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Abstract: Cholesterol derivatives of nuclease-resistant, anti-MDR1 small-interfering RNAs were
designed to contain a 2’-OMe-modified 21-bp siRNA and a 63-bp TsiRNA in order to investigate
their accumulation and silencing activity in vitro and in vivo. The results showed that increasing
the length of the RNA duplex in such a conjugate increases its biological activity when delivered
using a transfection agent. However, the efficiency of accumulation in human drug-resistant KB-8-5
cells during delivery in vitro in a carrier-free mode was reduced as well as efficiency of target gene
silencing. TsiRNAs demonstrated a similar biodistribution in KB-8-5 xenograft tumor-bearing SCID
mice with more efficient accumulation in organs and tumors than cholesterol-conjugated canonical
siRNAs; however, this accumulation did not provide a silencing effect. The lack of correlation between
the accumulation in the organ and the silencing activity of cholesterol conjugates of siRNAs of
different lengths can be attributed to the fact that trimeric Ch-TsiRNA lags mainly in the intercellular
space and does not penetrate sufficiently into the cytoplasm of the cell. Increased accumulation in the
organs and in the tumor, by itself, shows that using siRNA with increased molecular weight is an
effective approach to control biodistribution and delivery to the target organ.

Keywords: siRNA; TsiRNA; 2’-O-methyl modifications; cholesterol conjugates; Dicer-substrate
siRNA; MDR1; biodistribution

1. Introduction

Small interfering RNAs (siRNA) are considered promising drugs that can effectively and selectively
suppress the expression of genes associated with diseases. One of the unresolved problems of their use
is the rapid elimination of such molecules from the bloodstream due to filtration by the kidneys, because
their molecular weight lies below the filtration limit. Various approaches to increase their permanence
in the bloodstream and improve accumulation in target organs are being actively developed on a
worldwide basis. Such approaches include the formation of complexes with lipids and polymers [1,2],
the attachment of ligands to siRNAs that interact with lipoproteins and other blood proteins [3], the use
of specific ligands that facilitate the interaction of siRNAs with cells [4,5], as well as the development
of formulations for their local administration and controlled release [6]. It is expected that the use
of RNA duplexes with a higher molecular weight as inducers of RNA interference will improve
the pharmacodynamics and pharmacokinetics of such drugs. It has previously been shown that
introduction of chemical modifications (e.g., 2’-O-methyl) in the 2’ position of the ribose of G and U
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nucleotides significantly reduces the immunostimulatory activity of siRNAs in vitro and in vivo [7],
which allows the use of RNA duplexes of almost any length, limited only by the technology and
economy of synthesis, for therapeutic purposes. Previously, we found that 42- and 63-bp siRNAs
containing 2′-OMe modifications in nuclease-sensitive sites induced more effective RNAi outcomes
at lower concentrations than the classical 21-bp siRNAs without nonspecific immune effects acting
in a Dicer-independent mode in cell culture after transfection [8]. Later, we designed a multimeric
nuclease-resistant 63-bp trimeric small-interfering RNA (TsiRNA) comprising in one duplex the
sequences of siRNAs targeting the mRNAs of the MDR1, LMP2, and LMP7 genes [9]. The results
showed that such TsiRNAs are able to suppress the expression of all their target genes independently
and with high efficiency, acting via a Dicer-dependent mechanism. TsiRNA is diced into 42- and 21-bp
duplexes inside the cell. TsiRNA-induced gene silencing is characterized by kinetics similar to that of
canonical siRNAs, while the silencing efficiency is significantly higher than that of canonical siRNAs
containing the same sequences.

Here, we obtained cholesterol derivatives of selectively 2’-OMe-modified 21-bp siRNA- and 63-bp
TsiRNA targeted MDR1 mRNA and investigated their accumulation and silencing activity in vitro
and in vivo. We found that increasing the length of the RNA duplex in such conjugates increases their
silencing activity when delivered using a transfection agent. However, there was a reduced efficiency
of accumulation in cells and, accordingly, the observed suppression of the expression of the target gene
during delivery in vitro in a carrier-free mode. In in vivo experiments with healthy and tumor-bearing
mice, cholesterol-containing trimeric TsiRNAs demonstrated more efficient accumulation in organs
and tumors than the same canonical siRNA derivatives; however, this accumulation did not provide
an appreciable silencing effect.

2. Results and Discussion

Anti-MDR1 monomeric and trimeric siRNAs and their conjugates with cholesterol connected
though C6 linker (Tables 1 and 2) were synthesized as described previously [9,10] The C6 linker
was selected because the monomeric siRNA conjugate with this linker showed the highest biological
activity compared to the conjugates with other linkers [10]. 2’-O-Methyl modifications were introduced
into nuclease-sensitive sites according to the previously developed algorithm [11] in order to prevent
degradation of carrier-free siRNA in the presence of serum and in the bloodstream. Monomeric
anti-MDR1 siRNA is homologous to the 557–577 nt region of human MDR1 mRNA, demonstrated
high silencing activity in our previous studies [10,12]. Two different trimeric siRNAs were used in this
study: TsiRNA-1 containing the sequence of the monomeric siRNA repeated three times, which, as we
showed earlier, possessed higher silencing activity than monomer when it was transfected into cells
using Lipofectamine 2000. The second trimeric siRNA—TsiRNA-2 was composed of sequences of three
siRNAs directed to different regions of the MDR1 mRNA which was used for the accumulation assays
using stem-loop PCR, since the presence of repeats with the composition of the first RNA hinders its
accurate detection by this method. Previously, we showed that TsiRNA, in which all nuclease-sensitive
sites were subjected to modifications, is highly resistant to ribonucleases, operates according to a
Dicer-independent mechanism, and is not processed in a cell; TsiRNA containing fewer modifications
can be processed by Dicer in a cell to 21 bp siRNAs, which act independently. To construct cholesterol
derivatives, we chose the first variant with a large number of modifications in order to ensure the
nuclease resistance of the conjugate in vivo.



Molecules 2020, 25, 1877 3 of 11

Table 1. Sequences of siRNAs and calculated IC50 values for MDR1-GFP gene silencing after transfection
into KB-8-5-MDR1-GFP cells by Lipofectamine 2000.

Designation Sequence 1 IC50, nM

siRNA
5′-GGCUUGACAAGUUGUAUAUGG-3′

3′-AACCGAACUGUUCAACAUAUA-5′ 3.8 ± 3.5

Ch-siRNA
Ch-5′-GGCUUGACAAGUUGUAUAUGG-3′

3′-AACCGAACUGUUCAACAUAUA-5′ 29 ± 3

Ch-siSCRm
Ch-5′-CAAGUCUCGUAUGUAGUGGUU-3′

3′-UUGUUCAGAGCAUACAUCACC-5′

TsiRNA-1
5′-GGCUUGACAAGUUGUAUAUGGGGCUUGACAAGUUGUAUAUGGGGCUUGACAAGUUGUAUAUGG-3′

3′-AACCGAACUGUUCAACAUAUAAACCGAACUGUUCAACAUAUAAACCGAACUGUUCAACAUAUA-5′ 0.65 ± 0.14

Ch-TsiRNA-1
Ch-5′-GGCUUGACAAGUUGUAUAUGGGGCUUGACAAGUUGUAUAUGGGGCUUGACAAGUUGUAUAUGG-3′

3′-AACCGAACUGUUCAACAUAUAAACCGAACUGUUCAACAUAUAAACCGAACUGUUCAACAUAUA-5′ 16 ± 10

TsiRNA-2
5′-CAGAGGCCGCUGUUCGUUUGAGCGCGAGGUCGGGAUGGAUUUGGCUUGACAAGUUGUAUAUGG-3′

3′-UCGUCUCCGGCGACAAGCAAACUCGCGCUCCAGCCCUACCUAAACCGAACUGUUCAACAUAUA 13 ± 7

Ch-TsiRNA-2
Ch-5′-CAGAGGCCGCUGUUCGUUUGAGCGCGAGGUCGGGAUGGAUUUGGCUUGACAAGUUGUAUAUGG-3′

3′-UCGUCUCCGGCGACAAGCAAACUCGCGCUCCAGCCCUACCUAAACCGAACUGUUCAACAUAUA–5′ 87 ± 13

1 Ch—cholesterol conjugated via aminohexyl linker; 2′-O-methyl-modified nucleotides are highlighted in bold
and underlined.

Table 2. Strands of small interfering RNAs (siRNA) conjugates.

Designation 1 Strand 1 Mass Calculated Mass Found

siRNA
Sense 6838.2 6838.1

Antisense 6732.2 6732.4

Ch-siRNA
Ch-Sense 7428.8 7428.7

Antisense 6732.2 6732.4

Ch-siSCRm
Ch-Sense 7351.6 7352.2

Antisense 6687.1 6688

TsiRNA-1
Sense 20,682.5 20,684.5

Antisense 20,320.6 20321

Ch-TsiRNA-1
Ch-Sense 21,229.7 21,230.7

Antisense 20,320.6 20321

TsiRNA-2
Sense 20,547.1 20,545.1

Antisense 20135 20,134.3

Ch-TsiRNA-2
Ch-Sense 21,138.7 21137

Antisense 20,135 20,134.3
1 Ch—cholesterol conjugated via aminohexyl linker to 5′ end.

2.1. In Vitro

First, the effect of the attachment of cholesterol to the 5′ end of the sense strand of trimeric siRNA
on the its silencing activity was investigated under transfection conditions. The KB-8-5-MDR-GFP
cell line, which was used to study the silencing activity [13], expresses a short-lived chimeric protein
consisting of a fragment of P-glycoprotein (the product of the MDR1 gene) and a GFP reporter protein,
equipped with a rapid degradation signal. Both siRNAs and TsiRNA-1 effectively suppressed the
expression of the target gene after transfection with Lipofectamine 2000, while the efficiency of the
action of the trimeric TsiRNA was significantly higher than that of the monomeric siRNA (IC50 values
were 3.8 nM for siRNA and 0.65 nM for TsiRNA-1 (Table 1)). Cholesterol conjugates of siRNA and
TsiRNA showed an increase in IC50 values under transfection conditions by 8 and 25 times that of
the corresponding non-conjugated siRNA and TsiRNA, respectively, suggesting that the attachment
of cholesterol reduces their activity. The observed decrease in activity can be associated with both
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the influence of cholesterol attachment on the thermodynamics of the duplexes and on recognition
of the conjugate by proteins of the RNA-interference machinery. A more significant decrease in the
activity of TsiRNA-1 may be related to the fact that this trimer, as we have demonstrated previously [8],
is not processed in the cell by Dicer due to the presence of 2′OMe modifications in the vicinity of
expected sites of Dicer cleavage and TsiRNA-1 acts via a Dicer-independent mechanism, which may
be more sensitive to modifications of the 5′ end of siRNA such as the attachment of cholesterol [9].
It was demonstrated [14] that 25–27 bp dsRNAs can be directly loaded into Ago2 and show better
efficacy as compared with canonical 21-bp siRNAs; in this case, Ago2 protein may be more sensitive
to the presence of chemical modifications, or it interacts with the 5′ end of the duplex sense strand.
However, the cholesterol-conjugated TsiRNA-1 was still more active under transfection conditions
than the siRNA conjugate with IC50 values of 16 and 29 nM, respectively.

The silencing activity of cholesterol-modified monomeric or trimeric siRNAs in a carrier-free mode
was evaluated in two cell lines differing in the level of expression of the target gene. The drug-resistant
line KB-8-5-MDR-GFP, which, along with the marker transgene MDR1-GFP, expresses at a high level
endogenous MDR1 and the drug-sensitive line KB-3-1-MDR-GFP, which expresses only the marker
transgene and was obtained by lentiviral transduction and subsequent selection in a similar way.

The study of the interaction of the conjugates with cells in a carrier-free mode revealed that
Ch-siRNA accumulated 4.2 times more efficiently in cells than Ch-TsiRNA. The accumulation levels
were 105 and 25 million molecules per cell, for Ch-siRNA and Ch-TsiRNA, respectively (Figure 1A).
The observed reduction in the efficiency of accumulation in cells with an increase in the length of the
conjugate may be related to its large size and decreased hydrophobicity. These factors can affect the
interaction with the slightly negatively charged hydrophobic cell membrane, as well as cause steric
difficulties during the internalization of the conjugate.
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Figure 1. Accumulation (A) and silencing activity (B) of cholesterol-modified siRNAs and TsiRNAs in
a carrier-free mode in vitro. (A) Accumulation of monomer (Ch-siRNA) and trimeric (Ch-TsiRNA-2)
cholesterol-modified siRNAs in KB-8-5 cells 4 h after addition (1 µM), measured by stem-loop RT-PCR.
B) Silencing activity of Ch-siRNA, Ch-TsiRNA-1 and Ch-TsiRNA-2 three days after addition (5 µM) to
KB-8-5-MDR1-GFP or KB-3-1-MDR1-GFP cells, fluorescence intensity value of untreated cells was used
as a 100%.

Determination of the silencing activity of the conjugates has shown that Ch-siRNA inhibits
the expression of the target gene in KB-8-5-MDR1-GFP cells by at least 50%, while Ch-TsiRNA is
practically inactive (Figure 1B). The efficiency of both conjugates in the KB-3-1-MDR1-GFP cell line
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was significantly higher. The monomeric Ch-siRNA reduced the expression of the target gene by
87%, whereas trimeric Ch-TsiRNA decreased the level of MDR1-GFP gene by 29% (Figure 1B). Such
a difference in the observed silencing activity is most likely due to differences in the target mRNA
copy number, since in KB-8-5-MDR1-GFP cells, the target for siRNA is both MDR-GFP mRNA and
endogenous MDR1 mRNA expressed at a high level. The data showed that although Ch-TsiRNA itself
is more active than Ch-siRNA when delivered with a transfection agent (1.8 times difference in IC50), its
ineffective penetration into cells in a carrier-free mode (4.2 times difference in accumulation) does not
allow efficient suppression of target gene expression in carrier-free conditions in vitro. Nevertheless,
the finding that the cholesterol conjugate of trimeric RNA is able to penetrate into a cell without a
carrier and exert a silencing effect is a promising starting point for optimizing its transfection properties.

2.2. In Vivo

The effectiveness of the accumulation of therapeutic nucleic acids in culture and in vivo can differ
significantly, since in the body they have to overcome additional barriers to the target organ and the
effectiveness of this process can have a critical influence on the result of their action. We analyzed
the biodistribution of Ch-siRNA and Ch-tsiRNA-2 in the organs of healthy SCID mice 24 h after
intravenous (i.v.) administration at a dose of 2.5 nmol (corresponding to 1.7 and 5 µg/g for Ch-siRNA
and Ch-TsiRNA, respectively) (Figure 2A).
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Figure 2. Biodistribution (A–C) and silencing activity in vivo (D) of cholesterol-modified siRNAs.
(A) Biodistribution of Ch-siRNA and Ch-TsiRNA-2 in organs of mice 24 h after i.v. injection
(2.5 nmole—1.7 and 5 µg/g, respectively). (B) Accumulation of Ch-siRNA and Ch-TsiRNA-2 in xenograft
KB-8-5 tumors 24 h after i.v. injection (1.1 nmole—0.5 and 1.5 µg/g, respectively). (C) Concentration
of Ch-siRNA and Ch-TsiRNA-2 in the blood of mice after i.v. injection of 2.5 nmole—1.7 and 5 µg/g,
respectively. (D) Silencing activity of Ch-siRNA, Ch-TsiRNA-1 and Ch-TsiRNA-2 in xenograft KB-8-5
tumors in 6 days after i.v. injection (8.5 µg/g).

Quantitative data were obtained by stem-loop PCR using calibration curves with known
concentrations of the studied drugs added to samples of the corresponding organs of untreated
mice. Ch-TsiRNA-2 accumulated in the liver and kidneys at least 2 times more efficiently (1.3 and
0.3 pmole/g, respectively) than Ch-siRNA (0.6 and 0.07 pmole/g, respectively), and the amounts of
preparations accumulated in the spleen were similar and rather low (0.009 and 0.02 pmole/g). Ch-siRNA
and Ch-TsiRNA-2 tumor accumulation analysis was performed on SCID mice with KB-8-5 xenograft
tumors 24 h after i.v. administration in a dose of 1.1 nmole (0.5 and 1.5 µg/g, respectively). Ch-TsiRNA-2
accumulated much more effectively in the tumor, compared to Ch-siRNA, with differences of 75 times
in weight or 25 times in terms of moles (Figure 2B). The accumulation of siRNA preparations in organs
is mainly determined by the duration of their presence in the bloodstream and the characteristic of
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organ vasculature [15]. An important role in the accumulation of therapeutic nucleic acids in tumors is
played by the effect of enhanced permeability and retention (EPR), which is caused by higher vascular
permeability of the tumor and deterioration of lymphatic drainage [16]. The data obtained showed
that an increase in the molecular weight of the conjugate does not prevent its exit from the vessels
and accumulation in the ornaments, and in the case of a tumor, provides a more effective retention
in the target organ. In order to assess how the increase in molecular weight affects the circulation
time of the drug in the bloodstream, we carried out a determination of the concentration dynamics
of Ch-siRNA and Ch-TsiRNA-2 in plasma. In the first 15 min, a rapid decrease in the concentration
of drugs occurred, and this decrease in concentration was especially pronounced for Ch-TsiRNA.
The subsequent observations showed similar dynamics of elimination for both preparations at all
time points up to practically undetectable values after 24 h. The concentration of Ch-TsiRNA-2 at all
time points was significantly lower than the concentration of Ch-siRNA (Figure 2C). This difference
in elimination rate may be due to the fact that although TsiRNA has a higher molecular weight
than siRNA, it is still below the filtration limit in the kidneys and does not give an advantage to the
conjugate. On the other hand, less hydrophobicity and longer length of RNA per cholesterol molecule
can reduce the efficiency of complex formation with lipoproteins and other blood proteins [3,17],
which are important for increasing the circulation time of cholesterol conjugates of siRNA in the
bloodstream. However, our data showed, that the accumulation of cholesterol-modified siRNA in the
tumor depends more on the EPR effect, whose effectiveness is influenced by the molecular weight of
the delivered drugs. Thus, in the case of trimeric siRNA, a three times greater molecular weight allows
it to accumulate in the tumor more effectively (Figure 2B) despite its relatively short time of presence
in the blood (Figure 2C).

The silencing activity of Ch-siRNA and Ch-TsiRNA-1 was determined by suppressing the
expression of the MDR1 gene in tumor xenograft KB-8-5 in SCID mice by determining the level of
the target gene product P-glycoprotein using Western blot analysis. According to silencing activity
data, despite a similar biodistribution pattern and more efficient accumulation in organs and tumors,
Ch-TsiRNA-2 did not silence the MDR1 gene 24 h after i.v. administration of 8.5 µg/g (Figure 2D), and
silencing activity remained at control levels. However, the same concentration of Ch-siRNA reduced
the level of P-glycoprotein (MDR1 gene product) by 60%.

The lack of correlation between the accumulation in the organ and the silencing activity of
cholesterol conjugates of siRNA of different lengths can be attributed to the fact that, despite the
effective retention in the organ, the trimeric Ch-TsiRNA lags mainly in the intercellular space and does
not penetrate sufficiently into the cytoplasm of the cell. Increased accumulation in the organs and in
the tumor, by itself, shows that an increase in the molecular weight can be an effective approach to
control biodistribution and delivery to the target organ. Additional efforts are required to increase the
bioavailability of such conjugates and to ensure their penetration into the cells and their subsequent
exit from the endosomes into the cytoplasm.

Conjugation of siRNAs with molecules for which natural transport mechanisms exist, such as
lipophilic molecules [3], antibodies [17–19], aptamers [20], N-acetylgalactose [4], peptides [21], or
other ligands is a promising approach to improve their bioavailability. Furthermore, an increase in the
molecular weight of siRNA conjugates is considered as one of the approaches to lengthening the time
of their circulation in the bloodstream and, accordingly, increase the accumulation in target organs [22].
An increase in the molecular weight of the conjugate can be achieved both by increasing the size or
number of copies of the transport ligand [23], and the use of longer interfering RNAs [24]. The latter
approach was successfully implemented in [24], where chemical conjugation was used for siRNA
multimerization and it was shown that these multimers can be delivered in vivo by a GalNAc ligand.
The specificity of our strategy is that the modification of both parts of the conjugate—lengthening
siRNAs and using a ligand capable of forming complexes with blood components—is aimed at
improving its pharmacodynamics. The obvious limitation of our strategy is related both to the need
to ensure a balance between a decrease in the efficiency of penetration into cells and an increase in
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the efficiency of accumulation in the target organ. Since the properties of vasculature are one of the
most important factors determining the efficiency of accumulation in a particular organ, optimization
of the conjugate size is required for each target organ, while it is not obvious that this approach will
have an advantage for the number of organs. In the case of the conjugates described in this article, the
enhanced accumulation of conjugates is apparently provided by the effect of enhanced permeability
and retention in the tumor [16], which opens up the possibility of concentrating efforts on their design
for oncology purposes.

One of the important requirements for the development of P-glycoprotein inhibitors is the
specificity of their action, since the suppression of the synthesis of this gene in untargeted tissues can
lead to increased toxicity of chemotherapy and strong side effects of antitumor treatment. For example,
reduced P-glycoprotein activity in the blood-brain barrier could lead to abnormally increased
accumulation of drugs in the brain and undesired side effects [25]. Since that, it is very important that
accumulation of Ch-siRNA in the brain, one of the most important organs, is non-detectable (data not
shown). Thus, Ch-siRNA is a promising agent for creating on its basis agents for suppressing the
expression of P-glycoprotein in clinical practice.

3. Materials and Methods

3.1. Synthesis of Monomeric and Trimeric siRNAs, Their Cholesterol-Containing Analogues and
Duplex Annealing

The 2’-OMe-modified sense and antisense strands of siRNAs and TsiRNAs were synthesized
on an automatic ASM-800 DNA/RNA synthesizer (Biosset, Novosibirsk, Russia) using ribo- and
2’-O-methylriboβ-cyanoethyl phosphoramidites (Glen Research, Brook Park, OH, USA). A combination
of H-phosphonate and phosphoramidite methods was applied to synthesize 5’-cholesterol conjugates of
the sense strands via C6 linker as previously described [10]. Oligoribonucleotides and their conjugates
were purified by denaturing polyacrylamide gel electrophoresis (PAGE) and isolated as sodium salts.
The purified oligoribonucleotides were characterized by MALDI-TOF mass spectrometry on a PEFLEX
III spectrometer (Bruker Daltonics, Bremen, Germany). The monomeric and trimeric anti-MDR1 siRNA
sequences are listed in Table 1. Control siRNA (siSCR) has no significant homology to any known
mouse, rat, or human mRNA sequence (Table 1). siRNA duplexes were obtained via annealing of
the antisense and sense strands at equimolar concentrations in buffer A (15 mM HEPES-KOH pH 7.4,
50 mM potassium acetate, and 1 mM magnesium acetate), which were stored at −20 ◦C.

3.2. Cell Culture

A multiple drug-resistant human cell line KB-8-5 growing in the presence of 300 nM vinblastine
was generously provided by Prof. M. Gottesman (NIH, USA). KB-8-5-MDR-GFP and KB-3-1-MDR-GFP
cell lines expressing the fragment of the MDR1 mRNA and short-lived turboGFP mRNA in a single
transcript, were obtained by lentiviral transduction as previously described [13]. The cells were grown
in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine serum (FBS),
100 U/mL penicillin, 100 µg/mL streptomycin and 0.25 µg/mL amphotericin at 37 ◦C in a humidified
atmosphere containing 5% CO2/95% air.

3.3. Gene Silencing Assay

One day before the experiment, KB-8-5-MDR-GFP or KB-3-1-MDR-GFP cells in the exponential
phase of growth were plated in 48-well plates at a density of 2.5 × 104 cells/well. After 24 h, the growth
medium was replaced by fresh serum-free DMEM (200 µl/well). siRNAs were added to the cells in
50 µL of Opti-Mem to give the final concentration varying from 1 to 5 µM. Alternatively, the cells were
transfected with siRNAs (0.1–100 nM) using Lipofectamine 2000 (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s protocol (1 µL per well). Three days post-transfection, the cells were
trypsinized and 8000 cells from each sample were analyzed using the NovoCyte flow cytometer (ACEA
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Biosciences, San Diego, CA, USA). Silencing activity data were obtained using mean fluorescence
intensity values of cells measured in relative fluorescent units (RFU) and equation MDR1-GFP (%) =

(RFUsample (KB-8-5-MDR1-GFP) − RFU (KB-8-5))/(RFUcontrol (KB-8-5-MDR1-GFP) − RFU (KB-8-5)) ×
100% and same with KB-3-1-MDR1-GFP cells, untreated cells were used as a control.

3.4. Stem-loop RT-PCR Cellular Accumulation Assay

KB-8-5 cells preparation and addition of siRNAs were similar to the protocol followed in the gene
silencing assay. Four hours after siRNA addition, the cells were lysed using Triton X-100 (PanReac
AppliChem, Barcelona, Spain) as previously described [26]. siRNA-specific stem-loop RT-PCR
assays were designed according to the instructions of Czimmerer et al. [27] using UPL-probe based
stem-loop quantitative PCR assay design software (freely available online at http://genomics.dote.hu:
8080/mirnadesigntool). The sequences of the primers targeting siRNA were as follows: stem-loop
primer, 5′- GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACCATCAG-3′,
PCR forward primer, 5′- GTTGGGGATATACAACTTGTCA -3′, PCR reverse primer, 5′-
GTGCAGGGTCCGAGGT -3′. The sequences of the primers for TsiRNA-2 were as follows: stem-loop
primer, 5′-GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACAGCAGA-3′, PCR
forward primer, 5′- ATATACAACTTGTCAAGCCAAATCC-3′, PCR reverse primer, 5′-
AGAGGCCGCTGTTCGTTT -3′. Synthesis of cDNA and stem-loop PCR was carried out using
SuperScript III Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA, USA); and qPCR mix
was assembled using BioMaster qPCR SYBR Blue (Biolabmix, Novosibirsk, Russia). Serial dilutions of
siRNA and its conjugates were added to the portions of cellular lysates (from 1.5 × 104 cells) to obtain
calibration curves.

3.5. Mice

All animal procedures were carried out in strict accordance with the recommendations for proper
use and care of laboratory animals (ECC Directive 86/609/EEC). The protocol was approved by the
Committee on the Ethics of Animal Experiments of the Administration of the Siberian Branch of the
Russian Academy of Sciences (22.11 from 30.05.2014). The experiments were conducted at the Center
for Genetic Resources of Laboratory Animals at the Institute of Cytology and Genetics, Siberian Branch,
Russian Academy of Sciences (RFMEFI61914X0005 and RFMEFI62114X0010). Eight- to 10-week-old
female SCID (SHO-PrkdcscidHrhr) mice with an average weight of 20–22 g from the Center for Genetic
Resources of Laboratory Animals at the Institute Cytology and Genetics SB RAS were used. In addition,
8- to 10-week-old male C57Bl mice with an average weight of 20–22 g were obtained from the vivarium
of the Institute of Chemical Biology and Fundamental Medicine SB RAS. Mice were housed in groups
of 8–10 individuals in plastic cages with free access to food and water; daylight conditions were normal.

3.6. Stem-Loop RT-PCR Analysis of siRNA and TsiRNA Concentration in Mice Blood and Internal Organs
After Intravenous Administration

C57Bl mice were i.v. injected with 2.5 nmole of cholesterol-containing conjugates of siRNA or
TsiRNA, and blood samples were collected 5 min, 1, 2, 4, and 24 h after the injection. Mice were
sacrificed 24 h after injection and siRNA was extracted from organs using Triton X-100 according to [26].
The blood was centrifuged, plasma samples were diluted by 10 V of 0.25% Triton X-100 and heated to
95 ◦C for 10 min, then cooled on ice and centrifuged for 10 min (4 ◦C; 12,000 rpm). In addition, the mice
were sacrificed 24 h after injection, and siRNA and TsiRNA were extracted from organs using Triton
X-100. The collected supernatants were heated to 95 ◦C and immediately added to the RT mixture
in a ratio of 2 µL of the supernatant per 38 µL of the Master mix. Serial dilutions of siRNA and its
conjugates were added to the same sample volumes of mice blood or tissue homogenate as processed
similarly for the construction of calibration curves. siRNA-specific stem-loop RT-qPCR assays were
carried out as described above (Section 3.4).

http://genomics.dote.hu:8080/mirnadesigntool
http://genomics.dote.hu:8080/mirnadesigntool
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3.7. Analysis of siRNA and TsiRNA Accumulation and Silencing Activity in KB-8-5 Xenograft Tumors in
SCID Mice After Intravenous Administration

Tumors were initiated in mice by inoculating 106 KB-8-5 cells in 200 mL of 0.9% saline solution
subcutaneously into the right side of the mice and were allowed to grow to approximately 1 cm3 volume.
Five mice per group were i.v. injected with 2.5 nmole siRNA or TsiRNA or its cholesterol-containing
conjugates, and two mice from each group were sacrificed after 24 h. The tumors were excised and cut
into 100–200 mg sections, from which siRNA or TsiRNA was extracted and quantified as described in
Section 3.6. Three mice per group were sacrificed six days after injection and the level of P-glycoprotein
in KB-8-5 tumors was evaluated by Western blotting. The sections were weighed and homogenized
using 300 µL of RIPA buffer per 100 mg of tumor tissue. The samples were stirred for 30 min at 4 ◦C,
and then they were cleared by centrifugation at 10,000× g for 10 min (4 ◦C). Supernatants were diluted
by two volumes of sample buffer (Sigma-Aldrich, St. Louis, MO, USA), and 10 µL of each sample
was loaded onto a 10% SDS/polyacrylamide gel and then separated at 60 mA for 1 h. The proteins
were transferred from PAAG to PVDF membranes (Millipore, San Diego, CA, USA) using SemiPhor
(Hoefer, Holliston, MA, USA), then the membrane was blocked for 1 h in 1% non-fat dried milk in
PBS. The membranes were incubated overnight with monoclonal anti-P-glycoprotein and anti-β-actin
antibodies (Sigma-Aldrich, St. Louis, MO, USA) at 1:800 and 1:7000 dilutions, respectively. After
the membranes were washed in PBS with 0.1% Tween-20, they were subsequently incubated for 1 h
with secondary rabbit anti-mouse antibodies conjugated with peroxidase (Abcam, Eugene, Oregon).
Visualization was performed using a Western Blotting Chemiluminescent Reagent Kit (Abcam, OR,
USA). Human β-actin protein was used as an internal control. Data were analyzed using GelPro 4.0.
software (Media Cybernetics, Rockville, Maryland).

3.8. Statistical Analyses

The variables were expressed as the mean± standard deviation (SD). Mean values were considered
significantly different when p < 0.05, using the Student’s t-test (n = 3).
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