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Abstract

Informed antibiotic prescription offers a practical solution to antibiotic resistance problem.

With the increasing affordability of different sequencing technologies, molecular-based

resistance prediction would direct proper antibiotic selection and preserve available agents.

Amikacin is a broad-spectrum aminoglycoside exhibiting higher clinical efficacy and less

resistance rates in Ps. aeruginosa due to its structural nature and its ability to achieve higher

serum concentrations at lower therapeutic doses. This study examines the predictive poten-

tial of molecular markers underlying amikacin susceptibility phenotypes in order to provide

improved diagnostic panels. Using a predictive model, genes and variants underlying ami-

kacin resistance have been statistically and functionally explored in a large comprehensive

and diverse set of Ps. aeruginosa completely sequenced genomes. Different genes and var-

iants have been examined for their predictive potential and functional correlation to amikacin

susceptibility phenotypes. Three predictive sets of molecular markers have been identified

and can be used in a complementary manner, offering promising molecular diagnostics.

armR, nalC, nalD, mexR, mexZ, ampR, rmtD, nalDSer32Asn, fusA1Y552C, fusA1D588G,

arnAA170T, and arnDG206C have been identified as the best amikacin resistance predic-

tors in Ps. aeruginosa while faoAT385A, nuoGA890T, nuoGA574T, lptAT55A, lptAR62S,

pstBR87C, gidBE126G, gidBQ28K, amgSE108Q, and rplYQ41L have been identified as

the best amikacin susceptibility predictors. Combining different measures of predictive per-

formance together with further functional analysis can help design new and more informa-

tive molecular diagnostic panels. This would greatly inform and direct point of care

diagnosis and prescription, which would consequently preserve amikacin functionality and

usefulness.

Introduction

Although great advances have been achieved in diagnostic technologies, empiric antimicrobial

prescription is still widely used to deal with critical infections [1, 2]. This consequently results

in the overuse of our small inventory of effective and last line antimicrobial agents [3, 4]. That
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situation has resulted in the aggravation of antibiotic resistance problem by driving the emer-

gence and spread of multi-drug resistant organisms. The gap that currently exists between the

traditional microbiology workflow and the need for more rapid results, especially in some crit-

ical conditions, has led to the current problem of overtreatment. Improved molecular diagnos-

tics would overcome such a situation. A better diagnostic would provide reliable information

on susceptibility to antimicrobial agents, which would consequently influence the best choice

of treatment.

Accurate diagnosis is an essential step for the successful management of any health prob-

lem. Although higher test accuracy is often used as an important indicator for the usefulness of

the test, this does not necessarily indicate that tests with higher accuracy often lead to

improved health outcomes and are considered the tests of choice in clinical practice [5].

Acceptable standards in positive and negative predictive values that can translate into changes

in patient management are still lacking [6]. This consequently necessitates considering all

parameters used to assess the accuracy of the diagnostic test in a setting-relevant basis and

according to the condition being investigated.

With the recent advances in different diagnostics technologies, there has been a growing

interest in developing new and rapid diagnostics for bacterial resistance [7, 8]. Many newer

technologies have been used, including Matrix-Assisted Laser Desorption/Ionization-Time Of

Flight Mass Spectrometry MALDI-TOF MS, fluorescent live/dead staining, infrared spectros-

copy, microbial cell weighing by vibrating cantilevers, magnetic bead spin, and microdroplets,

among others [9]. In addition to the accelerated phenotypic systems, different molecular plat-

forms have also been used for rapid bacterial identification and antimicrobial susceptibility

testing (ID/AST) testing [10–15]. With the increasing use and affordability of different

sequencing platforms, sequencing-based resistance prediction is now expected to offer a better

diagnostic alternative for antimicrobial resistance [16]. It would enable the detection of genetic

markers underlying specific risky profiles and also help in the detection of genetic markers

predictive of different antimicrobial susceptibility phenotypes.

Amikacin is a semisynthetic aminoglycoside antibiotic with a broad antimicrobial spec-

trum. According to the British National Formulary (BNF) [17], aminoglycosides are still

widely used in the treatment of serious infections caused by multiple Gram negative organ-

isms, including Ps. aeruginosa. Amikacin is considered more stable to enzyme inactivation

than gentamycin and is used in the treatment of serious infections caused by gentamycin-resis-

tant organisms, including biliary infections, septicemia, and endocarditis. Aminoglycosides

have been considered as a vital component in antipseudomonal chemotherapy, including

combined therapy regimens, particularly pulmonary infections in cystic fibrosis patients [18].

Amikacin has the broadest spectrum of activity among the aminoglycosides group of antibiot-

ics and is considered a good treatment candidate to strains showing multiple resistance to

other aminoglycosides [19]. Both gentamycin and amikacin have been used in the treatment

of urinary tract infections caused by Ps. aeruginosa with amikacin achieving better peak serum

concentrations at lower therapeutic doses [20]. Amikacin is also known to exhibit less resis-

tance rates due to its structural nature [21]. In addition, amikacin shows activity against genta-

mycin resistant strains and can achieve high blood levels making it clinically effective in the

treatment of Pseudomonas-associated pulmonary infections complicating cystic fibrosis [22].

Recent evidence also shows that amikacin can achieve high in vitro potency against Ps. aerugi-
nosa respiratory and blood isolates [23]. Kim et al., (2018) have also demonstrated declining

trends of gentamycin and amikacin resistance in Ps. aeruginosa according to data from the

Korean Nationwide Surveillance of Antimicrobial Resistance (KONSAR) program, which was

attributable to decreased aminoglycosides consumption levels [24]. This finding indicates that

the rational use of this antibiotic would alleviate the selective pressure on the agent and
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consequently decrease emergence of resistance. In order to preserve such valuable therapeutic

agent and to avoid failure of therapy, it is important to prescribe it wisely. Rational use can be

achieved through wiser prescription which can be achieved by using rapid resistance predic-

tors. From that perspective, this study has evaluated the chromosomal genetic variants capable

of predicting amikacin susceptibility highlighting their potential use as diagnostic markers. A

group of genes and variants previously identified in the literature as related to amikacin resis-

tance were reviewed and assessed in this work for their predictive potential. In addition, new

variants of the same resistance-related genes were also evaluated for their diagnostic potential.

The approach implemented in this study has combined different measures of diagnostic accu-

racy in a complementary way in addition to functional evidence to investigate the candidate

molecular markers. Although amikacin is known to be stable to the action of aminoglycoside

inactivating enzymes, both aminoglycoside 6’-N-acetyltransferase Ib (AAC(6’)-Ib) [25] and

aminoglycoside nucleotidyl transferase (ant4’-IIb) [26] have been reported to affect amikacin

activity in Ps. aeruginosa. In addition, other inactivating enzymes including the 16S rRNA

methylase rmtA [27] and rmtD [28] have also been identified to confer amikacin resistance in

Ps. aeruginosa. So, these enzymes have also been explored in the current set of studied

sequences in order to investigate their importance and relative contribution to amikacin

resistance.

Materials and methods

In this study, completely sequenced genomes with their laboratory-measured phenotypic data

for amikacin were downloaded from the Patric database [29]. The list of genome sequences

included in the study with corresponding amikacin MICs is shown in S1 Table. The analysis

included a total of 528 Ps. aeruginosa genome sequences from Patric database. The sequences

used have been previously assessed for their diverse representation [30]. Breakpoints for analy-

sis of susceptibility and resistance were defined according to the latest EUCAST recommenda-

tions [31]. Based on breakpoints definition, the available sequences studied included a total of

109 resistant isolates and 419 susceptible isolates. The MIC values were distributed over the

ranges of 0.12, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128. Literature review to extract chromosomal

genes and gene variants related to aminoglycoside resistance was carried out on each of PMC

PubMed, ACADEMIC SEARCH COMPLETE (EBSCO host), and ScienceDirect using search

criteria: "Pseudomonas aeruginosa"[title/abstract] AND "aminoglycosides resistance"[title/

abstract]. Genes and variants identified from the literature are listed in S2 Table. Predictive val-

ues for the whole identified set consisting of 55 molecular markers have been examined, and

those showing higher predictive performance to amikacin have been further functionally ana-

lyzed. The genes extracted from the literature and investigated in the current study included

mexR, mexS, nalC, nalD, nfxB, ampR, gidB, amgS, pmrA, pmrB, fusA1, rplY, arnA, arnD, lptA,

faoA, pstB, phoP, phoQ and nuoG.

The set consisting of 55 chromosomal elements as well as 3 aminoglycoside inactivating

enzymes that have been reported to exhibit activity against amikacin have been used as an

input to construct a predictive model for amikacin susceptibility. Stepwise multiple regression

was conducted to examine the extent of variance in amikacin susceptibility phenotype as

explained by different molecular markers being investigated giving an indication about the rel-

ative contribution of each marker to the phenotype. This has been implemented using SPSS

(SPSS.V21) [32].

The sequence of each of the chromosomal genes was extracted by searching the Pseudomo-
nas genome database [33] available at https://www.pseudomonas.com/ and the NCBI database

at https://www.ncbi.nlm.nih.gov/gene using the known gene identifier ID and/or the gene
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name. The available gene sequence was downloaded from Pseudomonas genome database or

from NCBI by constructing a FASTA file using the sequence available on either of the two

databases. In addition, the sequences of the genes coding for inactivating enzymes; aac(6’)-Ib,

ant4’-IIb, rmtA, and rmtD has also been extracted from NCBI database and later BLASTed to

identify their frequency of occurrence in the studied set of sequences. The NCBI BLAST

+ BLASTN tool available at https://usegalaxy.org/ was used to search nucleotide database with

nucleotide query sequence(s) (Galaxy Version 0.3.3) [34]. The nucleotide query sequence of

the gene sequences extracted above was used to search the constructed nucleotide BLAST data-

base using the megaBLAST option and the default Set expectation value cutoff at 0.001.

The aligned part of both subject and query sequences in FASTA format was visualized and

explored using MEGA 7 software [35]. All genes included in the current analyses

showed> 80% percentage identity and>95% query coverage. Genes of interest were manually

explored in detail to extract variants of interest (previously reported in the literature) as well as

novel variants (amino acids or nucleotide changes showing specific differential patterns of dis-

tribution). A matrix showing the distribution of each of the variants of interest was generated

and was then used to conduct further analyses. The functional effect of the identified gene vari-

ants was then tested. To do so, protein sequence information of the genes studied showing the

evaluated variants were retrieved from Pseudomonas genome database [36]. Possible func-

tional effect of amino acid changes identified in the variants of interest was evaluated using

PROVEAN (Protein Variation Effect Analyzer) available at http://provean.jcvi.org./index.php

[37] and I-Mutant v2.0 (Predictor of Protein Stability Changes upon Mutations) available at

http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi [38].

The distribution of the mutations was then tested for its correlational pattern with pheno-

type and different measures of diagnostic accuracy were evaluated to test their diagnostic bene-

fit and potential use as molecular predictive markers.

To do so, the variant distribution matrix generated was used to construct a 2�2 contingency

table for each variant in relation to resistance/susceptibility phenotype. “Cross Tab” function

was used to generate these contingency tables using SPSS (SPSS.V21) [32] with checking all

the options to calculate chisquare test for independence or Fischer exact, significance value,

phi coefficient, cramer V and likelihood ratios.

Parameters of performance for each single variant including, Sensitivity, Specificity, Nega-

tive Predictive Value (NPV), Positive Predictive Value (PPV), Likelihood Ratio (LR), Likeli-

hood Ratio positive (LHR+), Diagnostic Odds Ratio (DOR), and diagnostic accuracy for each

contingency table were calculated according to the following equations; Sensitivity = TP/TP

+FN, Specificity = TN/TN+FP, PPV = TP/TP+FP, NPV = TN/TN+FN, LHR+ = sensitivity /

(1-specificity), DOR = LHR+/ LHR- or DOR = sensitivity� specificity/ [(1-sensitivity)�(1-spec-

ificity)]. Diagnostic accuracy = (TP+TN)/(TP+TN+FP+FN).

In order to test for the possible functional effect of the prioritized markers and consequently

their possible practical significance, available 3D protein structures for some of the identified

proteins at the protein data bank [39] were downloaded at https://www.rcsb.org/. The follow-

ing PDB IDs were evaluated as macromolecule receptors; 5H9T, 4FN5, 2D3T, 2R1A, 1JSX.

Binding of amikacin as a ligand to these macromolecules has been tested and compared in

both variant and non-substituted protein. Amikacin molecule structure was retrieved from

pubchem at https://pubchem.ncbi.nlm.nih.gov/. The 3D conformer PubChem CID 37768

SDF file for amikacin was used. The PDB file for each of the tested macromolecules and ligand

file were uploaded and the interaction of amikacin with each of the evaluated proteins was

tested using in-silico molecular docking by running autodock vina [40] using PyRx software

[41]. Docking results were visualized and analyzed using BIOVIA Discovery Studio Visualizer

v21.1.0.20298, Release 2020, San Diego: Dassault Systèmes.
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Results

The study builds a predictive model to interpret variability in amikacin MIC based on a group

of chromosomal and also acquired elements. Fifty-five analyzed predictor chromosomal gene

elements have been used to establish a predictor model. The studied elements have also been

statistically and functionally analyzed to identify a useful group of potential diagnostic mark-

ers. Stepwise multiple regression analysis was used to assess the ability of variants showing

higher correlations with phenotype to predict the level of amikacin MIC. Excluding variants

showing multicollinearity, the most important predictors in the predictive model included

pstBE89Q, nalDser32Asn, fusA1Y552C, pmrBLeu323His, ampR, and ampRE114A. In the pro-

posed model, only 12.2% of variance in the dependent variable (Amikacin MIC) was explained

by the above 6 predictors in the model (p<0.0005). When inactivating enzymes were included

in the model input, 22.6% of variance in amikacin MIC could be explained by rmtD,

pstBE89Q, pmrBLeu323His, ampR, fusA1Y552C, and nalDser32Asn. When the statistical

effect of overlapping variables was excluded, variables making significant unique contribution

to the prediction of the dependent variable (Amikacin MIC) included in order of importance:

rmtD (beta = -0.333, p<0.0005), pstBE89Q (beta = -0.268, p<0.0005), pmrBLeu323His (beta =

-0.144, p<0.0005), amp R (beta = 0.137, p<0.0005), fusA1Y552C (beta = - 0.134, p = 0.001),

and nalDser32Asn (beta = -0.126, p = 0.001). When the other variants were re-included as pre-

dictors for a better model, 26.9% of variance in Amikacin MIC (p<0.0005) could be explained

by 39 markers including ampRA51T, pstBR87C, ampRD135N, nalDD187H, rplYQ41L, mexR,

rmtD, faoAT385A, nalDl153Q, nuoGA890T, pstBE89Q, ampR, lptAT55A, nalCE153Q,

lptAR62S, fusA1Y552C, nalDser32Asn, aac6, pmrBA248V, pmrALeu71Arg, nuoGS468A,

nalCG71E, fusA1D588G, ampRE114A, pmrBALA4Thr, nalCA186T, ampRG283E, nalCS46A,

rplYAla123Ser, phoQY85F, nalD, gidBE126G, nalCS209R, nuoGA574T, mexZ, ampRM288R,

mexRR79S, nalC gene, rmtA.

Elements prioritized from the predictive model and those showing the highest predictive

values have been then functionally analyzed to add to the evidence of their potential to act as

useful diagnostic predictors. Analysis of molecular markers related to amikacin resistance

showed that variants in the genes related to cell membrane proteins and those related to cell

division were the most important in accounting for resistance showing the highest predictive

values and highest performance among the complete set of 55 examined chromosomal ele-

ments. These markers can be used to rule in amikacin resistance showing higher specificity.

The variants identified included nalDSer32Asn, fusA1Y552C, fusA1D588G, arnAA170T,

arnDG206C as markers of resistance. In addition, the 16S rRNA methylases rmtA and rmtD
also showed high specificity. The predictive values and other measures of performance related

to this group of markers are shown in Table 1.

Another group of efflux-pump related-genes has also been identified as potential diagnostic

markers which presence does not guarantee amikacin susceptibility, but its absence can be

used to rule out susceptibility and hence predict amikacin resistance with higher confidence.

These markers demonstrate high sensitivity and higher positive predictive values and thus can

be used as screening markers. These are shown in Table 2 with their corresponding measures

of performance.

Another important finding is the observation of a group of molecular markers showing

high specificity and high positive predictive values to amikacin susceptibility and these can be

considered as molecular susceptibility markers used to rule in the diagnosis of amikacin sus-

ceptibility. These include faoAT385A, nuoGA890T, nuoGA574T, lptAT55A, lptAR62S, pstB
R87C, gidBE126G, gidBQ28K, amgSE108Q, and rplYQ41L. The predictive values and other

measures of performance related to this group of markers for amikacin are shown in Table 3.
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From the current analysis, it appears that aminoglycoside inactivating enzymes are not sig-

nificant contributors to amikacin resistance. Although rmtD appears to be an important pre-

dictor for amikacin resistance contributing to 10% of variance in amikacin MIC as proposed

by the predictive model and also showing 100% specificity and 100% PPV, it was infrequently

encountered being identified only in 5 sequences showing MIC of 128 together with rmtA car-

ried among the same sequences. On the other hand, AAC(6’)-Ib has been identified only in 3

amikacin resistant sequences and was also identified in another 10 amikacin susceptible

sequences with an MIC of 8. It also did not significantly contribute to the predictive model

showing lower predictive values.

To complement statistical evidence together with functional evidence about the utility of

the identified markers, in silico functional prediction together with variants docking have

been carried out. The predicted functional effects for the identified variants as tested using

PROVEAN and I-Mutant are shown in Table 4.

Docking results have shown that nalDSer32Asn mutant had lower binding to amikacin

when compared to non-substituted protein with unfavorable state of donor-donor interaction

observed at ARG-146 (Fig 1). This might explain the deleterious effect predicted for this

mutant resulting in decreased stability. Lower binding affinities have also been observed for

both types of examined fusA1 mutants (Figs 2 and 3). Both fusA1Asp588Gly and fusA1-

Tyr552Cys have shown an unfavorable state of donor-donor interaction at TYR 683, and these

changes might also explain the deleterious effect and the largely decreased stability predicted

for these mutants. Similarly, faoA T385A mutant has shown decreased amikacin binding affin-

ity when compared to non-substituted protein (Fig 4), which may also confirm the prediction

of its deleterious effect and may account for the predicted large decrease in stability. An unfa-

vorable state of donor donor interaction was observed at ARG-383 (Fig 4). gidBGLu126Gly

-amikacin interaction has also shown a lower binding affinity (Fig 6) with unfavorable donor-

donor interaction at LYS-165. On the other hand, docking of lptA protein (2R1A) with amika-

cin revealed increased affinities of the lptAT55A variant when compared to non-mutant pro-

tein (Fig 5). Two unfavorable states of interactions have been observed at THR-94 and PRO-

Table 1. Measures of diagnostic accuracy for variants related to amikacin resistance.

Molecular marker Specificity % PPV % NPV % LR LR+ DOR Accuracy

nalDSer32Asn 99.3 62.5 80 6.7 6.57 6.84 0.80

fusA1Y552C 99.5 71.4 80 8.48 9.2 9.60 0.80

fusA1D588G 100 100 80 12.7 37 38.38 0.80

arnAA170T 98.1 65.2 81.4 22.6 7.26 8.27 0.81

arnDG206C 97.9 60.9 81.2 18.6 6.1 6.84 0.80

rmtA 99.8 83.3 80.1 11 23 20.86 0.80

rmtD 100 100 80.1 15.96 – – 0.80

https://doi.org/10.1371/journal.pone.0267396.t001

Table 2. Measures of diagnostic accuracy for genes related to amikacin resistance.

Molecular marker Sensitivity % PPV % LR LR+ DOR Accuracy

armR 94 80.2 3 1.06 1.94 0.77

nalC 95.2 80.3 3.9 1.06 2.23 0.78

nalD 92.8 80.2 2.4 1.05 1.74 0.76

mexR 99 79.3 0 0.99 0.89 0.79

mexZ 94.7 80.4 4.2 1.06 2.21 0.77

ampR 95.5 80.3 4.4 1.06 2.38 0.78

https://doi.org/10.1371/journal.pone.0267396.t002
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92. Docking results showing binding of amikacin to different variant and non-substituted pro-

teins are shown in Figs 1–6.

Discussion

High specificity is usually considered an important parameter to rule in any diagnosis. A

group of markers showing high specificity and high LR+ to the phenotype under assessment

can be used as molecular markers to rule in the diagnosis under consideration [42]. The diag-

nostic value of this type of markers is higher when the marker combines high specificity and

high LR+ with high DOR, high accuracy, and higher PPV towards the same phenotype. This

has been demonstrated in the current group of studied molecular markers in two sets of mark-

ers. The first set which can be used to rule in amikacin resistance included nalD Ser32Asn,

fusA1Y552C, fusA1D588G, arnA A170T, and arnDG206C while the second set that can be

Table 3. Measures of diagnostic accuracy for variants related to amikacin susceptibility.

Molecular marker Specificity % PPV % LR LR+ DOR Accuracy

faoAT385A 100 100 3.7 19 19.34 0.22

nuoGA890T 100 100 7 36 37.31 0.23

nuoGA574T 99.1 96 6 6.33 6.66 0.25

lptAT55A 95.4 86.1 1.2 1.61 1.66 0.26

lptAR62S 98.2 88.9 1.2 2.11 2.16 0.23

pstBR87C 100 100 1 50 52.58 0.21

gidBE126G 100 100 2.8 14 14.18 0.22

gidBQ28K 100 100 3.7 19 19.35 0.22

amgSE108Q 100 100 3.7 19 19.35 0.22

rplYQ41L 100 100 1.9 10 10.09 0.21

https://doi.org/10.1371/journal.pone.0267396.t003

Table 4. Predicted functional effects of variants identified as potential diagnostic markers.

Molecular marker/ variant PROVEAN prediction I-Mutant prediction

Predicted effect (cutoff) PROVEAN score a Protein Stability Reliability Index b

nalDSer32Asn Deleterious (-2.5) -2.500 Decreased stability 2

fusA1Y552C Deleterious (-2.5) -7.256 Large decrease in stability 0

fusA1D588G Deleterious (-2.5) -6.198 Large decrease in stability 9

arnAA170T Deleterious (-1.3) -2.065 Decreased stability 4

arnDG206C Deleterious (-2.5) -8.374 Large decrease in stability 9

faoAT385A Deleterious (-2.5) -3.272 Large decrease in stability 8

nuoGA890T Neutral (-2.5) -0.131 Large decrease in stability 9

nuoGA574T Deleterious (-1.3) -1.940 Decreased stability 4

lptAT55A Neutral (-2.5) 0.852 Large decrease in stability 9

lptAR62S Deleterious (-2.5) -3.392 Large decrease in stability 9

pstBR87C Deleterious (-2.5) -6.874 Large decrease in stability 8

gidBE126G Deleterious (-2.5) -2.779 Large decrease in stability 9

gidBQ28K Deleterious (-1.3) -1.442 Decreased stability 3

amgSE108Q Deleterious (-1.3) -1.774 Increased stability 5

rplYQ41L Deleterious (-2.5) -3.098 Decreased stability 6

aVariants showing PROVEAN score less than the used cutoff are predicted as deleterious.
bReliability Index shows the degree of reliability of the predicted effect on protein function stability; the higher the number, the more reliable the prediction is.

https://doi.org/10.1371/journal.pone.0267396.t004
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used to rule in amikacin susceptibility included faoAT385A, nuoGA890T, nuoGA574T,

lptAT55A, lptAR62S, pstBR87C, gidBE126G, gidB Q28K, amgS E108Q, and rplYQ41L.

Although high specificity is considered of primary importance in ruling in the diagnosis of

resistance, markers showing high sensitivity and high NPV towards the phenotype of interest

can be applied using the rule-out algorithm. The presence of these markers cannot confirm the

phenotype or behavior of interest, but its absence practically rules out the same conclusion.

This can show higher predictive performance when high sensitivity and high NPV are com-

bined with low specificity and low LR+ in addition to high LR, high DOR and high accuracy.

Fig 1. Comparison of amikacin interaction with nalD (5H9T) and nalDSer32Asn. (a) nalD (5H9T)- Amikacin

interaction showed binding affinity of -7; (b) Amikacin interaction with nalDSer32Asn mutant showed lower binding

affinity of– 6.1.

https://doi.org/10.1371/journal.pone.0267396.g001

Fig 2. Comparison of amikacin interaction with fusA1 (4FN5) and fusA1Asp588Gly. (a) fusA1 (4FN5)—Amikacin

interaction showed binding affinity of -7; (b) Amikacin interaction with fusA1Asp588Gly mutant showed lower

binding affinity of– 5.9.

https://doi.org/10.1371/journal.pone.0267396.g002
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In the current study set, a group of efflux-pump related genes including armR, nalC, nalD,

mexR, mexZ, and ampR can be used to rule out amikacin susceptibility and thus to predict

resistance and thus can be used as a first- step screening markers.

The most important predictors identified from the output of the predictive model have

been functionally analyzed and results from the analysis can confirm their importance and

potential effect on cell resistance. nalDSer32Asn has been identified as a deleterious mutant

and may affect its repressor function leading to increased expression of MexAB-OprM and

consequently amikacin resistance. Docking results have shown that nalD Ser32Asn mutant

Fig 3. Comparison of amikacin interaction with fusA1 (4FN5) and fusA1Tyr552Cys. (a) fusA1 (4FN5)- Amikacin

interaction showed binding affinity of -7; (b) Amikacin interaction with fusA1Tyr552Cys mutant showed lower

binding affinity of– 6.7.

https://doi.org/10.1371/journal.pone.0267396.g003

Fig 4. Comparison of amikacin interaction with faoA (2D3T) and faoAT385A. (a) faoA (2D3T)—Amikacin

interaction showed binding affinity of -7.4; (b) Amikacin interaction with faoAT385A mutant showed lower binding

affinity of– 5.5.

https://doi.org/10.1371/journal.pone.0267396.g004
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has variable binding interactions with amikacin in different tested models with some poses

showing decreased amikacin binding affinity (Fig 1), reflecting a possible role of amikacin in

the regulation of its own efflux by interacting with nalD efflux regulator, however, the exact

molecular consequence of such binding needs to be further studied.

In the current analysis, both variants fusA1Y552C and fusA1D588G showed link to amika-

cin resistance. Mutations in the gene that encodes for elongation factor G, fusA, have been pre-

viously linked to fusidic acid resistance in Salmonella Typhimurium. Some mutations are

thought to have pleiotropic effects on gene expression, which may lead to fitness differences in

Fig 6. Comparison of amikacin interaction with gidB (1JSX) and gidBGLu126Gly. (a) gidB (1JSX)—Amikacin

interaction showed binding affinity of -6.8; (b) Amikacin interaction with gidBGLu126Gly mutant showed lower

binding affinity of– 6.

https://doi.org/10.1371/journal.pone.0267396.g006

Fig 5. Comparison of amikacin interaction with lptA (2R1A) and lptAT55A. (a) lptA (2R1A)—Amikacin

interaction showed binding affinity of -5.3; (b) Amikacin interaction with lptAT55A mutant showed higher binding

affinity of– 6.7.

https://doi.org/10.1371/journal.pone.0267396.g005
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different environments [43]. Earle et al., (2016) have also reported a variety of fusA mutations

in relation to Staphylococcus aureus resistance to fusidic acid [44].

Exploring the secondary structures of the gene showed that the amino acid substitution

fusA1 Y552C occurred just at the position of the bend between the previous small alpha-helix

and the subsequent long beta-strand [45] while fusA1D588G occurred just 2 nucleotides pre-

ceding the end of its containing beta strand. Both variants were predicted as deleterious at—

2.5 cutoff with high PROVEAN scores (-6.198 and -7.256 for fusA1D588G and fusA1Y552C,

respectively). Both variants were also predicted to cause large decrease in stability using

I-Mutant. It appears that both fusA1 mutants exhibit less binding affinity to amikacin when

compared to non-substituted fusA1 protein (Figs 2 and 3) with fusA1D588G showing lower

binding affinities. This may explain the role of these variants in conferring amikacin resistance

by interfering with amikacin binding to elongation factor G and consequently affecting its role

in inhibiting protein translation. These observations highlight the important functional effect

of these variants, which support their potential importance to be used as diagnostic markers.

fusA1Y552C, has been previously reported in the literature [46, 47] and has been identified in

the current analysis in relation to amikacin resistance. These observations point to the impor-

tance of fusA1 gene, which produces elongation factor G (EF-G1A) that is considered a key

component of the translational machinery that can modify aminoglycoside susceptibility. In

support of that are the previous observations of fusA mutations induced by the in vitro expo-

sure of Ps. aeruginosa to increasing concentrations of tobramycin [48].

The Arn (PA3552-PA3559) LPS modification genes have also been linked to aminoglyco-

sides resistance because the expression of the arnBCADTEF operon is recognized as a contrib-

uting factor that decreases the interaction and uptake of polycationic antibiotics through

bacterial membranes [49]. Results of the current analysis support that because the two variants

identified i.e., arnAA170T, arnDG206C, show higher predictive values towards amikacin resis-

tance and were also predicted as deleterious using PROVEAN. arnA A170T was predicted as

deleterious at -1.3 cutoff (PROVEAN score = -2.065) with predicted decrease in stability using

I-Mutant while arnD G206C was predicted as deleterious at -2.5 cutoff (PROVEAN score =

-8.374) with predicted large decrease in stability using I-Mutant. These observations may also

indicate the important functional roles associated with these variants, which add to their diag-

nostic importance.

An important finding is the observation of a group of molecular markers showing high

specificity and high positive predictive values to amikacin susceptibility. These can be regarded

as molecular susceptibility markers to rule in the diagnosis of amikacin susceptibility. These

include faoAT385A, nuoGA890T, nuoGA574T, lptAT55A, and lptAR62S. Screening transpo-

son insertion mutant library has previously shown that disruption of faoAB and lptA is associ-

ated with increased aminoglycosides susceptibility (Krahn et al., 2012), and these findings

support findings from the current analysis. faoAB encodes a multienzyme complex that is

involved in degradative fatty acid [FA]-oxidation, and lptA encodes a lysophosphatidic acid

acyltransferase (LPA), responsible for adding the second FA to glycerol-3 phosphate in the

synthesis of phospholipids (PLs) [50]. Both faoAT385A and lptAR62S were predicted as delete-

rious using PROVEAN. Also, each of faoAT385A, lptAT55A, and lptAR62S were also pre-

dicted to result in large decrease in protein stability, so it is proposed that these variants are

good candidates to be used as amikacin susceptibility markers. This can be supported by the

frequent observation of these variants in amikacin susceptible isolates, their higher predictive

values towards susceptibility, and their probable functional effect in relation to amikacin bind-

ing and uptake across the outer LPS membrane of Ps. aeruginosa. Docking revealed that the

faoAT385A variant shows decreased binding affinities to amikacin with values ranging

between -5.5 and -6.2 when compared to binding affinities of the non-substituted protein
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which ranged between -7.2 and -7.9 (Fig 4). On the other hand, docking of lptA protein

(2R1A) with amikacin revealed increased affinities of the lptAT55A variant with values ranging

between -6 to -6.7 when compared to non-mutant, which showed binding affinities ranging

between -5.2 to 6 (Fig 5). The molecular consequence of such altered binding needs to be

investigated due to the complexity of steps involved in uptake and regulation of intrinsic ami-

noglycoside resistome, including different uptake and translational steps.

nuoG operon codes for proton-translocating type I NADH oxidoreductase which is an

enzymatic complex that significantly contributes to the proton electrochemical gradient. Inac-

tivation of NADH dehydrogenase has been shown to impair membrane energetics and thereby

the uptake of aminoglycosides [51]. El’Garch et al., (2007) has previously shown that combined

simultaneous mutations in galU, nuoG, mexZ, and rplY can increase survival rates in Ps. aeru-
ginosa treated with tobramycin up to 16-fold while single gene mutation has a much lower

effect [51]. A recent study investigating resistance in experimentally evolved Ps. aeruginosa has

identified a total of 24 mutated genes in relation to aminoglycoside resistance with ten mutants

in genes directly involved in oxidative phosphorylation and proton motive force, including

nuoG mutants [52]. Some of the identified mutants have also showed clinical relevance when

re-tested. The same study has also identified fusA1, mexR, nalD, and amgS mutants as related

to tobramycin resistance. In support of that are similar findings from transcriptional profile

analysis, which identified the nuoG among other genes encoding NADH dehydrogenases and

that were downregulated in adaptation to Ps. aeruginosa chronically infected lung [53]. nuoG

mutants leading to gene disruption may also affect the survival of the organism being essential

for a functional respiratory complex .

On the other hand, inactivation of pstB has previously been linked to aminoglycoside sus-

ceptibility, especially when combined with inactivation of other genes, including those associ-

ated with lipid biosynthesis or metabolism (lptA, faoA) or other two component regulators

(amgRS) (Krahn et al., 2012). This study supports that by identifying pstBR87C variant in rela-

tion to amikacin susceptibility, which probably causes inactivation of pstB (PROVEAN score =

- 6.874), being predicted as deleterious. It was also predicted to cause a large decrease in pro-

tein stability using I-Mutant. PstB is a phosphate uptake regulatory protein that has shown to

be upregulated among many other genes inducing cellular cytotoxicity under adverse condi-

tions through phosphate acquisition [54]. These transcriptional changes showing association

with cellular cytotoxicity may explain the role of the observed pstB variant from the current

analysis. Giving additional support, other mutations in ptsB have been previously linked to

low-level tobramycin resistance [55].

gidB (glucose-inhibited division gene) is found among the gene cassettes harboring the

OriC regions in some bacteria, including Ps. aeruginosa [56]. gidB is known to be involved in

posttranslational modification methylation of 16S RNA. gidB mutant has also shown a com-

promised overall bacterial fitness in Salmonella [57]. This may reflect the physiologic cost of

methylation deficiency. The effect of gidB mutations on antimicrobial susceptibility is thought

to occur through mechanisms involving post-transcriptional modification, which explains its

relation to aminoglycoside resistance. gidB is considered highly conserved in both Gram-posi-

tive and Gram-negative bacteria with gidB protein known among the proteins involved in cell

cycle control of DNA replication. Consequently, its disruption may lead to inhibition of cell

division which may also explain the association observed with amikacin susceptibility from the

current analysis. Two deleterious amino acid substitutions in gidB, including E126G and

Q28K showed association with amikacin susceptibility phenotype.

All the sequences identified from the current study set with the variant gidBE126G were

amikacin susceptible. The position of this variant when compared to the tertiary structure of

gidB methyltransferase from Bacillus Subtilis showed to occur at the position of the bend
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between the end of the third beta strand and the following alpha helix which may give an inter-

pretation to its possible related functional role. Similar to gidBE126G, all the sequences with

the variant gidB Q28K which occurs at the end of the second alpha helix [58] were amikacin

susceptible. In addition to being predicted as deleterious causing large decrease in protein sta-

bility, it appears that gidB E126G variant leads to unfavorable states of interaction with amika-

cin as seen in multiple poses when compared to the non-mutant protein (Fig 6). This may

indicate a decreased binding affinity of amikacin to that protein in its mutated form and prob-

ably affect its methyltransferase activity. However, such an interaction between amikacin,

gidB, and 16S ribosomal RNA needs to be further studied.

An important point to consider when studying and interpreting the effects of different

mutations, in general, is that the dynamics of mutations interactions should be overall consid-

ered. It has been shown that the buildup of resistance cannot be attributable only to DNA

mutations but may also develop as a result of interactions between mutations and cellular

adaptation [48]. In addition, the fitness cost of an observed mutation can lead to cross-resis-

tance or collateral sensitivity, and this also needs to be considered. This has been previously

observed with Ps. aeruginosa [59]. It is also important to consider that only 26.9% of the vari-

ance in amikacin MIC could be explained when variants were included as predictors for a bet-

ter model. This finding may indicate that important elements contributing to determining

amikacin resistance may have not been discovered or studied yet. The interaction between dif-

ferent elements may contribute to resistance or the effect of expression level could play an

important role in explaining the variability in MIC.

Conclusion

The identified sets of markers can usefully predict amikacin susceptibility phenotypes and can be

used in a complementary way to guide prescription. Absence of the efflux-pump genes armR,

nalC, nalD, mexR, mexZ, and ampR as well as identifying any of the variants nalDSer32Asn,

fusA1 Y552C, fusA1D588G, arnAA170T, and arnDG206C show high potential to guide against

amikacin prescription while identifying any of the variants faoAT385A, nuoGA890T, nuoG

A574T, lptAT55A, lptAR62S, pstBR87C, gidBE126G, gidBQ28K, amgSE108Q, and rplYQ41L

would predict amikacin susceptibility and thus recommend for its prescription. Further epidemi-

ologic evidence and validation studies can be carried out to generalize these findings. Using such

useful predictor molecular diagnostic markers would offer better informed and directed antibiotic

prescription and guard against treatment failure. Such an approach would preserve available anti-

biotics and consequently make current treatment options viable for longer.

Aminoglycoside resistance predictors are not among the targets currently included in avail-

able diagnostic panels. It is important to highlight that currently available diagnostic panels

only use acquired resistance elements as resistance predictors and do not consider chromo-

somal variants in most cases. Furthermore, individual agents from the same antimicrobial

class are not individually addressed. On the other hand, resistance panels designed for research

purposes include a large number of targets which are nonspecific or diagnostic for organism-

agent combination. The suggested set of predictors can act as useful diagnostic panels to be

used in a complementary way for inclusion into different sequence-based diagnostic platforms

or for integration into other sequence-based clinical diagnostics workflows.

Supporting information

S1 Table. List of genome sequences included in the study with their corresponding amika-

cin MIC.

(PDF)

PLOS ONE Amikacin resistance predictors in Ps. aeruginosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0267396 April 25, 2022 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0267396.s001
https://doi.org/10.1371/journal.pone.0267396


S2 Table. Genes and gene variants extracted from the literature.

(PDF)

Author Contributions

Conceptualization: Wedad M. Nageeb.

Data curation: Wedad M. Nageeb, Helal F. Hetta.

Formal analysis: Wedad M. Nageeb.

Investigation: Wedad M. Nageeb, Helal F. Hetta.

Methodology: Wedad M. Nageeb.

Validation: Wedad M. Nageeb, Helal F. Hetta.

Visualization: Wedad M. Nageeb, Helal F. Hetta.

Writing – original draft: Wedad M. Nageeb, Helal F. Hetta.

Writing – review & editing: Wedad M. Nageeb, Helal F. Hetta.

References

1. US CDC. Antibiotic resistance threats in the United States. Centers Dis Control Prev. 2019;1–150.

2. Miao R, Wan C, Wang Z, Zhu Y, Zhao Y, Zhang L, et al. Inappropriate antibiotic prescriptions among

pediatric inpatients in different type hospitals. Medicine (Baltimore) [Internet]. 2020 Jan; 99(2):e18714–

e18714. Available from: https://pubmed.ncbi.nlm.nih.gov/31914082 https://doi.org/10.1097/MD.

0000000000018714 PMID: 31914082
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