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Abstract

The Human Cell Atlas is a large, international consortium that aims to identify and describe every cell type in the human
body. The comprehensive cellular maps that arise from this ambitious effort have the potential to transform many aspects
of fundamental biology and clinical practice. Here, we discuss the technical approaches that could be used today to generate
such a resource and also the technical challenges that will be encountered.
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Introduction

The Human Cell Atlas (HCA) is a large, international consortium
that aims to identify and describe every cell type in the human
body [1]. The comprehensive cellular maps that arise from this
ambitious effort have the potential to transform many aspects
of fundamental biology and clinical practice. It is now possible
to consider creating such a resource because of the explosive
proliferation of techniques that explore biology at the resolution
of individual cells and thus are able to capture the true variation
present within complex cell populations. An effort of this mag-
nitude will present many technical challenges throughout the
journey from tissue acquisition to data dissemination (Figure 1).
Although all the steps in this process are achievable with cur-
rent technologies, there is still huge scope for the optimization
of existing methods and the development of innovative new
approaches at every stage.

The exact approach that will be taken to build the HCA
remains under discussion by all of those involved in the initiative

and such decisions will be communicated through channels out-
side of this review. Here, we discuss the current state-of-the-art
of technical approaches that could be used to generate the Atlas
in three areas: sample acquisition, data-generating technologies
and computational analyses. The HCA is likely to ultimately
measure many different aspects of the cells that it studies, but we
feel that two foundational approaches will be (1) single-cell RNA
sequencing (scRNAseq) and (2) understanding the physical ar-
rangement of cells within organs and tissues through the analysis
of spatially resolved gene expression at single-cell resolution.
scRNAseq can be used to define the molecular identities of a large
number of cells at affordable costs and is a sufficiently mature
and distributed technology to be available to a diverse range of
laboratories worldwide. Although spatially resolved methods are
less mature and well-distributed, identifying the spatial relation-
ships of cells in complex tissues will produce a true atlas that
links basic genomics with clinical pathology. Here, we focus on
these two approaches to allow us to survey existing technologies
and to examine the challenges that remain.
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Sample acquisition

An atlas of human cells starts with an obvious challenge: ob-
taining samples from all the tissues that are present in a
human. This is, of course, significantly more difficult than the
acquisition of equivalent samples from model organisms and,
furthermore, the tissues must be suitable for use in experiments
that characterize all the cell types that are present. Previous
large-scale projects that aimed to characterize gene expression
across diverse cell types include the Genotype-Tissue
Expression Project (GTEx; [2]) and FANTOM5 [3]. However, a
major difference between studies on bulk populations of cells
and the single-cell resolution that will be a defining feature of
the HCA is that previous projects were able to fix, freeze or lyse
tissues immediately after collection and then ship the samples
to central facilities for gene expression assays. Current standard
scRNAseq protocols typically require the use of freshly isolated
cells, and, moreover, it is imperative that the transcriptomes of
the cells are not allowed to decay between acquisition and pro-
cessing. This will ensure that the observed cell-type-specific
transcriptional identities are biologically relevant.

Post-acquisition RNA degradation has been shown to affect
RNA sequencing (RNA-seq) data leading to non-random and
transcript-dependent changes in apparent gene expression [4,
5]. The influence of post-mortem ischaemia on RNA-seq was
also observed in the GTEx project, where ischaemic time ac-
counted for 40% of variance in RNA quality [2]. Thus, the HCA
will need to use tissue acquisition strategies that minimize the
ischaemic interval between collection and processing of each
sample. Three modes of tissue collection are particularly suited
to minimizing ischaemic time. First, biopsies from living donors
allow tissue to be collected and processed rapidly but are re-
stricted in the range of organs that can be sampled. Collection
of tissue from donors who are undergoing surgery can obtain
samples from organs that are resected or from non-involved tis-
sues (often skin) but, again, this is limited to a subset of all
organs within the body. Finally, a close partnership with organ
donation networks and transplant surgeons provides a strategy
that minimizes ischaemic time but permits collection of sam-
ples from, potentially, all organs. Here, consent is obtained to
procure samples for research from deceased subjects who are

donating organs for transplant. In the typical case of donation
after brainstem death, confirmation of death is followed by an-
aesthesia and preparation of organs, whilst the donor remains
ventilated. Ventilation is then withdrawn and the donor is im-
mediately perfused with cold organ preservation solution,
which reduces cell metabolism whilst also mitigating against
the potential damage caused by the cold temperatures [6–8].
This method of acquisition has been used successfully in
other studies that required fresh human samples [9–11] and, we
believe, holds great promise for permitting the HCA to map all
human tissues.

A requirement for cells to be processed immediately after
collection reduces the complexity of experiments that can be
designed and limits the geographical distance between sites of
sample collection and cell processing. Overcoming this limita-
tion would be of great value in enabling the HCA to maximize
efficiencies and to extend the range of potential donors. There
is understandable interest in the development of methods that
can preserve cells for storage before later downstream process-
ing. Cell preservation can occur by two means: cryopreservation
or chemical fixation.

Kere and colleagues [12] used freezing to preserve endomet-
rial biopsies before scRNAseq analysis and, although they re-
ported good results for stromal cells, data from epithelial cells
were poor. Experiments using high-throughput droplet micro-
fluidics found that data from cryopreserved peripheral blood
mononuclear cells (PBMCs) were comparable with those from
fresh cells [13]. In addition, biological insights could be gained
from frozen bone marrow aspirates when healthy donors were
compared with donors undergoing treatment for acute myeloid
leukaemia, although these samples were not compared with
equivalent fresh cells. Work from the Heyn laboratory has
shown that cryopreservation maintains transcriptomic profiles
of cell line suspensions, PBMCs and tumour samples [14]. This
is promising, although there is evidence that, in some cases, the
cryopreservation procedure biases the recovery of certain cell
populations.

The cryopreservation methods described here used either
biopsies or dissociated cell suspensions. In the latter case, this
would require dissociation of tissues before preservation. For
the case of sample acquisition during organ donation, it would

Figure 1. Overview of the paths from tissue acquisition to data dissemination in the HCA. scRNAseq protocols act on disaggregated suspensions of cells from human

organs with optional stages at which samples may be fixed or otherwise preserved. Spatially resolved methods analyse sections of fixed tissues. The data that are gen-

erated must be stored, analysed and disseminated.
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be ideal if entire tissue pieces could be preserved without the
need for additional manipulations, as this would minimize the
burden on collection networks. Recent work found that hypo-
thermic preservation of whole mouse kidneys in organ preser-
vation solution (as discussed in the context of donor perfusion
above) maintains transcriptome stability for up to 3 days [15].
This approach is appealing, although further work is required to
show that this is generalizable to a variety of human tissues
and to understand the maximum storage times that are pos-
sible for each tissue type. Chemical fixation of dissociated cell
suspensions before scRNAseq has been demonstrated for cells
from model organisms using fixation with formaldehyde [16] or
methanol [17,18] and for human embryonic stem cells and glia
using formaldehyde [19]. An advantage of fixation methods is
that they permit the use of split–pool indexing to uniquely label
the complementary DNA (cDNA) generated from each cell ra-
ther than requiring the capture of separate individual cells
[16,18]. This can dramatically reduce the cost per cell and so
permit higher throughput.

Whilst some groups work to optimize the collection, preser-
vation and processing of tissues and cells for use in scRNAseq
protocols, others have developed methods that require only in-
tact single nuclei. These protocols permit the use of frozen tis-
sues or those, such as brain, where stringent dissociation can
adversely affect data quality in individual cells. Quantification
of mRNA transcripts solely from within nuclei appears to pro-
vide sufficient information to elucidate the transcriptional
states of individual cells and has been performed on single nu-
clei that were partitioned (in order of increasing cell through-
put) by micromanipulation [20], microfluidic capture [21],
fluorescence-activated cell sorting (FACS) [22, 23] and droplet
capture [24].

The preservation and sequencing methods discussed here
have great potential to support the success of the HCA by
increasing the flexibility of experiments that can be performed.
However, the diverse methods and species that have been used
to validate the various approaches serve to emphasize that we
lack a systematic understanding of the performance character-
istics of each protocol in human tissue. This would be very
informative in designing optimal processes, pipelines and ex-
periments for the HCA.

Two additional points are absolutely critical no matter what
methods are used to acquire and process the tissue samples.
First, the collection of detailed, extensive and accurate metadata
will be essential to ensure that each experiment can be analysed
and interpreted correctly. These metadata must include details
about the donor’s medical status, the procedures and methods
used to collect the samples and any relevant time intervals (such
as that between cessation of ventilation and sample collection).
In addition, detailed information must be recorded about the
protocols used for all sample preservation and processing.
Secondly, it would be unthinkable to collect samples for the HCA
without adhering to the necessary legal and ethical requirements
that control work with human tissues. Procedures must be put in
place to ensure that work within the HCA meets all of the rele-
vant requirements in the country in which it is performed. This
will be complex [25] but key to the success of the project.

Data-generating technologies

Once tissue samples have been acquired, they must be analysed
to determine the cell populations contained within. The choice
of platforms and protocols used within the HCA will depend on
balancing requirements of throughput, data quality and cost.

scRNAseq platforms are becoming ever more prevalent and di-
verse. A key driver of the rapid growth in single-cell research
has been the commercial availability of instruments that parti-
tion and process cells for scRNAseq analysis. The first of its
kind was Fluidigm’s C1 platform, which captures cells at low to
medium throughput (96 or 800) using a microfluidic circuit,
where the cells are lysed and reverse transcribed, and cDNA is
amplified. When using its 96-cell chip, this method provides
sequencing coverage over the entire length of each transcript,
which can provide information beyond simple gene expression
estimation [26]. Furthermore, custom protocols can be imple-
mented on the microfluidics device, and several research
groups have adapted their own ‘ex-chip’ protocols [27, 28] mak-
ing it possible to share and run identical protocols in multiple
laboratories.

Similar data to those generated by the C1 platform can be
acquired by deposition of individual cells into microtitre plates
either by FACS [29] or nano-dispensers such as Wafergen’s
ICELL8 [30], where sequencing libraries can then be generated
by hand or with the use of liquid-handling robotics. A highly
robotized pipeline can process thousands of cells in a day using
these methods, although high reagent volumes (when com-
pared with microfluidic methods) mean that this is a more ex-
pensive approach.

The HCA will require unbiased, broad surveys of the cells
that are present in human tissues. Therefore, scRNAseq meth-
ods that permit large numbers of cells to be analysed affordably
in a single experiment will be crucial. Droplet-based platforms
generate an emulsion of nanolitre-volume aqueous compart-
ments within a flow of oil. Each droplet forms a reaction cham-
ber that can encapsulate a single cell with the potential to
capture thousands of cells in a run. The Drop-seq and inDrop
[31, 32] instruments can be assembled using readily available
equipment, and this approach is attractive to many laborato-
ries. However, standardization of the assembled apparatus and
quality control of reagents is essential, particularly when in-
tending to integrate data into a larger effort such as the HCA.
Commercially available droplet instruments such as the
Chromium (10X Genomics) or ddSeq (Illumina/Biorad) platforms
are also available and remove the need for self-assembly albeit
with higher cost per cell. However, commercial platforms are
typically limited to the manufacturer’s scRNAseq kit precluding
customizations or novel protocols. Nonetheless, innovation in
single-cell platforms continues. Just in the past year, Shalek and
colleagues [33] introduced Seq-Well, where single cells are cap-
tured in an array of �86 000 subnanolitre wells along with the
same uniquely indexed beads as in DropSeq. Seq-Well provides
a simple and portable platform for massively parallel scRNAseq
with the potential to disseminate the arrays to multiple data
collection sites, including clinical and rural surroundings.

Advances in DNA sequencing technologies also provide
novel ways to sequence the transcriptome from individual cells.
Long-read sequencing using the PacBio instrument allows the
profiling of RNA isoforms expressed from individual genes [34].
Single-cell profiling of VLMC-2 cells identified about 2000
unique transcripts mapped to around 700 genes and 1000 dis-
tinct isoforms. The Oxford Nanopore MinION sequencing tech-
nology (ONT) is a portable device based on single-molecule
sequencing technology that provides long reads by performing
voltage-driven molecule translocations through small nanosen-
sors [35]. Using mouse B1a cells, the ONT RNA-seq has been
used to analyse full-length cDNA samples derived from single
cells and identified and quantified novel isoforms at the single-
cell level [36]. However, these methods currently provide
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significantly lower read output (and thus lower single-cell
throughput) than methods using short-read technology: the
studies described here analysed only six and seven single cells,
respectively. This currently limits their utility for the HCA.

Gene expression is not the only way to define cell states and
so single-cell measurements at the genomic and epigenomic
levels will be useful in the HCA. Existing methods can profile
DNA sequence [37], chromatin accessibility [38], chromatin state
[39], three-dimensional (3D) architecture [40, 41] and methyla-
tion status [42]. ‘Multi-omics’ approaches combine one of these
methods with scRNAseq to provide even deeper information
about cell state by simultaneously assessing, for example gen-
ome sequence and RNA expression (G&T-seq; [43]), DNA methy-
lation and RNA expression (scMT-seq; [44]) or cell surface
proteins and RNA expression (CITE-seq; [45]).

The HCA will not only generate a catalogue of cell types using
scRNAseq but will also create a true atlas by elucidating the spatial
relationships between cells in the context of tissues. This will re-
quire methods that quantify the expression of genes or proteins in
a spatially resolved way. One such method is single-molecule RNA
fluorescent in situ hybridization (smFISH) [46, 47], which makes
gene expression measurements that are highly accurate and well
correlated with those from DropSeq and Fluidigm scRNAseq plat-
forms. Gene dropout rates, measured by Gini coefficient, were
higher in sequencing platforms than in RNA-FISH [48]. Several
adaptations of RNA-FISH have been introduced to increase the
number of target RNAs that can be detected in a single experiment:
SeqFISH [49] and MER-FISH [50]. These hybridization-based meth-
ods require probes to a previously selected panel of genes and so
do not provide coverage of the entire transcriptome. Other spatially
resolved methods do not require a priori target selection and, in-
stead, use artificial nucleotide sequences to encode spatial coordin-
ates within an RNA-seq library generated from a tissue section [51]
or direct RNA-seq from tissue sections and whole-mount embryos
[52]. Finally, computational frameworks have been developed to
infer spatial coordinates by comparison with existing in situ gene
expression data [53, 54]. High-resolution methods for the detection
by mass spectrometry of proteins bound by heavy metal-labelled
antibodies have also been described [55, 56].

Existing work using scRNAseq has shown that these tech-
niques can reveal important and novel biological insights; cur-
rent techniques will permit the initial construction of the HCA.
However, there remains room for improvement, optimization
and technical development. Current scRNAseq platforms ex-
hibit high levels of technical noise [57], and the efficiency of
capture of RNA molecules remains relatively low. Quantitative
assessment suggested a capture efficiency of 5–60% [58], and
these inefficiencies are attributed to biases in molecular capture
(e.g. template switching; reverse transcription) and amplifica-
tion. Increases in efficiency will enable us to profile the cellular
composition of tissues at ever increasing levels of detail.
Continued work is required to optimize the efficiency of reverse
transcription and polymerase chain reaction and to understand
how to best use unique molecular identifiers (UMIs), or spike-in
reference mRNAs to discriminate technical noise from biolo-
gical variation. Furthermore, existing droplet-based scRNAseq
methods sequence short tags from the 30 end of mRNA mol-
ecules and so do not capture information from the entire length
of the message. A strategy to capture and profile the complete
transcriptome (and not just polyadenylated RNAs) would permit
quantification of lowly abundant and important regulatory
RNAs such as enhancer RNAs, long non-coding RNAs and
miRNAs that account for large fractions of the human transcrip-
tome [59]. In fact, a recently developed method based on RNA

ligation and oligonucleotides specifically masking ribosomal
RNAs successfully profiled miRNAs in single cells [60]. Efforts to
increase the resolution and throughput of spatially resolved
methods will further enhance their value to the HCA as will
additional dissemination of such methods to laboratories
worldwide.

We do not believe that any single method that will be suit-
able for the entirety of the HCA. Different approaches are com-
plementary and should be applied in combination to provide
data that can be integrated to generate a complete atlas. A deep
and systematic understanding of the performance and cost
characteristics of each method would help to develop a set of
best practice guidelines and minimal quality standards to in-
form experimental design. The ultimate technology for the HCA
would be a platform that can deeply profile unbiased and spa-
tially resolved gene expression in thousands of single cells with
high precision at low cost. However, absent such a method, the
initial efforts construct the atlas will drive technology develop-
ment and inform the community as to the best ways to profile
tissue composition at this scale. It will be crucial to be suffi-
ciently flexible so as to assess and implement suitable new
methods, as they become available to ensure that the atlas is
generated using the best available technologies.

Computational analyses

The major challenges of analysing scRNAseq are its high
dimensionality (i.e. many genes in many cells) and high vari-
ability (i.e. noise). Genuine biological variation is combined with
technical noise including dropouts and amplification biases.
Furthermore, the HCA is likely to analyse millions of cells that
are processed in batches across different locations and at differ-
ent times, and thus batch effects must be carefully considered.
The computational challenges can be split into four broad areas:
(1) estimation of expression levels, (2) definition of cell identity,
(3) identification of gene signatures and (4) analysis of spatially
resolved data. Finally, in the context of the HCA, large data sets
could be unified and integrated into ensemble analyses.

Estimation of expression levels

Before estimation of gene expression from scRNAseq data, qual-
ity control must be performed. Some ‘cells’ within the data in
fact represent captured debris, free-floating RNA or are other-
wise of low quality, and these should be excluded from down-
stream analyses. Quality control metrics such as gene
detection, mapping rates or apparent expression of mitochond-
rially encoded genes can be used to identify low-quality cells
[61–63] and, although some tools [64] provide convenient ways
to visualize various quality control metrics, the choices of
thresholds remain arbitrary. More recently, statistical methods
integrating multiple metrics have been developed to identify
low-quality cells in a data-driven manner [65–67].

Following quality control, raw gene expression is normalized,
so that relative expression levels are comparable between cells.
Normalization strategies used in bulk RNA-seq typically involve
a global scaling factor for all genes and all samples, which is not
suitable for scRNAseq [68]. To address this, a number of tools use
simple statistical models along with the detection of spike-ins at
known concentrations to inform normalization [69, 70], while
other recently developed tools use more complex Bayesian
approaches based on cell-specific noise estimated from spike-ins
[71–73]. Others approaches model cell-specific factors without
spike-ins, and these approaches can be valuable in droplet-based
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scRNAseq, where it is not possible to include spike-ins along
with each cell. These methods can attempt to learn the proper-
ties of clusters of similar cells, instead of considering each cell in-
dependently [74, 75] or explore gene-specific scaling, on the basis
that a global scaling factor might lead skewed estimations for
weakly or highly expressed genes [76, 77]. Alternatively, to ac-
commodate dropouts, tools have been developed to impute
missing values under gene-specific dropout models [78, 79].

Even after normalization, other confounders, notably batch
effects [80] and biological factors such as the cell cycle [81], may
still obscure the signal of interest. Methods originally developed
to correct batch effects in microarrays have been applied to
meta-analyses of scRNAseq data [82] and, more recently, batch
correction methods specifically designed for scRNAseq have
also been reported [83, 84]. In addition to batch effects, hetero-
geneity because of both technical noise and biological variation
can complicate analyses. In cycling cells, assessment and re-
moval of the variation caused by the cell cycle can help to reveal
other important biological processes [81, 85] and, more gener-
ally, sources of variation can be decomposed into technical and
a variety of biological factors [86].

The HCA is likely to generate scRNAseq data at an unprece-
dented scale and thus integrate data sets generated from many
different samples by a diverse set of laboratories. Thus, a uni-
fied and optimized set of methods for quality control, normal-
ization and removal of confounding factors would allow
analyses to be performed across the entire set of HCA data. A
list of tools used for addressing these questions is summarized
in Table 1.

Definition of cell identity

To describe and define every cell type in the human body, one
must first address the meaning of ‘cell type’. It will not be trivial
to arrive at such a definition that is generally applicable to the
data sets generated for the HCA. One working conceptual
framework is that a cell’s identity at a given moment is defined
by the unique combination of all the factors that influence it
[92]. In this framework, a cell type (e.g. hepatocyte) can be con-
sidered as the stable and permanent features of its identity,
whilst a cell state can be considered as the transient aspects of
its status (e.g. an immune cell response to cytokines). We expect
that an important use of the large HCA data set is likely to be in

developing these concepts through the construction of data-
driven and generalizable mathematical definitions of cell type
and state.

In practice, it is likely that there will be multiple ways in
which one could define terms such as these depending on the
exact types of data that are used (e.g. scRNAseq only, multi-
omics or spatially resolved data). Importantly, multiple defin-
itions do not have to be mutually exclusive and could all pro-
vide utility in addressing different biological questions.

Here, we will address the concrete case of defining cell types
and states using scRNAseq data sets. This is typically achieved
by first performing a dimensionality reduction step to project a
high-dimensional matrix of gene expression values into a
lower-dimensional space [93]. This is followed by a clustering
step to assign cells to distinct groups such that cells within a
group are sufficiently transcriptionally similar to each other to
be usefully referred to as a cell type. Principal component ana-
lysis (PCA) has been extensively used in scRNAseq studies, al-
though its assumption of linearity [93] is often not met by these
data sets. Non-linear methods such as t-distributed stochastic
neighbour embedding (t-SNE [94]), non-negative matrix factor-
ization [95, 96] and diffusion maps [97, 98] have also been
applied. Other dimensionality reduction algorithms specifically
model or impute dropouts [99–101]. Recently, a machine learn-
ing approach, which learns a custom distance metric that best
fits the data, was shown to outperform many other model-
based dimension reduction methods [102].

In most workflows, a clustering step is performed on the
reduced-dimension data to assign cells to distinct clusters.
Traditionally, this has been k-means or hierarchical clustering,
although, recently, the application of graph theory-based meth-
ods has also proved useful [103, 104]. Some workflows perform
standard dimension reduction (e.g. PCA and t-SNE) and cluster-
ing (e.g. k-means) algorithms in combinations (agglomeratively
or iteratively) to improve robustness [102–107]. A number of
techniques classify cell types without dimensionality reduction,
mitigating against the risk of losing biologically relevant signal
[108, 109] and, in some cases, also allow cells to have partial
memberships in multiple clusters [110]. Other methods are spe-
cifically intended to discriminate rare cell types [111, 112].

As the HCA will cover a wide range of tissues containing cell
populations of various complexities, it is unlikely that one cluster-
ing method would fit all scenarios and so the performance of

Table 1. Tools for estimation of expression levels

Goals Methods/features Tools

Quality control Visualizing various quality control metrics Scater [64]
Data-driven identification of low-quality cells SinQC [65], Cellity [66], SCell [67]

UMI processing General processing of UMI umis [87]
Systematically correct UMI sequencing errors UMI-tools [88]

Normalization with spike-in Simple statistical models SAMstrt [69], GRM [70]
Bayesian approaches to normalize cell-specific noises BASiCS [71], BEARscc [72], TASC [73]

Normalization without
spike-in

Estimating cell-specific factors by learning the properties
of clusters of similar cells

scran [74], BISCUIT [75]

Gene-specific scaling SCnorm [76], Census [77]
Imputation with gene-specific dropout models SCONE [78], MAGIC [79]

Batch effect removal Originally developed for microarrays or bulk RNA-seq but
used in scRNAseq

Combat [89], RUV [78]

Specifically developed for scRNAseq scPLS [83], BatchEffectRemoval [84]
Cell cycle effect removal Remove the cell cycle components from the expression values scLVM [81]

Identify and remove the genes that are affected by cell cycle stages ccRemover [85],
Simulation Simulation of scRNAseq data sets for benchmarking methods Splatter [90], powsim [91]
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clustering methods should be objectively benchmarked. Assigning
cells to discrete clusters is not appropriate when describing cell
populations with continuous phenotypes (i.e. cell states), e.g. stem
cells during differentiation and immune cells during activation
[113]. In these cases, cells can be represented as points along a con-
tinuum [114], and cells participating in such trajectories will be
observed within the HCA and will require methods to analyse
them. Owing to the stochasticity of each cell’s temporal progres-
sion in a dynamic process, a snapshot of a pool of cells captures
cells at various stages along their trajectory. Thus, the temporal
ordering of each cell, i.e. pseudotime, can be estimated [115].
Currently, >20 tools have been developed for trajectory inference
(Table 2) and their methodologies have been recently reviewed
[115]. These tools can be broadly classified into two categories
based on whether they assume a linear trajectory or permit
branching. It should be noted that trajectory inference can be
applied to both time-stamped data sets (e.g. in vitro differentiation
time series) and snapshot data sets (e.g. a mixture immune cells
from blood). Within the HCA, trajectory inference methods should
be chosen to best fit the biological context.

Identification of gene signatures

Defining the gene signatures specific to particular cell types or
states allows us to build classifiers for cell identity prediction
and to draw conclusions about the differentiation mechanisms
and functions of the cells of interest. In addition, a reduced set
of gene signatures is crucial to inform the design of probe-based
methods that measure gene expression in a spatial context
[109]. The most common approach to detect gene signatures is
to identify genes that are differentially expressed between cell
types or states. However, the strong overdispersion and drop-
outs of scRNAseq data are not adequately accommodated by
most methods developed for bulk RNA-seq, as these methods
generally assume a unimodal distribution of gene expression,
which violates the bimodal distribution of expression levels in

scRNAseq. To address this, a number of single cell-specific
methods have been developed [146–149]. Whilst these methods
test for significant differences between mean expression levels,
other methods were developed to detect the differences in the
distribution of expression levels [150, 151]. In some scenarios,
genes that vary during continuous transitions across cell states,
rather than between distinct cell types, are of interest. These
can be detected by methods that identify genes expression
changes along inferred cell trajectories [130, 152].

Genes are often expressed in a coordinated way (i.e. co-
expressed) as part of the processes that underlie biological func-
tions and so gene signatures of cell types and states can also be
investigated using gene regulatory networks (GRNs) [153]. The
scale of the HCA will provide an opportunity to learn GRNs
across multiple biological processes. Although many GRN infer-
ence algorithms are available [154] and most of them were not
designed for scRNAseq, applications of these algorithms to
single-cell data sets have been preliminarily explored [19, 154–
161]. Binarized Boolean models represent the states of genes as
’on or off’ and are relatively robust to the presence of dropouts.
A Boolean network can then be created to describe the regula-
tory circuit of genes, based on the covarying patterns of their
binary expression states [162–164]. However, a general draw-
back of Boolean models is that the dimension of its state space
increases exponentially with the number of genes.
Alternatively, some other methods exploit the temporal infor-
mation of dynamic processes, i.e. pseudotime, to infer GRNs
[165]. This is achieved in an ad hoc approach by computing the
maximum correlation of all possible lags in the pseudotime
scale and using maximum correlation to replace the traditional
Pearson’s correlation for constructing a GRN [166]. It is also pos-
sible to take full advantage of temporal information by model-
ling the level of gene expression over the continuous
pseudotime scale to identify co-expressed genes for GRN con-
struction [120, 167]. A list of tools used for identification of
genes signatures is summarized in Table 3.

Table 2. Tools for definition of cell identity

Goals Methods/features Tools

Dimensionality
reduction

Linear, PCA PCA [93]
Non-linear, t-SNE embedding t-SNE [94]
Nonlinear, diffusion map destiny [97]
Nonlinear, non-negative matrix factorization Nimfa [95], NMFEM [96]
Linear, specifically designed to model, or to

impute, dropouts
ZIFA [99], ZINB-WaVE [100], CIDR [101]

Machine learning for a custom distance metric SIMLR [102]
Classification of

cell types
Graph theory-based clustering methods SNN-cliq [103], PhenoGraph [104]
Combinations of standard dimension reduction

and clustering algorithms
pcaReduce [105], ICGS [107], SC3 [106], Seurat [53]

Bi-clustering of cells and genes BackSPIN [109]
Hierarchical clustering on centred Pearson’s correlation SINCERA [108]
Grade of membership models CountClust [110]
Distinguish rare cell types from background noises RaceID [111], GiniClust [112]

Trajectory
inference

Linear trajectory inference DeLorean [116], embeddr [117], pseudogp [118], SCENT [119],
SCIMITAR [120], SCORPIUS [121],Waterfall [122], WaveCrest [123]

Branched trajectory inference BEAM [77], CellTree [124], DPT [125], ECLAIR [126], FORKS
[127], GPfates [113], k-branches [128], MFA [129], Monocle
[130], Mpath [131], Ouija [132], PHATE [133], SCOUP [134],
scTDA [135], SCUBA [136], SLICE [137], SLICER [138],
Slingshot [139], StemID [140], TASIC [141], Topslam
[142], TSCAN [143], Wanderlust [144], Wishbone [145]
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Analysis of spatially resolved data

As discussed above, the HCA is likely to include spatially
resolved data about gene or protein expression from cells
within the context of their native tissues. These data sets will
require appropriate analytical tools and methods of integration
with scRNAseq data generated from dissociated cells.

The field of spatial methods is not as mature as that of
scRNAseq, but there are reports showing the exciting potential
of these approaches. Work in the mouse midbrain first used
scRNAseq to identify distinct cell types and to define cell-type-
specific genes [171]. The marker genes were then used to inform
the choice of probes for smFISH such that each cell type could
be identified within microscopy images of brain sections.
Another study in the mouse liver performed scRNAseq in paral-
lel with smFISH using probes for landmark genes already
known to have diverse zonation patterns [172]. The sequencing
and imaging data sets were combined by measuring smFISH
signals for the landmark genes in nine spatial layers.
Probabilistic inference was then used to assign each single cell
to a layer according to the expression of the landmark genes
within the scRNAseq data. In addition to methods that measure
RNA levels, mass spectrometry-based detection of proteins has
been used to investigate the spatial arrangement of cell types
within tumours [55, 56].

The large scale of the HCA means that it will require auto-
mated methods for the analysis of spatially resolved data to ad-
dress challenges such as the automated detection of cells and
segmentation of images [55, 56, 173]. Once spatial gene expres-
sion patterns have been measured, it will be informative to
identify genes whose expression varies within two-dimensional
(2D) or 3D space (analogous to differential expression analysis
in transcriptomic data). A recently reported method (SpatialDE)
achieves this using a framework based on Gaussian process re-
gression to classify genes with distinct spatial patterns [174].

Ensemble analyses and data dissemination

One challenge presented by the scale and scope of the HCA
will be how one should present the data derived from such a
large number of cells. One possible approach would be to
analyse the individual scRNAseq data sets generated from

different tissues, i.e. groups of anatomically related cells, inde-
pendently and then to integrate them into ensemble analyses.
To manage thousands of millions of individual cells, novel
methods and systems will need to be developed to group
similar cells into manageable number (e.g. thousands) of con-
ceptual meta-items, referred to as ‘meta-cells’. A meta-cell can
be regarded as the consensus expression profile of its mem-
bers (i.e. child-cells) from a distinct cell type or state. Meta-
cells should be unique entities in the atlas and can be organ-
ized hierarchically, similar to a cell-type ontology [175] but
defined in a data-driven manner. Meta-cells might be further
organized by anatomical concepts [176], based on the physio-
logical origins of their child-cells or spatial relationships in the
context of tissues [53]. The consensus expression profiles of
these meta-cells might be used as a reference panel to guide
the analyses of scRNAseq data by, e.g. reference component
analysis [177]. A global GRN might be constructed from all
meta-cells for inferring gene signatures to groups of meta-
cells, and the relationships between these meta-cells could be
further visualized in a 2D or 3D space using existing visualiza-
tion tools [97, 178–181].

Conclusion

The HCA will use techniques and methods from exciting, fast-
moving fields. This presents the project with a huge opportun-
ity to drive technology development and to provide high-quality
recommendations about best practice in a wide variety of areas.
It is evident from the diversity of methods discussed above that
systematic comparisons of method performance would enable
the HCA community to ensure that approaches are chosen ra-
tionally in a data-driven manner. Initial work in this area has
compared scRNAseq protocols using either published data sets
on the basis of spike-in standards [87] or newly generated data
sets on the same cell populations [57]. Benchmarking of compu-
tational methods for expression estimation, cell-type identifica-
tion and trajectory inference is likely to require simulated data
sets [90, 91].

Furthermore, we feel that it will be crucial to maintain flexi-
bility and to consider new protocols, as they are developed to
ensure that the HCA can take advantage of improvements in
performance, cost or efficiency. Despite the challenges that lie

Table 3. Tools for identification of gene signatures

Goals Methods/features Tools

Identification of differentially
expressed genes

Detect the differences in mean of expression levels, by model-
ling the bimodal distribution of expression levels

MAST [146], BPSC [147], M3Drop [148],
SCDE [149]

Detect the differences in distribution, instead of mean, of ex-
pression levels

SCPattern [123], scDD [151], D3E [150]

Identify variations in expression attributable to sets of genes f-scLVM [86], PAGODA [149]
Incorporate pseudotime information to identify gene signifi-

cantly changed along the inferred cell trajectory
switched [152], monocle [130]

Identification of
cell-type-specific genes

Signature genes co-identified during clustering of cells BackSPIN [109], nimfa [95]
Regression-based approaches SINCERA [108]
Machine learning approaches SVM-RFE [168]

Inference of GRN Originally developed for microarrays or bulk RNA-seq but used
in scRNAseq

WGCNA [169], GENIE3 [170]

Boolean network models specifically designed for single-cell
data sets

SingCellNet [162], SCNC [163], BTR [164]

Incorporate pseudotime information to identify co-expressed
genes

LEAP [166], SCODE [167], SCIMITAR [120]

The Human Cell Atlas | 289

Deleted Text: s
Deleted Text: -r
Deleted Text: d
Deleted Text: -
Deleted Text: 135
Deleted Text: 136
Deleted Text: -
Deleted Text: -
Deleted Text: three-dimensional
Deleted Text: up
Deleted Text: 138
Deleted Text: a
Deleted Text: d
Deleted Text: d
Deleted Text: &hx201C;
Deleted Text: &hx201D;. 
Deleted Text: cell 
Deleted Text: 139
Deleted Text: 140
Deleted Text: ,
Deleted Text: 141
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: visualisation 
Deleted Text: 92
Deleted Text: 146
Deleted Text: cell 
Deleted Text: 147


ahead, this effort will not only be possible but will lead to a dra-
matic and valuable improvement in our understanding of
human biology.

Key Points

• The HCA aims to identify and describe every cell type
in the human body.

• Two main approaches to achieve this will be
scRNAseq and spatially resolved methods.

• Sources of human tissue samples and appropriate
handling techniques will be key to this project.

• Many single-cell sequencing approaches exist and so
the HCA has the opportunity to perform systematic
comparisons as well as to develop novel methods.

• Single-cell sequencing data present unique computa-
tions challenges and rich areas for innovation.
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113. Lönnberg T, Svensson V, James KR, et al. Single-cell RNA-seq
and computational analysis using temporal mixture model-
ing resolves TH1/TFH fate bifurcation in malaria. Sci Immunol
2017;2:eaal2192.

114. Trapnell C. Defining cell types and states with single-cell
genomics. Genome Res 2015;25:1491–8.

115. Cannoodt R, Saelens W, Saeys Y. Computational methods
for trajectory inference from single-cell transcriptomics. Eur
J Immunol 2016;46:2496–506.

116. Reid JE, Wernisch L. Pseudotime estimation: deconfounding
single cell time series. Bioinformatics 2016;32:2973–80.

117. Campbell K, Ponting CP, Webber C. Laplacian eigenmaps
and principal curves for high resolution pseudotemporal
ordering of single-cell RNA-seq profiles. bioRxiv 2015; doi:
10.1101/027219.

118. Campbell KR, Yau C. Order under uncertainty: robust
differential expression analysis using probabilistic models
for pseudotime inference. PLoS Comput Biol 2016;12:
e1005212.

119. Teschendorff AE, Enver T. Single-cell entropy for accurate
estimation of differentiation potency from a cell s transcrip-
tome. Nature Commun 2017; doi: 10.1038/ncomms15599.

120. Cordero P, Stuart JM. Tracing co-regulatory network dy-
namics in noisy, single-cell transcriptome trajectories. Pac
Symp Biocomput 2016;22:576–87.

292 | Hon et al.



121. Cannoodt R, Saelens W, Sichien D, et al. SCORPIUS improves
trajectory inference and identifies novel modules in den-
dritic cell development. bioRxiv 2016; doi: 10.1101/079509.

122. Shin J, Berg DA, Zhu Y, et al. Single-Cell RNA-Seq with water-
fall reveals molecular cascades underlying adult neurogen-
esis. Cell Stem Cell 2015;17:360–72.

123. Chu LF, Leng N, Zhang J, et al. Single-cell RNA-seq reveals
novel regulators of human embryonic stem cell differenti-
ation to definitive endoderm. Genome Biol 2016;17:173.

124. duVerle DA, Yotsukura S, Nomura S, et al. CellTree: an R/bio-
conductor package to infer the hierarchical structure of cell
populations from single-cell RNA-seq data. BMC
Bioinformatics 2016;17:363.
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