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Aim: Providing compound data sets for promiscuity analysis with single-target (ST) and multi-target (MT)
activity, taking confirmed inactivity against targets into account. Methodology: Compounds and target an-
notations are extracted from screening assays. For a given combination of targets, MT and ST compounds
are identified, ensuring test data completeness. Exemplary results & data: A total of 1242 MT compounds
active against five or more targets and 6629 corresponding ST compounds are characterized, organized
and made freely available. Limitations & next steps: Screening campaigns typically cover a smaller target
space than compounds from the medicinal chemistry literature and their activity annotations might be of
lesser quality. Reported compound groups will be subjected to target set-based promiscuity analysis and
predictions.

Graphical abstract: Shown is an exemplary group of three compounds (CPDs) with single-target or multi-
target activity. For grouping of compounds according to a set of targets, confirmed activity or inactivity
against all targets is required.
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Lay abstract: The ability of a compound to bind to multiple biological targets by defined mechanisms
is termed promiscuity. Analyzing compound promiscuity helps to better understand how drugs function
that are capable of interacting with multiple therapeutic targets. In drug discovery, this phenomenon
is referred to as polypharmacology. Machine learning using data sets of compounds with multi-target
and corresponding single-target activity aids in identifying structural features that distinguish these com-
pounds.
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Compounds with multi-target activity (MT-CPDs) are also termed promiscuous compounds (without implying
undesired properties) and play an increasingly important role in drug discovery for the treatment of complex
and multifactorial diseases [1–3]. Promiscuous compounds are also of interest from a basic scientific perspective
because they are capable of ‘pseudo-specific’ binding to multiple targets by engaging in ‘selectively nonselective’
interactions [4], the molecular basis of which is just beginning to be understood. Such ‘selectively nonselective’
interactions might be formed, for example, by inhibitors that are active against multiple kinases [4]. However,
promiscuous compounds may also be active against distantly related or unrelated targets.

The design of MT-CPDs with predefined activities has become a topical issue in pharmaceutical research [5–7]. So
far, MT-CPD design is mainly driven by combining pharmacophore elements of known single-target compounds
(ST-CPDs) [5,6], also taking target (binding site) knowledge into account [5,6], and to a lesser extent by machine
learning (ML) [7].

However, ML has been used successfully to classify promiscuous and nonpromiscuous compounds on the basis
of chemical structure with reasonable to high accuracy [8–10]. These findings have been of particular interest because
structural features that might generally distinguish between ST- and MT-CPDs are currently unknown. ML analysis
has also revealed that nearest neighbor (NN) relationships between MT-CPDs on the one hand, and corresponding
ST-CPDs on the other strongly contributed to successful predictions using different algorithms, with NN classifiers
often approaching the accuracy of ML models [8–10]. Hence, the picture is emerging that MT-CPDs are often more
similar to each other than to corresponding ST-CPDs and vice versa, hence providing a rationale for successful
predictions and underlying structural relationships [9,10].

Meaningful promiscuity analysis and predictions require data sets with well-defined composition of MT- and
ST-CPDs, the generation of which is laborious and requires careful curation of structures and activity data. Such
data sets are useful for multiple purposes including in silico analysis of molecular promiscuity; prediction of MT-
CPDs; exploration of structure-promiscuity relationships in medicinal chemistry; or selection of template structures
for MT ligand design. Therefore, we make the data sets derived for our recent complementary compound promis-
cuity analyses [9,10] freely available in organized form to the computational and medicinal chemistry community.
In this data note, we report these open access depositions and provide a detailed description of the dataset derived
from screening compounds [10], hence enabling further use. For additional methodological details and background
information, the interested reader is referred to the original publications [9,10].

Methodology
Assay selection criteria
Compounds and their activity (target annotations) were extracted from screening assays available in the PubChem
BioAssay database [11]. Assays for individual targets specified by PubChem Gene Identifiers were selected, excluding
assays sourced from other databases (such as ChEMBL, PDBind or Tox21). PubChem-external assays were excluded
to avoid overlap in MT- and corresponding ST-CPDs in subsequent studies exclusively focusing on compounds from
medicinal chemistry [9] and screening sources [10] (there is compound cross-fertilization between these databases).
For the selected PubChem assays, target Gene Identifiers numbers were mapped to UniProt IDs [12]. At this stage,
potentially ambiguous assays were omitted for which no target UniProt IDs were available as well as assays for
nonhuman targets or known antitargets (such as hERG, CYP or P-glycoproteins). Compounds with activity against
antitargets are not pharmaceutically relevant. Furthermore, assays with unusually high hit rates (>2%), any reported
inconsistencies, or designated cytotoxic compounds were removed.

Compound promiscuity analysis is particularly vulnerable to false positive assay readouts and activity/target
annotations. Therefore, filters for potentially liable pan assay interference compounds [13,14] as well as filters
comprising empirical chemical liability rules [15] were applied to flag and remove potential interference compounds,
which often give rise to artifacts across different assay formats. Furthermore, likely colloidal aggregators [16] and
confirmed firefly luciferase (FLuc) inhibitors [17], which might also give rise to assay artifacts, were removed. For
the analysis of MT-CPDs, no potency threshold was applied.

The final assay selection contained both biochemical and cell-based ST assays and was termed the “mixed”
dataset. From this set, the subset of biochemical assays was selected and separately analyzed. From both the mixed
and biochemical dataset, small numbers of assays containing inconsistent compound-target annotations were
removed, yielding our final selection sets. The data curation workflow and associated statistics are summarized in
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Figure 1. Assay data curation. The workflow applied to select assays and compounds from PubChem for our data
sets is summarized. Two assay sets were assembled. Biochemical assays represented a subset of mixed assays.
CPDs: Compounds.

Figure 1. The final mixed and biochemical assay set covered 817 and 259 different assays and 398 and 143 diverse
biological (protein) targets, respectively.

Compound grouping & sampling strategy
The ‘promiscuity degree’ (PD) of each compound from the mixed and biochemical sets was calculated as the number
of targets the compound was active against. Importantly, for the biochemical assay set, compound PD values were
generally lower than for the mixed set, due to the smaller number targets associated with the biochemical set. For
promiscuity predictions, the choice of varying PD levels provided a control [10]. PD ≥5 was applied as a criterion
for compounds with significant promiscuity and PD ≥3 as a control. For PD ≥5, 1248 and 2886 MT-CPDs were
obtained for biochemical and mixed assays, respectively. For PD ≥3, an additional set of 3590 MT-CPDs was
obtained for biochemical assays.

The final data sets were assembled by pairing MT-CPDs with one or more ST-CPDs (PD = 1) from the same
assay set. For each target of a given MT-CPD, an ST-CPD that was active against the target and experimentally
confirmed to be inactive against the remaining targets was selected. According to this selection strategy, an ST-CPD
was selected only once. Depending on the number of targets per MT-CPD, a qualifying ST-CPD might not be
available for each target, which did not preclude the formation of a compound group if ST-CPDs were available for
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Table 1. The composition of compound datasets from mixed and biochemical assays reported for different promiscuity
degree thresholds.
Dataset Mixed Biochemical

PD ≥5 PD ≥5 PD ≥3

MT-CPDs 2858 1242 3468

ST-CPDs 15,839 6629 11,793

MT-CPD: Compound with multi-target activity; PD: Promiscuity degree; ST-CPD: Single-target compound.
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Figure 2. Compound test frequencies.
Boxplots report test frequency distributions of
ST- and MT-CPDs in the respective datasets.
Each distribution is represented by its
minimum (lower whisker), lower quartile
(lower boundary of the box), median
(horizontal line in box), upper quartile (upper
boundary of the box) and maximum (upper
whisker). Values classified as statistical outliers
are shown as diamonds.
MT-CPD: Compound with multi-target activity;
ST-CPD: Single-target compound.

other targets involved. MT-CPDs without corresponding ST-CPDs were omitted. This selection scheme ensured
that experimental data for each group of MT- and corresponding ST-CPDs were complete; in other words, each
compound was tested against all targets of a group. Therefore, PD values were not potentially underestimated due
to missing test results, which might occasionally cause false negative MT-CPDs (erroneously classified as ST-CPDs).
The availability of experimental test frequencies of compounds as well as positive and negative assay results was
a prime motivation for generating sets of MT- and ST-CPDs on the basis of assay data. The composition of the
obtained datasets is reported in Table 1. Test frequencies and negative assay results are not available for compounds
from medicinal chemistry sources (such as those collected in ChEMBL).

Reduced data sets
To assess the influence of NN relationships on the predictions, two equally sized compound subsets were sampled
from each dataset. The first subset was obtained by randomly removing 50% of the original compound groups
(random removal), whereas for the second subset, 50% of most similar compound groups were systematically
eliminated (NN removal). First, pairs of groups were formed and sorted by most similar ST-CPDs. From the two
groups of the top ranked pair (highest calculated fingerprint similarity), the group with higher similarity to the next
most similar group was removed. The process was repeated until 25% of the compound groups were eliminated.
Additionally, this procedure was applied to MT-CPDs, resulting in a final dataset containing only 50% of the
original compound groups. Accordingly, this reduced dataset was obtained by iteratively removing NN groups,
which served as another control for promiscuity predictions.

Exemplary results
Test frequencies
The probability of a compound to exhibit MT activity statistically increases with the number of targets it has been
tested against. Therefore, controlling test frequencies for ST- and MT-CPDs is an important step for promiscuity
analysis. Figure 2 reveals that ST-CPDs had higher test frequencies compared with MT-CPDs in all three data sets,
thus lending further support to the MT- versus ST-CPD assignments.
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Figure 3. Single-target compounds per compound with multi-target activity. Histogram bars report the number of
ST-CPDs sampled for each MT-CPD (biochemical set, MT-CPDs: PD ≥5).
MT-CPD: Compound with multi-target activity; ST-CPD: Single-target compound.

0.5

0.6

0.7

0.8

0.9

B
a
la

n
c
e
d

 a
c
c
u

ra
c
y

Original data

1.0

Random removal NN removal

SVM KNN RF

Figure 4. Prediction accuracy. Boxplots report distributions of balanced accuracy values for SVM (blue), k-NN
classifier (KNN, orange) and RF (green) predictions of MT- versus ST-CPDs over 10 individual trials for the original
dataset (biochemical set, MT-CPDs: PD ≥5, left) and reduced data sets after random compound removal (middle) and
NN removal (right).
MT-CPD: Compound with multi-target activity; NN: Nearest neighbor; RF: Random forest; ST-CPD: Single-target
compound; SVM: Support vector machine.

Compound sampling
The quality of the datasets also depended on the availability of corresponding experimentally confirmed ST-CPDs
for given MT-CPDs. Figure 3 shows a representative distribution of ST-CPDs per MT-CPD. For the majority of
MT-CPDs at least five corresponding ST-CPDs were available, yielding reasonably sized compound groups.

Predictions
Representative results for predictions distinguishing between MT- and ST-CPDs are shown in Figure 4. Prediction
accuracy using different ML methods and a k-NN classifier was generally high for original data sets. Random
removal of 50% of compound groups only led to a small reduction in predictive performance, whereas NN removal
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resulted in a larger reduction in prediction accuracy, revealing the importance of NN relationships between MT-
and ST-CPDs, respectively [10].

Data
Composition
The data curation and compound selection protocols described above yielded three datasets of well-defined com-
position for promiscuity analysis. The mixed dataset comprised compounds from both biochemical and cell-based
assays with an MT-CPD threshold of PD ≥5. From the subset of biochemical assays (having higher ST confidence
than cell-based assays), two datasets were generated with MT-CPD thresholds of PD ≥5 and PD ≥3, respectively.
Application of the lower PD threshold further increased dataset size. From each of these two biochemical sets,
two reduced datasets containing half of the compound groups were generated through random compound or NN
removal, respectively.

While the original datasets are suitable for multi-purpose promiscuity analysis, as specified above, reduced
datasets were mainly designed for our ML studies [10]. The three original datasets are made available in an organized
form, as further specified below. These datasets complement conceptually similar MT- and ST-CPD collections
from the medicinal chemistry literature, for which no test frequencies and negative assay data (inactive compounds)
were available. The earlier derived data sets have been described in detail [9] and made available on the Zenodo
open access platform [18]. By design, these two specifically derived and well-structured open access data collections,
which have yielded equivalent results in large-scale promiscuity analysis and predictions, complement each other.

Data deposition
Three screening compound datasets are provided as tab-delimited text files (.tsv format). Each file contains
canonical SMILES representations of the compounds (“NostereoAromaticSMILES”), their class label (”is MT”),
IDs for grouped compounds (“group”), PubChem compound IDs (“cid”), concatenated lists of corresponding target
IDs (“target ids”) and the number of experimentally tested targets (“n tested”). In addition, randomly removed
compounds (“random removal set”) and compounds removed based on NN relationships (“nn removal set”) are
identified such that the reduced data sets can be immediately extracted. As a part of this study, the datasets are
made freely available as a new deposition on the Zenodo open access platform [19].

Limitations & next steps
The only limitations of the current datasets are the intrinsic variability of screening assay data and lower-confidence
activity measurements compared with compounds for which equilibrium constants have been determined. However,
for promiscuity analysis and the exploration of structure-promiscuity relationships, qualitative target annotations
are sufficient and exact potency values are not required. We will further use the datasets reported herein for analyzing
differences between MT- and corresponding ST-CPDs for different target combinations, representing a form of
‘local’ promiscuity analysis, setting it apart from global assessment and predictions across all targets. We hope
that these datasets will also be useful to others for exploring different facets of compound promiscuity from a
computational or medicinal chemistry perspective.
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Executive summary

Introduction
• Compounds with multi-target activity are introduced.
• Compound promiscuity is discussed in the context of polypharmaology.
Methodology
• Data curation protocols are detailed.
• Compound selection and sampling strategies are explained.
• The value of test frequencies and negative assay results is emphasized.
• Dataset design is rationalized.
Exemplary results
• Test frequencies are analyzed.
• Ratios of multi-target versus corresponding single-target compounds are quantified.
• Exemplary promiscuity predictions are reported.
Data
• Different datasets are described.
• The data deposition is detailed.
Limitations & next steps
• Assay data variance is discussed.
• Further refined promiscuity analysis is proposed.

References
Papers of special note have been highlighted as: • of interest; •• of considerable interest

1. Bansal Y, Silakari O. Multifunctional compounds: smart molecules for multifactorial diseases. Eur. J. Med. Chem. 76, 31–42 (2014).

2. Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem. 57, 7874–7887
(2014).

3. Mei Y, Yang B. Rational application of drug promiscuity in medicinal chemistry. Future Med. Chem. 10, 1835–1851 (2018).

4. Morphy R. Selectively nonselective kinase inhibition: striking the right balance. J. Med. Chem. 53, 1413–1437 (2010).

• Highlights pharmaceutically relevant promiscuity of kinase inhibitors.

5. Zhang W, Pei J, Lai L. Computational multitarget drug design. J. Chem. Inf. Model. 57, 403–412 (2017).

6. Proschak E, Stark H, Merk D. Polypharmacology by design: a medicinal chemist’s perspective on multitargeting compounds. J. Med.
Chem. 62, 420–444 (2019).

• Thorough account of promiscuous ligand design in medicinal chemistry.

7. Besnard J, Ruda GF, Setola V et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).
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