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Abstract: Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated
transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones,
retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate
and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining
neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during
neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have
been demonstrated. Understanding the changes in metabolism during neuronal differentiation is
important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine.
In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism
alterations during neuronal maturation and neurodegenerative disorders.
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1. Introduction

Neurogenesis, the process of generating neurons, occurs during embryonic and perinatal stages
in mammals. It occurs also in the adult mammalian brain in two principal neurogenic niches,
the subventricular zone (SVZ) of the lateral ventricles, and the subgranular zone (SGZ) of the dentate
gyrus (DG) in the hippocampus [1]. Similarly to other adult stem cells, neural stem cells (NSCs)
participate in tissue repair after brain damage. Consequently, it has been reported that neurogenesis
follows different types of central nervous system (CNS) injury, including ischemic injury, seizure,
and mechanical and excitotoxic injury. In line with the role of neurogenesis in the normal turnover
of neuronal populations, recently through 14C, it has been demonstrated that about one third of
the human adult hippocampal neurons is replaced with 700 new neurons per day [2]. Although,
many transcription factors, participating in regulating adult neurogenesis, have been shown to control
cell metabolism outside the brain [3]. Metabolism was, for a long time, considered to occur secondary
to cell fate switch during neurogenesis. Nowadays, as recently reviewed by Lorenz and Prigione
2017, the emerging picture is that metabolism can be fine-tuned at different levels during neural
commitment [4].

Glucose and lipid metabolism are regulated by transcriptional control exerted by peroxisome
proliferator activated receptors (PPAR) α, β/δ, and γ, type II nuclear receptors that are particularly
active in the brain [5]. In fact, PPAR isotypes are all expressed in the CNS (central nervous system)
of rodents during embryonic development, as well as in adults. PPARβ/δ is broadly distributed in
the brain, while PPARα and PPARγ are located in more restricted regions [6–8]. Although it has been

Int. J. Mol. Sci. 2018, 19, 1869; doi:10.3390/ijms19071869 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-6740-7724
http://www.mdpi.com/1422-0067/19/7/1869?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19071869
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 1869 2 of 16

demonstrated that PPARs can directly regulate neural cell differentiation [9–14] and play important
roles in determining NSC fate [15–18]; less is known about their function in regulating NSC metabolism
during differentiation. In this review, we will discuss some recent important evidence that supports
the role of PPARs on adaptation of energy metabolism during neurogenesis, neuronal development,
and neurodegenerative disorders.

2. Metabolic States in Neural Stem Cells Lineage

NSCs are multipotent stem cells, which generate neurons and glial cells. NSCs use symmetrical
division for a quick expansion of the progenitor pool; subsequently to the beginning of neurogenesis,
they undergo an asymmetric division, by which a stem cell makes another stem cell and an intermediate
progenitor committed to neurogenesis. The passage to gliogenesis involves a return to the symmetric
division of progenitors [19]. During embryonic development, the choice between neuronal and glial
fates is fine-regulated, particularly in vertebrates, in which different cell types are generated in a
precise sequence: first neurons, followed by oligodendrocytes and astrocytes [20]. The specification
of neuronal and glial cell types, consequently, may help to understand the complex interactions
between multiple signaling pathways, transcription factors, and epigenetic mechanisms in the control
of fate decision.

Metabolism can be fine-tuned at different levels during neural commitment, and it can play
an important role in the specification of neuronal and glial cell types [4]. Neurons and glial cells
have different metabolic programs; in fact, neurons are dependent on mitochondrial-based oxidative
phosphorylation (OXPHOS), while glia stand on glycolysis [21,22]. NSCs, like glia cells, show a
glycolytic nature, and this kind of metabolism is proposed to be an effect of cells’ elevated rate of
proliferation, because it produces the precursor molecules for biomass generation via the pentose
phosphate pathway (PPP) that results from the upstream branches of glycolysis [23]. In agreement
with this concept, low oxygen typical of stem cell niches (<1–6%) [24] may influence cell metabolism,
inducing anaerobic glycolysis. Hence, hypoxia induces stem cells self-renewal with respect to
differentiation, and in concert, the hypoxia-inducible factors (HIFs) control the expression of genes
involved in glycolysis and fructose metabolism [25]. Accordingly, in vivo evidence revealed that
the modulation of blood vessel function in stem cell niches of the developing mouse cerebral cortex
influenced neurogenesis in an oxygen-dependent manner [26]. The NSC state seems correlated
with glycolytic metabolism coupled to non-fused mitochondrial morphology [27], while OXPHOS
metabolism is commonly associated with differentiated neurons [22,28], which showed a typical
tubular mitochondrial network. Recently, these concepts have been confirmed in several works
investigating the mitochondrial state of neurons derived in vitro from human pluripotent stem cells
(PSCs) [29–31]. Mitochondrial biogenesis and dynamics have a pivotal role in neuronal functions,
since they regulate mitochondrial number, location, morphology, and function [32]. It is important
to underline that these processes need synchronization refinement in the metabolic enzymes of fatty
acid oxidation and oxidative phosphorylation [33], and PPARs are important regulators of these
processes. Moreover, Mitofusin2 (Mfn2), a selective target of PPAR β/δ, [34], regulates mitochondrial
fusion [35] and seems to be crucial for the efficiency of mitochondrial uptake of Ca2+ ions [36,37].
Although NSCs in vivo can rapidly divide during development, becoming quiescent in adult age [38],
however, they still maintain glycolytic metabolism. One hypothesis to explain this behavior is that
glycolytic metabolism also regulates redox metabolism; particularly, the use of glycolysis may reduce
the intracellular levels of reactive oxygen species (ROS) [39]. Glycolysis produces reducing equivalents
by means of the pentose cycle and, by reduced mitochondrial activity, promptly limits the generation
of ROS. In fact, emerging evidence suggests that ROS can function as second messengers, playing a
crucial role in the self-renewal of NSCs [40]. The correct intracellular ROS levels regulation may help
to neurogenesis induction, suggesting that low ROS levels are beneficial for NSCs, while committed
neural progenitor stem cells (NPCs) increase ROS production to promote differentiation [4]. However,
also in NSCs, a determined amount of oxidative metabolism might even be necessary to prevent
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oncologic transformation of NSCs, as has been recently suggested that inhibition of mitochondrial
metabolism in NSCs led to a switch towards more glycolysis with higher proliferation and less
inducible differentiation [41]. A significant role in this control seems to be explained by de novo
lipogenesis, in fact, an increase of fatty acid oxidation (FAO) was found to be high in adult NSCs in the
SVZ, and pharmacological inhibition of FAO resulted in reduced proliferation [42]. In addition, de novo
lipogenesis is crucial for adult stem cell behavior, as demonstrated by an interesting experiment of
Knobloch et al., 2013, in which they showed a decrease of stem cell proliferation upon genetic deletion
or pharmacological inhibition of the key enzyme fatty acid synthase [43]. Meanwhile, an elevated
lipogenesis seems to be associated with an increase of NSC proliferation, and in quiescent NSCs,
FAO appears, instead, to be favored. Data from single-cell RNA experiment demonstrate that a low
rate oxidative metabolism, because of FAO in quiescent NSCs, may correspond to an alternative
energy fuel to glucose [44]. Furthermore, congenital defects in mitochondrial FAO in NSCs, leads to
differentiation with the loss of NSC self-renewal in the developing mouse brain [45]. In addition,
silencing of promyelocytic leukemia gene (PML), which it is known to regulate FAO and is involved in
modulation of PPAR β/δ signaling, reduces the hematopoietic stem cell pool in mice [46].

In the brain, during pathological conditions, an alteration in metabolic status occurs; in fact,
recent studies showed an impaired NSCs function in metabolic disease underlying the role of lipid
metabolism in neurogenesis. In example, high fat diet (HFD) decreases hippocampal neurogenesis
in male rats. These mice exhibit reduced hippocampal neurogenesis and neuronal precursor cells
proliferation paralleled with increased lipid peroxidation and decreased expression of trophic and
pro-neurogenic BDNF (brain derived neurotrophic factor). Moreover, young mice treated with HFD
exhibited decreased hippocampal neurogenesis respect adult mice under the same diet [2]. It has been
demonstrated that lipid accumulation perturbs niche microenvironment and inhibits neurogenesis
in unhealthy brains, thus supporting evidence for a novel FA-mediated mechanism suppressing
NSC activity.

In this context, it is important to underline recent evidence suggesting that sporadic
Alzheimer’s disease (AD) etiopathogenesis could also involve dysfunctional brain insulin signaling,
with subsequent glucose dysmetabolism and metabolic shift to alternative energy sources, also known
as type 3 diabetes [47].

3. Roles of PPARs in the Energetic Metabolic Switch Occurring during Neurogenesis and
Neuronal Maturation

PPARs are ligand-activated transcription factors included into nuclear receptor superfamily,
three isotypes have been determined, encoded by separate genes (α, NR1C1; β/δ, NR1C2; and
γ, NR1C3). PPARs, once activated by the ligand, form a heterodimer with the 9-cis retinoic acid
receptor (RXR) and modulate the transcription of their target genes by binding to the putative
PPRE (AGGTCAAAGGTCA) in the promoter regions of them. Regarding their protein structure,
in the N-terminal there is the A/B domain (AF-1), which holds a ligand-independent function,
while the C-terminal domain, that holds the DNA binding domain (DBD), is composed of two zinc
finger-like motifs that can bind the PPARs response element (PPRE). The D domain is a hinge
region important for the cofactor interaction, and consequently, for DNA binding. The E/F (LBD)
domain is involved in the dimerization with RXR and a ligand-dependent transcriptional activating
function (AF-2) [38,48]. PPARs transcriptional activity and stability can be modified covalently by
phosphorylation, ubiquitylation, and SUMOylation [49,50]. PPARα, the first PPAR to be identified,
is expressed mainly in the liver, heart, and brown adipose tissue, in which it regulates the ketogenesis,
lipid storage, and fatty acid oxidation pathways. PPARβ/δ is ubiquitously expressed, and it has
a leading role in glucose and fatty acid oxidation in key metabolic tissues, such as liver, skeletal
muscle, and heart. Finally, PPARγ is expressed in white adipose tissue, where it is a master regulator of
adipogenesis, as well as a potent modulator of whole-body lipid metabolism and insulin sensitivity [51].
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Regarding PPAR ligands, some of them, such as fibrates (PPARα ligands), are currently used as
treatment of dyslipidemia; while, glitazones (PPARγ ligands) are antidiabetic and insulin-sensitizing
agents, otherwise, PPARβ/δ ligands have only confirmations obtained from animal models [52].
Moreover, PPARα/γ dual agonists, (glitazar) PPAR α/δ dual agonists (elafibranor), and pan-PPAR
agonists have been recently become available [52].

Regarding their expression in the brain, all PPAR isotypes are expressed in CNS, both during
embryonic development and in the adult. PPARα and PPARγ are located in more restricted regions,
while PPARβ/δ is widely distributed in the brain [6–8]. PPARs are implicated in the regulation of the
proliferation, migration, and differentiation of NSCs by signaling pathways, such as STAT3, NFkB,
and Wnt [15–17], and it has been demonstrated that in neurospheres, grown in vitro from adult mouse
SVZ, all three PPAR isotypes are expressed [18,53]. PPARβ/δ resulted the most abundant isotype; it is
not surprising due to its early expression and its abundance during brain development [6]. Moreover,
the concurrent expression of the three isotypes in the NSC nucleus does not mean that they are all
transcriptionally active; in fact, it has been suggested that unliganded PPARβ/δ may act as potent
inhibitor of the transcriptional activity of α and γ isotypes [54]. In the astroglial differentiating NSCs,
PPARs undergo quantitative modifications. A strong decrease of PPARβ/δ was observed, in this
context, it might be considered as inhibitor of astroglial differentiation. PPARγ did not change, both at
mRNA and protein levels, while PPARαwas significantly increased in agreement with our previous
findings on astrocytes in vitro differentiation [14], suggesting a role for this transcription factor in
astroglial differentiation, confirmed by the results achieved when NSCs were treated with a specific
PPARα agonist [18]. Finally, in the cytoplasm of neural stem cells, large lipid droplets were found in
SVZ adult NSCs, in accordance with de novo lipogenesis [42]. Moreover, lipid droplet withdrawal,
during astroglial differentiation, agrees with the view that differentiated astrocytes develop catabolic
lipid metabolism, rather than anabolic, needing PPARα activity.

In Figure 1, is shown a scheme summarizing the effects of PPARs on energy metabolism adaptation
during neural stem cell differentiation in neurons and astrocytes.
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The PPARβ/δ isotype is highly expressed in the brain [55], and its deletion in mice is associated 
with brain developmental defects [56]. In fact, PPARβ/δ has important roles in neuronal function; it 
has been demonstrated that PPARβ/δ-deficient mice are viable, but they show several defects in CNS 
such as altered myelination [56] and bad performance in memory tests, paralleled with an increase 
in inflammatory markers, astrogliosis, and tau hyperphosphorylation [57]. The presence and 
modulation of PPARβ/δ in embryonic rat cortical neurons during their in vitro maturation were 
observed by us [9], suggesting a potential role of PPARβ/δ in neuronal maturation. In addition, we 
demonstrated in human neuroblastoma cell line, SH-SY5Y, a neuronal differentiating effect of 
PPARβ/δ [58,59]. The signal transduction pathways activated by PPARβ/δ during neuronal 
differentiation were studied on this in vitro model. In particular, it has been demonstrated that the 
PPARβ/δ activation was able to determine the activation of MAPK-ERK1/2 and to increase the 
expression of BDNF and p75 receptor, in parallel to a decrease in BDNF TrkB receptor, suggesting 
that activation of PPARβ/δ was involved, directly or indirectly in neuritogenesis and neuronal 
maturation. Finally, these results were further confirmed by the use of a specific agonist and 
antagonist of PPAR β/δ in primary neuronal cultures [11], in which we also observed a specific effect 

Figure 1. Scheme summarizing the effects of peroxisome proliferator activated receptors (PPARs) on
energy metabolism adaptation during neural stem cells differentiation in neurons and astrocytes.

4. Roles of PPARβ/δ in Neurogenesis and Neuronal Maturation

The PPARβ/δ isotype is highly expressed in the brain [55], and its deletion in mice is associated
with brain developmental defects [56]. In fact, PPARβ/δ has important roles in neuronal function;
it has been demonstrated that PPARβ/δ-deficient mice are viable, but they show several defects in CNS
such as altered myelination [56] and bad performance in memory tests, paralleled with an increase in
inflammatory markers, astrogliosis, and tau hyperphosphorylation [57]. The presence and modulation
of PPARβ/δ in embryonic rat cortical neurons during their in vitro maturation were observed by
us [9], suggesting a potential role of PPARβ/δ in neuronal maturation. In addition, we demonstrated
in human neuroblastoma cell line, SH-SY5Y, a neuronal differentiating effect of PPARβ/δ [58,59].
The signal transduction pathways activated by PPARβ/δ during neuronal differentiation were studied
on this in vitro model. In particular, it has been demonstrated that the PPARβ/δ activation was
able to determine the activation of MAPK-ERK1/2 and to increase the expression of BDNF and p75
receptor, in parallel to a decrease in BDNF TrkB receptor, suggesting that activation of PPARβ/δ
was involved, directly or indirectly in neuritogenesis and neuronal maturation. Finally, these results
were further confirmed by the use of a specific agonist and antagonist of PPAR β/δ in primary
neuronal cultures [11], in which we also observed a specific effect of PPARβ/δ activation on cholesterol
biosynthesis during neuronal maturation. Furthermore, it has been demonstrated that retinoic acid
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(RA) promotes neurogenesis by activating both retinoic acid receptors (RARs) and PPAR β/δ in P19
mouse embryonal carcinoma cell line [10]. Recently, Mei and Coll, in 2016, have been reported that,
by modulating mitochondrial energy metabolism via Mfn2 and mitochondrial Ca2+, PPAR β/δ plays
a key role in neuronal differentiation. This study provides novel insights for the role of PPARβ/δ
and energy metabolism adaptation during neurogenesis and neuronal maturation [33]. In particular,
the authors have been shown that flavonoid compound 4a facilitated embryonic stem cells (ESC)
to differentiate into neurons morphologically as well as functionally, and that the PPAR β/δ gene
silencing blocked compound 4a-induced neurogenesis of ES cells, demonstrating the important role of
PPARβ/δ in neuronal differentiation. In this kind of model, mitochondrial biogenesis was upregulated
by compound 4a treatment, and was altered by sh-PPAR β/δ knockdown, suggesting a key role of
PPARβ/δ in mitochondrial biogenesis during neuronal differentiation. Moreover, they showed that the
compound 4a was able to increase the protein expression of Mfn2, which was abolished by PPARβ/δ
knockdown, and that sh-PPAR β/δ reduced mitochondrial Ca2+ concentration. Thus, PPARβ/δ seems
strongly implicated in the induction of neuronal lineage, increasing mitochondrial fusion, modulating
BDNF expression, cholesterol biosynthesis, and mitochondrial FAO. Finally, it should be emphasized
that a natural ligand of this receptor, the 4-hydroxynonenal (4-HNE) [60], is a product of oxidative
stress and, thus, it should be possible that the increased ROS levels in committed neuroblast could
trigger the activation of PPAR β/δ.

5. Roles of PPARγ in Neurogenesis and Neuronal Maturation

PPARγ activation induces the transcription of genes associated with lipid uptake and storage,
playing critical roles in lipid homeostasis [61]. PPARγ controls murine NSC proliferation and
survival [27]; particularly, when activated by low concentrations of specific agonists, PPARγ
stimulates proliferation concurrently constraining neuronal differentiation, while activation by high
concentrations of agonists leads to NSC death. This dual role suggests that PPARγ controls the
expansion of NSC population in a concentration-dependent manner, and it shows that precise
concentrations of its agonists are critical for the survival and proliferation of NSCs in vivo.

Regarding metabolism, in order to examine the mechanisms of PPARγ in the control of
energy balance in CNS, Stump and colleagues 2016 used a Cre-recombinase dependent (NestinCre),
conditionally activatable transgene expressing either wildtype (WT) or dominant-negative (P467L)
PPARγ. What they found is that NesCre/PPARγ-WT mice displayed severe microcephaly and
brain malformation, indicating that PPARγ can control brain development. On the contrary,
global interference with PPARγ function caused impaired growth, resistance to diet induced obesity,
decreased lean mass, redistribution of adipose tissue, GH resistance, and abnormalities in glucose and
insulin [62].

Recently, we have shown, in vitro, the energetic metabolism pathways controlled by PPARγ [63]
in neuroblast differentiation. We used the human neuroblastoma cell lines SH-SY5Y, as a model
of neuroblast induced to differentiate neuron. During the early phases of neuronal differentiation,
a significant downregulation of PPARγ was observed, concomitant with a change in its cellular
localization, in fact, it came to be cytoplasmic after the differentiation challenge. In addition,
we observed that the decrease of PPARγ was paralleled by a strong decrease of glycogen and
lipid droplets content in differentiating cells. PPARγ knockdown showed a strong decrease of
glycogen content, concomitant with a significant increase of phosphorylase glycogen brain (PYGB),
indicating that PPARγ is critical for NPCs maintenance and energetic storage.

6. Energy Metabolism Imbalance in Neurodegenerative Disorders

During aging, there is an increase of circulating glucose due to the cellular inability to increase
glucose uptake in response to insulin, and this peripheral insulin resistance has been related with
poorer cognitive function [64]. Insulin signaling pathway results in phosphorylation of the insulin
receptor-interacting protein (IRS-1), particularly, a decrease in IRS-1 phosphorylation may induce
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insulin resistance, while an increased phosphorylation on serine 312 of IRS-1 has opposite effects.
Studies on post mortem brain tissue from elderly subjects showed an increased IRS-1 phosphorylation
on serine 312, suggesting neuronal insulin resistance [65,66]. Concomitant with insulin resistance,
also, the neuronal glucose transporter GLUT3 is susceptible to aging factors [67,68]. During aging,
the metabolism of several lipid species is altered, such as long-chain ceramides [69] and omega-3 fatty
acids [70]. Dyslipidemia is often associated with dementia, and it may increase the risk of AD [71].
Moreover, individuals having the ε4 allele of the gene encoding apolipoprotein E, the protein that
transports cholesterol and lipoproteins, have an increased risk of developing sporadic AD [72].

Accordingly, age-related neurodegenerative disorders, such as AD and PD, share common
pathogenic pathway with metabolic syndromes like obesity and type 2 diabetes, such as deregulation
of brain insulin signaling and insulin growth factor-1 (IGF-1) signaling. This signaling induces insulin
resistance, and energy and lipid metabolism imbalance, that have a direct negative impact on the
CNS [47]. Moreover, neurodegenerative disorders, such as metabolic syndromes, are characterized
also by mitochondrial and peroxisomal dysfunction, and alterations in energy metabolism [73,74].

Alzheimer’s disease is the most common form of dementia, characterized by age-related cognitive
decline that starts as mild short-term memory impairment, and then progresses to severe deficits
in essentially all cognitive domains. The hallmarks of this disease are amyloid β plaques (Aβ) and
hyperphosphorylated tau tangles [75].

Parkinson’s disease (PD), like AD, is a long-term degenerative disorder of the CNS, characterized
by degeneration of dopaminergic neurons in the substantia nigra that innervate the striatum [76].
The hallmarks of PD are “Lewy bodies”, large accumulations of α-synuclein in the cytoplasm [77];
experimental evidence suggests that the accumulation ofα-synuclein aggregates induces mitochondrial
dysfunction in neurons, and these are pivotal events in the pathogenesis of PD.

As reviewed by Agarwal and colleagues 2017, it is becoming increasingly evident that
mitochondrial abnormalities play an import role in the onset, progression, and neuronal cell death in
age-related neurodegenerative disorders [73].

Recently, in neurodegenerative disorders, it has been demonstrated that functional and structural
changes in mitochondria are early features that conduce to neuronal death, paralleled by cognitive and
neurobehavioral abnormalities [78]. In age-related neurodegenerative disorders, the mitochondrial
population is decreased, due to dysregulation of mitochondrial biogenesis [79]. The mitochondrial
dysfunction observed in neurodegenerative disorders leads to the damage in mitochondrial electron
transport chain, in the mitochondrial DNA, and calcium buffering [79]. Mitochondria is the second
major intracellular Ca2+ store after endoplasmic reticulum, and Ca2+ deregulation plays a critical
role in the pathogenesis of several neurodegenerative disorders [80]. In fact, mitochondrial Ca2+

plays an important role in preserving cellular physiology, activating the respiratory chain [81].
When mitochondria accumulate excessive Ca2+ ions, this causes mitochondrial swelling, injury of
mitochondrial membrane potential, and finally, it induces apoptosis in neurons [82].

Mitochondrial dynamics/biogenesis helps to maintain the characteristic morphology of
mitochondria and a healthy mitochondrial pool in neurons; it is a tightly controlled balance between
three important phenomena: mitochondria fission, fusion, and degradation. [78]. Mitochondrial
fission consists of replacement of damaged mitochondria, and it plays a main role in the appropriate
function and assembly of mitochondrial electron transport chain complex [78]; the main protein
mediators of mitochondrial fission are Fis-1 and Drp-1 [78]. Fusion is related with the improvement of
mitochondrial functions, and is regulated by three main proteins: mitofusin 1 (Mfn-1), mitofusin 2
(Mfn-2), and optic atrophy protein 1 (OPA-1) [78]. The expression and protein levels of Drp-1, Opa-1,
Mfn-1, and Mfn-2 are decreased in numerous neurodegenerative disorders. Moreover, mutations in
several PD-linked genes, like PINK-1, Parkin, DJ-1, LRRK2, and VPS35, are directly or indirectly, linked
to mitochondrial dysfunction [83,84]. In particular, PINK/parkin pathway promotes mitochondrial
fission or inhibits mitochondrial fusion in drosophila [85]. A key factor for mitochondria biogenesis
is the PGC-1 α; any loss or impairment in PGC-1α activity may result in metabolic defects and
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mitochondrial dysfunctions in most neurodegenerative disease [78]. PPARs bind this transcriptional
co-activator, modulating the expression of the gene encoding for mitochondrial fatty acid oxidation
and glucose metabolism enzymes [86], but also the genes encoding for antioxidant enzymes such as
catalase, glutathione peroxidase, and MnSOD, thus reducing oxidative damage [87,88].

The role of peroxisomal dysfunction in aging has been largely undervalued; however,
accumulating evidence suggests that peroxisomal function declines with aging and in age-related
neurological disorders, such as AD and PD [89]. Interestingly, not only mitochondria, but also
peroxisomes, are organelles involved in the response to the redox unbalance, characterizing the earliest
phases of Aβ pathology [90–92].

Peroxisomal dysfunction was also linked to disease, principally through ROS metabolism [93,94],
in fact, peroxisome-mediated ROS production may have also a deeper effect on mitochondrial
integrity, as demonstrated by the induction of intraperoxisomal ROS, using a peroxisome-localized
photosensitizer [95]. Interestingly, genetic inactivation of catalase, a PPAR target gene, perturbs
mitochondrial redox potential in mice [96]. Reflecting the intimate link between the two organelles,
these studies suggest that peroxisomal dysfunction may be a precursor for mitochondrial impairment.
Moreover, proteins involved in peroxisomal fatty acid oxidation, ether lipid synthesis, and
other peroxisomal processes, were also decreased in in age-related neurological disorders [93],
suggesting that peroxisomal dysfunction extends beyond dysregulated ROS metabolism. Remarkably,
increased very long chain fatty acids (VLCFAs) and reduced plasmalogen levels are observed in the
brain of AD patients, suggesting a possible defect in peroxisomal beta oxidation and peroxisomal lipid
synthesis [97]. Peroxisomal dysfunction is present also in PD, particularly, plasmalogen levels are
significantly reduced in PD post mortem human frontal cortex lipid rafts [98].

7. Roles of PPARs in Neurodegenerative Disorders

The most studied PPAR in neurodegenerative disease is the γ isotype. Combs and colleagues [99]
were the first to report the relationship between PPARγ activation and neurodegeneration, and this
evidence was supported by several lines of evidence in animal and cellular models of Alzheimer’s
disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD),
stroke, and traumatic injuries [100].

In numerous mouse models of AD, it has been indicated that administration of PPARγ agonists
can ameliorate memory and cognition performance, reduce inflammation, and decrease amyloid levels.
Searcy and colleagues [101] have been demonstrated that PPAR agonists are able to ameliorate synaptic
function in AD mouse models.

Since it is known that PPARγ agonists decrease insulin resistance in type II diabetes, the beneficial
effects of PPARγ agonists in AD mice indicate that they can act in the same manner in CNS [102].
Escribano and his research group demonstrated that rosiglitazone, a high-affinity PPARγ agonist,
rescues memory impairment in a mouse model of AD [103]. Specifically, these authors indicated that
rosiglitazone promotes Aβ clearance, by promoting microglial phagocytic ability and decreasing the
expression of proinflammatory markers.

Moreover, an interesting meta-analysis compared the efficacy of glitazones (antidiabetic and
insulin-sensitizing agents) for Alzheimer’s disease (AD) and mild cognitive impairment (MCI).
In particular, this analysis included 20 comparisons from 4855 individuals randomly assigned to
6 different antidiabetic drugs with various doses. The results have shown that pioglitazone and
rosiglitazone had the major pro-cognitive effects in subjects with AD/MCI [104].

Recently a role for PPARγ has been recognized in regional transcriptional regulation of
chr19q13.32; this region contains genes such as TOMM40 and APOE, implicated in AD. Mostly,
this region holds a number of PPARγ binding sites, and understanding how those sites regulate the
expression of genes in the region could help in the development of more efficient therapies [105].

In a recent study, Cheng and collaborators (2015) studied the effects of PPARα activation on
neuronal degeneration by inducing Aβ42 cytotoxicity in an in vitro model. They established that
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the mitochondrial-associated AIF/Endo G-dependent pathway could be prevented by activation of
the receptor in this model [106]. Recently, Fidaleo et al. [107] reported that PPARα ligands, such as
palmitoylethanolamide (PEA), are able to protect neurons from degeneration, leading to a reduction
in oxidative stress, inflammation, and neurogenesis, and glial cell proliferation/differentiation,
thus further suggesting the use of PPARα as a potential therapeutic agent for neurodegeneration.

In 2003, Brune and colleagues [108] screened for polymorphisms in the PPARα gene, and they
detected two known polymorphisms located in exon 5 and intron 7. They studied the possible
association of these polymorphisms with AD and its effect in carriers of an insulin gene (INS)
polymorphism. They showed that carriers of a PPARαL162V allele and an INS-1 allele presented
an increased risk for AD. These authors also found an increased level of βamyloid in cerebrospinal
fluid in PPAR-α L162V genotype carriers. These results suggested that PPARα polymorphism may
be considered a risk factor for AD. Moreover, since altered glucose metabolism has been indicated in
AD, the interaction of the insulin and the PPARα genes in AD risk in the Epistasis Project, have been
assayed. The authors proposed that dysregulation of glucose metabolism leads to the development of
AD, and might be due, in part, to genetic variations in INS and PPARα, and their interaction especially
in Northern Europeans [109]. Recently, it has been reported that statins serve as ligands of PPARα,
and that Leu331 and Tyr 334 residues of PPARα are important for statin binding [110]. Upon binding,
statins induce upregulation of neurotrophins through PPARα-mediated transcriptional activation
of cAMP-response element binding protein (CREB). Consequently, simvastatin increases CREB and
also BDNF in the hippocampus of PPARα null mice receiving full-length lentiviral PPARα, but not
L331M/Y334D statin-binding domain mutated lentiviral PPARα. This study identifies statins as ligands
of PPARα analyzing the importance of PPARα in the therapeutic success of simvastatin in an animal
model of Alzheimer’s disease. Limited studies indicated a protective role for PPARα agonists in models
of PD: treatment with the PPARα agonist fenofibrate [111] protected nigral dopaminergic neurons in
the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The role of PPARβ/δ
in neurodegeneration is less studied than PPARγ and α, and more controversial. PPARβ/δ agonists,
acting through PPARβ/δ activation, induce protection in many pathological CNS states, such as a
transgenic mouse model of Alzheimer’s disease, MPTP model of Parkinson’s disease, stroke, EAE,
spinal cord injury and in a streptozotocin-induced experimental type 3 diabetes [100]; in all these cases,
the effect has been mainly attributed to reduction of inflammation and oxidative stress. However,
the main question regarding this nuclear receptor is that further studies are needed in order to better
characterize this receptor in a more systemic manner, to support the possibility that PPARβ/δmight
be used as a therapeutic target [112].

Regarding mitochondrial biogenesis, PPAR agonists can increase the functionality of
mitochondrial, and they enhance Ca2+ buffering ability of mitochondria. Therefore, it seems attractive
to examine the cellular and molecular mechanisms by which PPARs determine changes in cytosolic
Ca2+ concentration to develop new strategies in the field of drug development for neurodegenerative
disorders [73]. Moreover, PPAR agonists are able to induce mitochondrial biogenesis through PGC-1α,
preventing mitochondrial dysfunction caused by oxidative insults [113]. In Table 1, are shown the
references on energy metabolism imbalance in neurodegenerative disorders, and about PPARs ligands.

Table 1. Table summarizing the references on energy metabolism imbalance in neurodegenerative
disorders and on PPARs and PPAR ligands.

Neurodegenerative Diseases i.e.
AD and PD

Ref. Energy Metabolism Imbalance Ref. PPARs and Their Ligands

[47,64–68] Insulin Resistance [102–104,109,110]
[78–85] Mitochondrial Dysregulation [73,105,106,113]
[89–98] Peroxisomal Dysregulation [90–92]
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8. Conclusions

The data summarized here underlines the significant role of PPARs in energy metabolism
adaptation during brain development. However, we still need to better elucidate the molecular
networks driven by these nuclear receptors in regulating NSC metabolism during self-renewal
and differentiation. In the brain, during pathological conditions, an alteration in metabolic status
occurs, whereby elucidate the crucial steps in energetic metabolism and the involvement of PPARs in
NSCs neuronal fate (lineage) may be useful for the future design of preventive and/or therapeutic
interventions. However, the future use of PPAR ligands as therapeutic agent is related to an important
problem of design of drugs: the new molecules have to be able to pass the BBB (blood–brain barrier)
and they have to be projected in order to avoid the classical pharmacokinetic problems related to the
drugs active on CNS.
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