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Abstract 

Microarray probes and reads from massively parallel 
sequencing technologies are two most widely used 
genomic tags for a transcriptome study. Names and 
underlying technologies might differ, but expression 
technologies share a common objective—to obtain 
mRNA abundance values at the gene level, with high 
sensitivity and specificity. However, the initial tag 
annotation becomes obsolete as more insight is 
gained into biological references (genome, 
transcriptome, SNP, etc.). While novel alignment 
algorithms for short reads are being released every 
month, solutions for rapid annotation of tags are 
rare. We have developed a generic matching 
algorithm that uses genomic positions for rapid 
custom-annotation of tags with a time complexity 
O(nlogn). We demonstrate our algorithm on the 
custom annotation of Illumina massively parallel 
sequencing reads and Affymetrix microarray probes 
and identification of alternatively spliced regions. 

Introduction 

The measurement of gene expression is one of the 
most fundamental problems in understanding how 
genetic information is transformed into active 
processes in organism. Beyond sequencing of several 
genomes and the identification of many genes, 
transcription regulation and expression analysis has 
become one of the most popular research topics in 
molecular biology.  Many different methods are 
available for measuring gene expression on a 
genome-wide scale. 3’-IVT microarrays are the most 
widely used platform, replacing previous 
technologies such as SAGE and MPSS, followed by 
exon microarrays and massively parallel sequencing  
(MPS) technology platforms. Although underlying 
biochemistry and what is being measured might 
differ, above technologies are based on the capacity 

to use specific tags – we define a tag as a string of 
DNA sequences: ‘probe’, ‘read’ and ‘tag’ are used 
interchangeably throughout this study. Regardless of 
the technology being used, investigators eventually 
want to get the mRNA abundance measurement (e.g. 
fold-change or absolute signal intensity) at the gene-
level. However, at least for microarrays, it has been 
shown that re-examining the genomic location of 
probes may improve the interpretation of the 
biological results1.  The investigation and the 
selection of a “good” probe that does not cross 
hybridize to multiple genes, withstands alternative 
splicing (AS) and does not contain Single Nucleotide 
Polymorphism (SNP) have become important since 
they affect on the magnitude of gene expression2, 3. 
Such probe selection is based on the task of matching 
probes against a biological reference database. Even 
with an up-to-date high quality annotation of probes, 
different studies might not have used the common 
gene or transcript identifier, which makes comparison 
of experiments from different platforms or 
technologies difficult. In this situation, probes have to 
be annotated again on the common reference. 
Comparable and disambiguous probe annotation is 
important since it affects the downstream analysis of 
microarrays such as a two-sample test between the 
treated and the control samples, sample classification, 
and Gene Ontology or pathway analysis. Annotation 
issues of microarray probes directly generalize to 
other technologies such as MPS, since they all utilize 
tags. 

There have been many efforts to re-annotate 
microarray probes, but they are inefficient because a 
user can query only a handful list of probes on the 
web-browser2 or a user needs to download custom-
made chip description file (cdf) that might not 
contain user’s preferred reference1.  This problem 
gets worse for MPS reads where each sample run 
produces a new set of sequences. While one 
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annotation result was shared for all the samples using 
a particular platform in microarray, each sample 
should be treated as a new platform in MPS. 

We have developed a generic algorithm that 
efficiently matches genomic positions of the source 
against the reference. We applied this algorithm to 
the problem of the custom annotation of the tags in 
gene expression data. An important goal of our 
method is to empower researchers to create their own 
annotations by giving them appropriate tools, as 
opposed to just helping them once by providing them 
with a yet another annotation. There are as many 
ways to match tag sequences to the genome as there 
are gene databases. For this reason, we have 
decoupled these problems from our algorithm by 
enabling to replace the reference transcript database 
to get a customized mapping. 

Methods 

Generic Matching Algorithm 

 Our generic matching algorithm efficiently 
determines by which reference object’s interval, 
defined as two genomic positions a start and an end, 
the source object’s interval is covered. In this section, 
we restricted genomic positions to reside within a 
single chromosome and a strand to make the 
explanation simple. An object can be any biologically 
meaningful feature with genomic positions. 
Examples are a microarray probe, an MPS read, a 
transcript, a SNP or a CpG island. In most cases the 
interval of the source is shorter than that of the 
reference.  For probe-to-gene annotation, a probe is 
the source and a gene is the reference. A match for a 
tag is defined to have occurred against a gene if the 
probe’s interval is completely contained within the 
gene’s interval. In search of a SNP-free probe, 
however, a SNP becomes the source and a probe is 
the reference since the probe either covers the SNP or 
not.  Instead of comparing every interval with every 
other interval, the intervals are split into start and end 
positions, sorted and iterated linearly, keeping track 
of which interval is active at a certain time-point. 
Intersection Algorithm was first described by 
Marzullo4 where the minimum of start positions and 
the maximum of end positions was defined as an 
overlapping interval of two input intervals. Time 
complexity of this algorithm is O(n2). In our 
proposed algorithm, this computationally intensive 
task of all pairwise comparison is avoided by 
“genomic walking” reducing its time complexity 
down to O(nlogn + n). 

A schematic illustration of the proposed algorithm is 
shown in Figure 1 and Table 1. The exons and the  

Figure 1. Overlapping exons and reads along the genome. The top 
horizontal line is a genome (5’ -> 3’). The exons (white squares) 
with the prefix ‘E’ and aligned in the second line. And the reads 
(blue squares) with prefix ‘R’ are located in the bottom line.  

reads from the MPS technology are positioned along 
the genome in Figure 1. The start and end positions 
of the objects are displayed in the top horizontal line. 
A complete run of the algorithm is depicted in Table 
1: First, every tuple which is a set of (object, start-
position, end-position) is split into two tuples (object, 
‘start’, start-position) and (object,  ‘end’, end-
position). This list is sorted according to position and 
terminal type (‘start’ or ‘end’) which can be done in 
(n log n) time. Then, the list is processed linearly.  
We keep an extra set of identifiers, the active set.  

Table 1. Illustrative run of PositionMatcher using the source and 
the reference in Figure 1. 

Pos Object Terminal Active Set Action  Yield 

4 E1 Start () E1 in  

6 R1 Start (E1) R1 in  

13 R1 End (E1,R1) R1 out (E1,R1) 

14 E1 End (E1) E1 out  

17 R2 Start () R2 in  

24 R2 End (R2) R2 out  

25 E2 Start () E2 in  

31 E2 End (E2) E2 out  

39 R3 Start () R3 in  

41 E3 Start (R3) E3 in  

44 R4 Start (R3,E3) R4 in (E3,R4) 

46 R3 End (R3,E3,R4) R3 out  

51 R4 End (E3,R4) R4 out  

55 E3 End (E3) E3 out  
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This is the set of objects that currently occur if we  
imagine  “walking along” the genome.  Whenever the 
active set is non-empty and another object is added, it 
designates an overlap, as can be seen the column 
“Yield” of the Table 1.  

Input format of the source and the reference data is a 
set of the space-separated text file per chromosome 
and strand pair. Each file has three columns; the 
starting position of in the genome, the ending 
position and the object identifier (Table 2). The  

Table 2. Example of .BED file used in PositionMatcher input. The 
name of this sub-file is ‘SRR002323_chr1_forward.bed’.It is a tab-
delimited and three-column text file. First two columns are 
genomic position and third column is identifier. ‘SRR002323’ 
above is NCBI SRA identifier for MPS read.  

genomic positions of the biological objects like gene 
and SNP can be obtained from the biological 
database directly. But the position of artificial 
features like NGS reads or microarray probes are 
acquired by running the sequence alignment program.  

Implementation 

The proposed algorithm is implemented in Java so 
that it can run under many different operating 
systems. The informatics challenge to deal with MPS 
technology was the size of the data. For example, the 
biggest MPS file size we used was 11G with 
109,712,542 reads. File loading is a Input/Output 
intensive operation but does not require CPU load for 
the computer5. We exploit this known fact and break 
the task into many sub tasks to execute them 
simultaneously. Before any processing we split both 
source and reference into sub-files of forward and 
reverse strands for each chromosome. Each 
chromosome-strand subset is matched and processed 
per thread simultaneously, and final results are 
aggregated. This divide-and-conquer technique not 
only exploits CPU and processing capabilities to 
improve algorithm runtime, but also helps solve the 
problem of dealing large dataset reads. Multi-
threaded functionality is transparent to our 
algorithm’s primary function—to match source tuples 
to reference tuples. The source code is available at 
http://dbmi.ucsd.edu/confluence/display/PositionMatcher.  

Custom Annotation 

We performed a custom-annotation of MPS reads and 
microarray probes to demonstrate the performance of 
our algorithm.  The goal was to match the tags to 

their target genes. We downloaded the raw Illumina 
sequencing data from the NCBI Sequence Read 
Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi ) with 
the submission id SRA000299. This contains six 
runs; three kidney tissue samples and another three 
liver samples, all from human. We also downloaded 
the probe sequences of three human Affymetrix 3’-
IVT microarray platforms from NetAffx Analysis 
Center (http://www.affymetrix.com/analysis/index.affx). The 
sequences of the probe and the read were fed into an 
alignment program to obtain genomic positions. With 
a unprecedentedly large size of the reads data, the 
new alignment tools based on hash-table or indexing 
are widely used replacing BLAST6 or BLAT7. We 
used Bowtie8 for our alignment tool since it is faster 
and uses less computational resources than 
competing programs like Maq9 or SOAP10.  Then the 
alignment result was split into 46 pairs of 
(chromosome, strand). 

We used AceView (2007 build) as our transcriptome 
reference. AceView is a comprehensive compilation 
from several sources of sequences that can be seen as 
a complete transcript database11.  AceView contains 
the genomic positions of the exons that constitute the 
transcripts per gene. We kept only genes containing 
an official name, HUGO symbols and transcripts 
showing the canonical and two additional splice sites 
(GT-AG, GC-AG and AT-AC).  Filtering out genes 
without an official name reduced the total number of 
genes from 57,810 to 22,349, which is closer to the 
expected number of human genes12. The splice site 
filter marks off about 0.3% percent of all introns and 
therefore reduces the number of accepted transcripts 
only slightly. The last step is preparing a list of 
regions of known SNPs.  For this purpose we 
downloaded the genome mapping of dbSNP (build 
129) available in the UCSC Genome Browser. Both 
AceView and SNP were also split into 48 pairs for 
each chromosome and strand. In a Unix console, tag-
to-gene annotation was done by  

$PositionMatcher Affy-HG-U133A AceViewGene 

$PositionMatcher IlluminaSeq AceViewGene 

The command had three words, the name of our tool 
followed by two arguments; the source and the 
reference. ‘IlluminaSeq’ is the source folder having 48 
genomic positions of millions of the reads. Then the 
presence or the absence of SNP in the tag was 
checked by 

$PositionMatcher dbSNP Affy-HG-U133A 

$PositionMatcher dbSNP IlluminaSeq 

This time the tags are the reference since the tag 
sequences are longer than SNP.  Lastly, we identified 
the alternatively spliced (AS) regions by running 

start end id 

14452297 14452332 SRR002323.4813773 

14452321 14452356 SRR002323.4158755 

14478182 14478217 SRR002323.5179826 
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PositionMatcher with AceView against itself. The 
matcher performed a comparison between all 
transcripts of a gene and identified differences in 
their exonic and intronic composition. Previously, in 
the basic matching algorithm, we only recorded the 
source object completely covered by the reference 
object. But in finding the AS region, we modified the 
algorithm to identify the overlapping regions between 
exons and introns. And additional pre- and post- 
processing were performed as followings: 
1. Mark terminal exons. 

2. Locate exons that overlap with introns. 

3. Declare the overlapping regions in 2 as the alternatively 
spliced region with the next cases as the exceptions 

• it is the first exon of a transcript and it starts 
inside the intron 

• it is the last exon and ends inside an intron 

 

Results 

We aligned and matched six Illumina MPS runs from 
human kidney and liver samples13. Firstly, we 
downloaded raw files (.fastq format) from the public 
repository, NCBI SRA. Then we applied Bowtie, the 
alignment program, to produce six output files all 
mapped onto human genome (March 2006 build). 11 
~ 13% of reads were aligned to genome (Table 3).  
The alignment yield was smaller than that (40%) of 
Marioni et al.’s13. This is because they allowed up to 
two mismatches for alignment while we required the 
perfect match to deal with the effect of SNP 
addressed in Introduction. The median execution time 
of alignment for six runs was 510 seconds on a laptop 
computer (Mac OS 2.6 GHz, with 2 GB RAM). Then 
we split each aligned result into 46 sub-files per 
chromosome and strand pair. Next we used our  

Table 3. Annotation results of Illumina sequencing reads of six 
samples from human kidney and liver tissue13. The units of the 
second and the third columns are in Millions(M). The reference 
gene database was AceView that had a total 22,349 genes.  

PositionMatcher to match already aligned reads as a 
source to the AceView transcriptome database as a 
reference.  Although the number of survived reads 
was smaller than the number of the initial reads 
(Table 3), gene-coverage stayed between 64% ~ 75% 
which is similar to that (72%) of Marioni et al. The 
median execution time for matching six runs was 
63.5 seconds. With our matching tool together with 
an existing alignment program, we were able to 
achieve read-to-gene annotation within 12 minutes 
per run.  
We compared the accuracy and the execution time of 
PositionMatcher to a naïve algorithm that performs 
all pairwise comparison of intervals between source 
and reference. We downloaded microarray probe 
sequences three 3’-IVT microarray platforms from 
Affymetrix and aligned them onto genome with 
Bowtie. Each platform took 2 ~ 4 minutes for 
alignment. For comparison, we restricted to the 
shortest human chromosome, chr21, and forward 
strand without the loss of generalizability. The 
matched results of PositionMatcher had 100% 
agreement with those of naïve method. Reduction in 
the execution time was observed in all platforms and 
reads (Table 4). The difference of gain in execution 
time increased with the increase of the number of 
tags. 
We also constructed an alternatively spliced (AS) 
region data by matching AceView against itself,. We 
found 79,970 such regions. Overall, the longer 
chromosome had the more AS regions (Figure 2). We 
found AS regions in 70% of human genes. This 
proportion is similar to the reported estimate of the 
AS undergoing genes (73%)14.  We matched the MPS 
reads against AS region data and found out that 
34~44% of aligned reads fell in AS regions. From 15 
different Affymetrix microarray platforms we found 
that only 3.4% of 1,602,926 different probes map to  

 Table 4. Comparison of PositionMatcher (PM) and naïve method 
in chromosome 21 and forward strand. Microarray platforms were 
all from Affymetrix human 3’IVT array.  MPS reads are identified 
by NCBI SRA id’s. Time is measured in milliseconds (1/1000 
seconds). 

Matched Run ID Init. 

read 

(M) 

Aligned 

read 

(M) 
read 
(M) 

gene 
 

Exec. 
Time 
(sec.) 

SRR002320 79 10 2.4 16,580 96 

SRR002321 110 13 2.8 16,081 118 

SRR002322 37 6 1.3 15,162 57 

SRR002323 30 3 0.7 14,242 34 

SRR002324 35 6 1.5 16,082 63 

SRR002325 55 7 1.7 16,170 64 

Execution Time 
(millisecond) 

Technology Platform/ 
Read 

Number 
 of tags 
(probes/ 
reads) PM naïve 

method 

Microarray HGFOCUS 622 350 694 

Microarray HGU133A 1,326 360 1,612 

Microarray HGUPLUS2 3,406 430 3,869 

MPS SRR002323 11,499 513 9,599 

MPS SRR002325 22,988 572 168,115 

MPS SRR002320 30,096 660 280,332 

28



  

 

 
 
 
 
 
 
 

 

 

Figure 2. A plot of the number of AS regions along the 
chromosome length (Kbp: 1,000 base-pairs). 

multiple genes, 11.1% map to alternatively spliced 
regions, 2.5% match to regions with known SNPs 
and 0.4% map both to AS regions and SNPs.  

Conclusion 

We have developed an efficient tool that allows the 
custom annotation of MPS read, microarray probes or 
any tag-based technologies to measure mRNA 
abundance. Once the genomic positions are obtained 
through external alignment program, PositionMatcher 
will provide tags with rich annotation information by 
matching against biological references such as 
genome, transcript, SNP, CpG island, microsatellite 
and more. Since our algorithm is generic and fast, 
users can easily create a custom annotation of MPS 
or any tag type gene expression data against the most 
recent versions of references. We have shown that 
our tool is already fast in a usual desktop computer 
but it can be much faster with a simple modification 
to run in distributed computing environment by 
utilizing multi-threading.  
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