Census than among the genes with hotspots.

E Hotspot mutations that mapped to the functionally similar protein segments in two or more different proteins are classified depending on whether the mutation
occurred within a protein domain with an enzymatic function (first column), another region in the protein that can mediate binding to other proteins, nucleic acids,
ligands or lipids, or in a region that contains a signaling motif or a transmembrane segment.

F Examples of individual proteins of interest. PCBP1, RXRA, and CARM1 are functionally related to cancer-relevant processes and have hotspot mutations (dark red
circles) within the RNA binding KH domain, ligand-binding segment, and enzymatic domain, respectively. Other missense mutations in these proteins are depicted as
blue circles. Pfam protein domains encoded by these genes are shown as colored boxes.

© 2018 The Authors
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Genes with hotspot residues can often exist in both an active
and inactive state

The obtained extensive set of known and candidate cancer-asso-
ciated genes with hotspot mutations provides an opportunity to
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define gene and protein characteristics associated with such resi-
dues. Mutational impacts are well characterized for the few most
frequently mutated cancer hotspots, but general principles of protein
properties that associate with hotspot residues have not yet been
systematically investigated. From the biological view, hotspot
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residues should be enriched in single positions with the power, if
mutated, to affect the overall protein function. Among the most
prominent examples of cancer drivers with hotspot residues are
kinases and Ras proteins where the hotspot mutations frequently
act by switching the proteins to a constantly active state. Both of
these protein families have enzymatic activity, even though Ras
proteins need additional activators for this. We hence assessed if the
genes with hotspots overall contained a high fraction of enzymes.
For this, we used the Expasy Enzyme database annotations
(Bairoch, 2000) and compared genes with hotspot residues to the (i)
genes in the Cancer Gene Census (excluding the genes with hotspot
mutations and homologs of genes with hotspot mutations) and to
(if) all other protein coding genes. We indeed observed that,
compared to the other two categories, genes with hotspots were
enriched in enzymatic functions (26% of the genes with hotspots
were annotated as enzymes; P < 0.015 and P < 9.3 x 107>, chi-
squared test, respectively, compared to the other two sets; Fig 2B
and Dataset EV3). Of note, Expasy Enzyme annotations did not
include the Ras proteins, as GTP hydrolysis does not represent their
main function (Dataset EV3). The fact that the observed trend was
also present in a comparison with the genes in the Cancer Gene
Census suggested that the observation should not be influenced by a
bias in protein annotations, which are likely to be more complete
for better-studied genes. Moreover, the fraction of enzymes was
even two times higher among the here-identified genes with hotspot
residues than among the genes in the Cancer Gene Census that were
involved in translocations (P < 0.0003). This suggests that different
gene classes could preferentially be activated through different
mutational processes (Latysheva et al, 2016). To confirm that this
observation was not influenced by the filtering of hotspots to
include only those with a likely deleterious effect (using PolyPhen-
2), we assessed a fraction of enzymes in the initial set of hotspots
after excluding only common polymorphisms. In this set, 21% of
proteins (i.e., 62 out of 290) were annotated as enzymes. This was a
lower fraction than in the final set, but still considerably higher than
the fraction of enzymes in the background set of human proteins
(P<7.6x10"%, chi-squared test). Of note, a set of the Cancer Gene
Census genes without the hotspot genes may still contain drivers
with hotspot mutations that have not been detected by the approach
applied here.

In accordance with these observations, protein domains that
were most frequently encoded by the genes with hotspot residues
were kinase and Ras domains, Fig 2C and Dataset EV4; adjusted
P-values for the overrepresentation were < 6 x 10~° and < 0.008,
respectively, Fisher’s test, when compared to the background set of
non-cancer proteins). In addition, the genes with hotspot residues
were also enriched in proteins involved in the related Rho GTPase
signaling: 10 genes were associated with this pathway, which repre-
sents four times higher fraction than in the set of non-cancer back-
ground genes (P < 1072, Fisher’s test). Both Rho and Ras proteins
are known to often function as binary switches. Among the proteins
with hotspots were also those with bromodomains, which are func-
tional elements found in epigenetic regulators, and KH domains that
play a role in RNA binding. Both domain types were overrepre-
sented compared to the background set of non-cancer proteins (ad-
justed P < 0.03, Fisher’s test). Furthermore, genes with hotspot
residues were strongly enriched in the functional categories (GO
terms) associated with signal transduction; receptor signaling linked

© 2018 The Authors
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to the fibroblast growth factors (P < 10~'°, Fisher’s test, compared
to non-cancer proteins) and platelet activation (adjusted P < 107%,
Fisher’s test), a process that is known to play a role in metastasis
(Gay & Felding-Habermann, 2011). These processes were also
enriched when compared to other proteins in the Cancer Gene
Census (P < 107* and P < 1072, respectively, Fig 2C and Dataset
EV4), but several functions associated with cancer development,
such as cell proliferation, transcription factor binding, and regula-
tion of gene expression, were enriched only compared to non-cancer
background genes (P < 10™%). In fact, some of the categories, such
as transcription factor and chromatin binding, were more abundant
among those Cancer Gene Census genes that were not among the
here-identified “hotspot genes” (Fig 2D and Dataset EV4). Overall,
this shows that many of the genes with hotspot residues relate to
cancer-associated processes and that jointly more than a third of
them encode proteins that are known to exist in an active and inac-
tive state.

Hotspot residues frequently map to crucial functional elements
in proteins

Next, we sought to identify which functional elements within
protein sequences were common target sites for hotspot mutations.
For this, we first mapped annotated functional regions using the
Pfam predictions (Finn et al, 2016) and UniProt Knowledgebase
(KB) annotations (The UniProt, 2017). We then investigated
whether the hotspot residues were mapping to the same functional
domains in different proteins. We found that domains which were
targets of hotspot mutations in two or more proteins were often
associated with enzymatic activities, or with binding to proteins,
nucleic acids, or lipids (Fig 2E and Dataset EV1). Most frequently,
hotspot residues localized within kinase and Ras domains (12 and 9
times, respectively), which also represented a predisposition for
domain regions within these protein sequences. Namely, 86% and
100% of the mutations were within the respective domains, which
is higher than expected, considering the domain coverage of
proteins (P < 4 x 10~* and P < 0.09, chi-squared test, respectively).
In addition, hotspot residues mapped to other domains known to be
associated with cancer proteins, such as the lipid binding PH
domain (Futreal et al, 2004), but also to enzymatic and binding
domains within proteins that are not yet in the Cancer Gene Census
(Dataset EV1). This, for instance, highlighted the Poly(rC) binding
protein 1 (PCBP1, Fig 2F) as a possible cancer gene candidate.
PCBP1 is as yet not classified as a driver (Futreal et al, 2004), but it
is involved in the regulation of the expression of a number of cancer
genes and has been previously implicated in tumorigenesis and
metastasis (Wang et al, 2010; Huo et al, 2012; Wagener et al, 2015;
Zhou & Tong, 2015). A hotspot residue within this protein mapped
to the KH domain that has a role in nucleic acid recognition and is
also a target of a hotspot mutation in the known cancer driver
FUBP1.

Further, mapping of hotspot residues onto UniProtKB functional
annotations showed that in several instances mutations were falling
within protein segments involved in ligand binding. These included
both well-known cancer drivers and proteins that are as yet not in
the Cancer Gene Census, such as nuclear receptor RXRA (Fig 2F and
Dataset EV1). As a following step, we analyzed the PDB structures
of proteins with the identified hotspot mutations (Berman et al,
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2000; www.rcsb.org). When structural data were available, we
aligned the segments with hotspot mutations onto the correspond-
ing PDB sequences (see Materials and Methods). Jointly, the analy-
ses of both UniProtKB annotated features and available structures
highlighted protein interaction interfaces as a functional element
class that was an important target of hotspot mutations (Dataset
EV1). These included the well-studied cases of CTNNBI, PIK3R1,
and SMAD4 proteins as well as proteins that are as yet not anno-
tated as drivers, but are functionally connected to cancer pathways.
An example of this are hotspot residues within the CARM1 and
METTL4 proteins that mapped to the interaction interfaces within
their protein arginine methyl transferase (PRMT) domains. The
PRMT domain is commonly found in epigenetic regulators and
mediates methylation of arginine residues on histone tails. The
observed hotspot mutations in CARM1 and METTL4 could thus
have an effect on the interactions between the CARM1 proteins that
together form a complex, or on the METTL4 binding to its interactor
protein METTL3. Both METTL4 and CARM1 (Fig 2F) are not yet in
the Cancer Gene Census. Finally, hotspot residues in the PBX2 and
MAX proteins mapped to their conserved DNA interfaces, suggesting
abolished or altered transcriptional regulation. Jointly, the ability of
mutations to affect protein interactions or nucleic acid and ligand-
binding properties suggests the means by which they could have a
potential to switch the protein function and influence downstream
processes in the cell.

An important role of hotspot mutations is the inactivation of
tumor suppressors

Tumor suppressor genes can be inactivated during the course of
disease either through mutations that affect their transcription
levels or through changes that influence protein expression, stabil-
ity, or function. In the case of the PTEN (Papa et al, 2014),
FBXW?7 (Welcker & Clurman, 2008) and SMAD4 (Miyaki & Kuroki,
2003) genes, as well as several other tumor suppressors (de Vries
et al, 2002; Hanel et al, 2013), a frequent mechanism of inactiva-
tion is through point mutations that reoccur at the defined residues
and act dominantly on the molecular level. For these genes,
disease-causing effects of single inactivating mutations were
demonstrated by the follow-up functional studies and in animal
models (Taketo & Takaku, 2000; Welcker & Clurman, 2008). In
the cancer genomics studies, mutational clustering is often used as
a signature that is associated with oncogenes (Davoli et al, 2013;
Vogelstein et al, 2013). However, these individual examples show
that hotspots can also pinpoint to a preferential mechanism for
tumor suppressor inactivation. In order to categorize hotspot muta-
tions that could function by inactivating tumor suppressors, we
analyzed which of the here-identified genes were categorized as
tumor suppressors in the Cancer Gene Census, or were predicted
to be suppressors based on mutation signatures in an independent
study (Davoli et al, 2013). In addition, to further expand the set of
tumor suppressor candidates, we assessed the frequency of delete-
rious mutations within the here-defined set of hotspot genes using
the mutation data from the above-described TCGA and ICGC data-
sets. For this, we considered changes with a likely highly deleteri-
ous impact on the protein sequence (i.e., premature nonsense
mutations and out of frame insertions/deletions), and we
compared these to the synonymous mutations within the same
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genes. The latter represented neutral mutations and served as a
measure of a background mutation rate in the sequences (see
Materials and Methods). Using a conservative threshold that
required an overrepresentation of deleterious over neutral changes
within a protein, we found that 15 genes with a hotspot mutation
also exhibited mutation patterns typical of tumor suppressors
(Dataset EV5). Collectively, together with the proteins that were
annotated as suppressors