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ABSTRACT Two Pseudomonas strains (SR17 and SR18) were isolated from soft rot-dis-
eased spinach leaves. Here, we report their genome sequences and characteristics.

Soft rot disease of plants, which is a deterioration of plant tissues resulting in smelly, mushy,
and inedible fruits and vegetables, can be caused by many pathogens. Pectobacterium

and Dickeya species represent the leading disease-causing agents in the field and postharvest;
however, other bacteria, like Pseudomonas spp., contribute to disease instances as well (1–7).
Soft rot plant pathogens secrete plant cell wall-degrading enzymes, including pectin
lyases, proteases, and cellulases, to macerate plant cells and tissues (8). Once disease symp-
toms occur, treatment is impossible, so prevention of this disease is key. We have isolated
two soft rot-causing bacteria from spinach, both of which were Pseudomonas strains, SR17
and SR18; here, we provide their draft genomes.

The soft rot phenotype was confirmed by swabbing rotted material from spinach,
gathered from grocery stores (Ames, IA, USA) in 2019, onto sterilized carrot slices (9)
and after incubation at 25° in a moist chamber for 48 h, isolating the bacterial com-
munities from the diseased carrots on Luria-Bertani (LB) agar. Pure cultures from the LB
plates were then individually swabbed onto sterilized carrot slices and incubated as
before to confirm the soft rot phenotype. Examples of soft rot caused by these isolates
on carrots are shown in Fig. 1. Sanger sequencing of the 16S rRNA gene PCR products
using common 16S rRNA primers, 27F (59-AGAGTTTGATCMTGGCTCAG-39) and 1492R
(59-GTTACCTTGTTACGACTT-39), for amplification and a search conducted using NCBI
BLASTn against the NCBI nonredundant (nr) database identified the isolates as
Pseudomonas species (10). For genome sequencing, DNA extraction was performed
using the Nanobind CBB Big DNA kit (Circulomics, Baltimore, MD). Sequencing was
conducted using Illumina MiSeq 250-bp read length paired-end sequencing at the
Iowa State University DNA Facility, and 603.3 Mbp of total sequence data was gener-
ated across 1.25 million and 1.16 million reads for SR17 and SR18, respectively
(Table 1). Library preparation was performed using the NEBNext Ultra II FS kit with
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FIG 1 Examples of soft rot caused by the sequenced Pseudomonas isolates on carrots. Carrots were
inoculated with 10 mL of an overnight culture of (left to right in each panel) SR17, SR18, or a sterile
buffer, with SR17 and SR18 incubated together at 25°C in a moist chamber and the control incubated
separately at 25°C in a moist chamber. Pictures were taken at 48 (A) and 72 (B) hours after inoculation.
Dark, wet, and mushy spots are symptoms of soft rot. Bar, 1 cm.
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standard parameters. FastQC v0.11.9 was used to assess the read quality (note: default
settings were used for all software unless specified otherwise) (11). Bases below a qual-
ity score of 20 were trimmed and adapter sequences were removed using BBDuk
v37.36 with the following options: “ref=adapters.fasta ktrim=r ordered k=23 hdist=1
mink=11 tpe tbo qtrim=w trimq=20 minlen=75” (12). Only trimmed reads longer than
75 bp were used to generate genome assemblies with SPAdes v3.14.1, using the
“–careful” option (13). Annotation of the assembled genomes was performed using the
PATRIC database and the NCBI PGAP (14, 15).

The genome sizes ranged from 5.97 to 6.83 Mbp, had 48 contigs each, and had a
GC content of approximately 60% (Table 1). Average nucleotide identity (ANI) results
showed that SR17 and SR18 are 88.9% similar to each other. SR17 is closely related to
Pseudomonas marginalis ICMP 3553 (GenBank accession number GCA_001645105.1;
ANI, 98.9% with 90.4% overlap) and Pseudomonas fluorescens SBW25 (GCA_000009225.1;
ANI, 98.4% with 87.2% overlap), while SR18 is closely related to Pseudomonas cyclaminis
MAFF 301449 (GCA_015163715.1; ANI, 96.1% with 79.2% overlap). This work provides
the basis for further experiments into these agriculturally and economically important
plant pathogens.

Data availability. The Pseudomonas sequences have been deposited at GenBank
under the BioProject accession number PRJNA844386. GenBank and SRA accession
numbers for each isolate are listed in Table 1.
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