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Abstract

Integration of cellular signaling pathways with androgen receptor (AR) signaling can be achieved 

through phosphorylation of AR by cellular kinases. However, the kinases responsible for 

phosphorylating the androgen receptor at numerous sites and the functional consequences of AR 

phosphorylation are only partially understood. Bioinformatic analysis revealed AR serine 213 

(S213) as a putative substrate for PIM1, a kinase overexpressed in prostate cancer. Therefore, 

phosphorylation of AR serine 213 by PIM1 was examined using a phosphorylation site-specific 

antibody. Wild type PIM1, but not catalytically inactive PIM1, specifically phosphorylated AR but 

not an AR serine to alanine mutant (S213A). In vitro kinase assays confirmed that PIM1 can 

phosphorylate AR S213 in a ligand independent manner and cell type specific phosphorylation 

was observed in prostate cancer cell lines. Upon PIM1 overexpression AR phosphorylation was 

observed in the absence of hormone and was further increased in the presence of hormone in 

LNCaP, LNCaP-abl, and VCaP cells. Moreover, phosphorylation of AR was reduced in the 

presence of PIM kinase inhibitors. An examination of AR mediated transcription showed that 

reporter gene activity was reduced in the presence of PIM1 and wild type AR, but not S213A 

mutant AR. Androgen mediated transcription of endogenous PSA, Nkx3.1, and IGFBP5 was also 

decreased in the presence of PIM1 whereas IL6, cyclin A1, and caveolin 2 were increased. 

Immunohistochemical analysis of prostate cancer tissue microarrays showed significant P-AR 

S213 expression that was associated with hormone refractory prostate cancers, likely identifying 
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cells with catalytically active PIM1. In addition, prostate cancers expressing a high level of P-AR 

S213 were twice as likely to be from biochemically recurrent cancers. Thus, AR phosphorylation 

by PIM1 at S213 impacts gene transcription and is highly prevalent in aggressive prostate cancer.
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Introduction

The androgen receptor (AR), a phospho-protein (1), must respond to carefully timed 

developmental and extracellular signals to direct differentiation and proliferation of the 

prostate but the impact of AR phosphorylation on AR function and cancer progression is not 

well understood. Studies using pharmacological inhibitors and kinase overexpression have 

shown that Akt can phosphorylate the AR on serines 213 and 791 depending on cell type (2–

4). Moreover, our previous studies show that AR is rapidly phosphorylated at S213 in 

response to dihydrotestosterone (DHT) or the synthetic androgen, R1881 and is tightly 

regulated in prostate epithelial cells and tissues (5). While AR S213 is embedded in a 

putative Akt consensus site, recent bioinformatic analysis (http://www.netphorest.info) 

indicates that it is also a consensus site for PIM1 kinase. Using the phosphorylation site-

specific antibody against AR phospho-serine 213 (P-AR S213) developed in our laboratory, 

we examined whether PIM1 could phosphorylate AR S213.

PIM1 is expressed as two isoforms, a longer form (44 kDa) resulting from an alternative 

translation initiation site (6) and localized to the plasma membrane and a shorter form (33 

kDa) that is localized to the cytoplasm and the nucleus (7–8). PIM1 promotes cell cycle 

progression and cell survival by phosphorylation of Cdc25A (9), downregulation of the 

cyclin-dependent kinase inhibitor, p27 (10) and inactivation of the pro-apoptotic pathway by 

phosphorylating BAD protein on the regulatory serine 112 site (11).

While PIM1 has been more extensively studied in lymphoma, there is increasing evidence to 

suggest that PIM1 overexpression plays a role in prostate cancer (12–13). Consistent with 

the synergy between c-myc and PIM1 in promoting leukemia (14–15), a mouse model of c-

myc-driven prostate cancer shows that PIM1 is upregulated (16) and in a tissue 

recombination model, PIM1 synergizes with c-myc to induce carcinoma (17). In addition, a 

metastatic mouse model of prostate specific p53 and Rb deficiencies demonstrate increased 

levels of PIM1 protein (18).

Several substrates of PIM1 have been identified: Cdc25A, p27, BAD, HP1γ, 4EBP1, and 

p21, (9–11, 19–21). Here we identify AR as a novel PIM1 substrate. In the context of 

prostate cancer, the proto-oncogene (22) PIM1 can phosphorylate AR S213 in a ligand 

independent manner. Moreover, AR S213 phosphorylation is prevalent in recurring prostate 

cancers, suggesting possible upregulation of a phosphorylating kinase and the marking of 

cells with functionally active PIM1 in castration resistant prostate cancer.

Ha et al. Page 2

Oncogene. Author manuscript; available in PMC 2014 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.netphorest.info


Results

PIM1 Phosphorylates the Androgen Receptor at Serine 213

PIM1 and Akt kinases were assessed for their impact on AR phosphorylation at serine 213. 

PIM1 (isoform 2, 33kDa) kinase was expressed in human embryonic kidney (HEK) 293 

cells with either wild type AR or an AR serine to alanine (S213A) mutant that cannot be 

phosphorylated (Figure 1A). Figure 1A indicates that expression of PIM1 kinase results in 

robust phosphorylation at AR S213 (lanes 2 and 8), without detectable phosphorylation of 

the AR S213A mutant (lanes 5 and 11) indicating that PIM1 specifically phosphorylates 

S213. While phosphorylation is more prevalent in the presence of ligand (10nM R1881, lane 

8), there is also marked phosphorylation in the absence of exogenously added ligand (0nM 

R1881, lane 2), suggesting that in the presence of PIM1 phosphorylation can occur under 

low hormone conditions.

Since AR S213 may also be phosphorylated by Akt (2–4), we examined the impact of 

constitutively active Akt (Myr-Akt) on AR S213 phosphorylation. The results indicate that 

Akt also appears to increase AR S213 phosphorylation (Figure 1A). However, consistent 

with previous results (23–24), the total AR protein levels are increased in the presence of 

Akt, indicating that the apparent increase in phosphorylation is likely due to upregulation of 

AR protein levels (compare AR panel, lane 7 versus 9 to P-AR S213 panel, lane 7 versus 9). 

Upregulation of AR through Akt seems to be independent of AR phosphorylation since the 

AR mutant S213A is also increased. However we cannot exclude the possibility that Akt 

makes a contribution to AR phosphorylation under these conditions. To determine if the 

catalytic activity of PIM1 kinase was necessary for AR S213 phosphorylation, a kinase 

deficient PIM1 mutant (K67M) was co-expressed with AR and compared to PIM1 WT. As 

shown in Figure 1B, co-expression of PIM1 K67M and AR did not increase P-AR S213 

over the basal level of phosphorylation whereas the PIM1 WT increased phosphorylation of 

AR S213.

Our previous work indicated that the ligand-dependent modification detected by the P-AR 

S213 antibody, was phosphorylation (5) as demonstrated by the absence of antigen detection 

following treatment with lambda phosphatase. The apparent increase in AR S213 

phosphorylation in the presence of PIM1 was also sensitive to lambda phosphatase treatment 

(Figure 2). Lambda phosphatase (λ PPase) treatment abolished AR S213 phosphorylation in 

response to PIM1 in the absence of R1881 (Figure 2, lane 2 vs lane 4) and the presence of 

R1881 (Figure 2, lane 6 vs 8), indicating that overexpression of PIM1 in fact, results in 

phosphorylation on AR S213.

PIM1 Phosphorylates AR in vitro

Results shown above indicate that AR is phosphorylated at S213 in the presence of 

overexpressed PIM1, but do not prove that PIM1 can directly phosphorylate AR. To 

determine if AR is a PIM1 substrate we performed in vitro kinase assays. As a comparison, 

the ability of Akt to phosphorylate AR S213 was also examined in these assays since Akt 

has been reported to phosphorylate S213 (2–4). As shown in Figure 3A, P-AR S213 was 

detected in the presence of GST-PIM1, but not His-tagged Akt (His-Akt) or GST-GSK3, 
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included as a negative control. In addition, AR S213 phosphorylation occurred in both the 

presence and absence of ligand (compare 0nM R1881 to 10nM R1881). Interestingly, active 

Akt was not able to phosphorylate AR under the conditions of these kinase reactions. To 

ensure the His-tagged Akt was catalytically active, we incubated Akt with GST- GSK3 α/β, 

a well-established substrate of Akt. As shown in Figure 3B, Akt was able to phosphorylate 

GSK3 α/β at S21/9 and as expected, active PIM1 phosphorylated Bad at S112 (Figure 3C).

In addition, recombinant full length His-AR, was used in the in vitro kinase assay to 

eliminate the possibility that phosphorylation was occurring because of proteins in complex 

with immunoprecipitated AR. An in vitro kinase reaction containing 10nM R1881 was 

performed using His-AR in the presence or absence of recombinant GST-PIM1. 

Phosphorylation of AR S213 was only observed in the presence of PIM1 (Figure 3D), once 

again indicating that AR is a substrate of PIM1 kinase.

PIM1 Expression in LNCaP and LNCaP-abl Cells Enhances AR Phosphorylation

Experiments shown above indicate that under conditions of AR and PIM1 overexpression, 

AR becomes phosphorylated on S213. To determine if increased levels of PIM1 result in 

phosphorylation of endogenous AR, PIM1 was overexpressed in prostate cancer cell lines 

including androgen dependent LNCaP and VCaP cells and an androgen independent LNCaP 

subline, LNCaP-abl (abl). Overexpression of PIM1 resulted in phosphorylation of AR S213 

that was readily detectable in LNCaP and abl cell lines compared to the vector only 

conditions (Figure 4A). As in the 293 cell line experiments, phosphorylation occurred in 

both the presence and absence of hormone. As expected, expression of the kinase deficient 

mutant K67M did not result in P-AR S213 expression in LNCaP or abl cells (data not 

shown). In VCaP cells P-AR S213 was observed in a hormone-sensitive manner in the 

absence of PIM1 overexpression (see VCaP, vector only (v.o.) lanes, and compare minus 

versus plus R1881). This is in contrast to LNCaP and LNCaP-abl cells where little 

phosphorylation was observed in the absence of overexpressed PIM1. Moreover, 

phosphorylated AR S213 significantly increased in the presence of overexpressed PIM1 in 

VCaP cells. VCaP cells stably overexpressing vector only (v.o.) or PIM1 were generated to 

assess the effect of PIM1 on cell proliferation (Figure 4B, right). PIM1 overexpression does 

not appear to effect cell proliferation in adherent culture conditions but under anchorage 

independent conditions using ultra-low attachment plates, VCaP cells overexpressing PIM1 

formed more spheres than the vector control cell line (Figure 4B, left). The increased 

number of spheres formed in the VCaP-PIM1 cell line suggests that these cells are more 

transformed than the vector only cell line. A similar result has been reported for LNCaP 

cells overexpressing PIM1 grown in soft agar (25).

Inhibition of AR S213 Phosphorylation in the Presence of PIM kinase Inhibitors

To determine if inhibition of PIM1 affected phosphorylation of AR S213, VCaP cells were 

treated with 10nM R1881 in the presence of a PIM kinase inhibitor, SGI-1776. Treatment 

with the inhibitor reduced phosphorylation of S213 and P-4EBP1 Thr37/46, an established 

substrate of PIM1 (21, 26–27), in a dose dependent manner (Figure 5A). SGI-1176 also 

significantly reduced the level of P-AR S213 in VCaP and LNCaP cells overexpressing 

PIM1 (Figure 5B), indicating that PIM1 inhibition of both endogenous and upregulated 
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levels of PIM1 result in decreased expression of P-AR S213. In addition, a structurally 

different PIM1 inhibitor, PIM1/2 inhibitor V, reduced endogenous phosphorylation of S213 

in VCaP cells (Figure 5D). PIM1/2 inhibitor V was able to dramatically inhibit S213 

phosphorylation in in vitro kinase reactions where immunopurified AR was incubated with 

GST-PIM1 in the presence or absence of PIM 1/2 inhibitor V (Figure 5C). The robust 

phosphorylation of AR by GST-PIM1 was reduced in the presence of inhibitor, independent 

of the presence of hormone.

PIM1 Expression Affects AR Mediated Transcription

The impact of PIM1 phosphorylation of AR S213 on AR function is not known. To evaluate 

the effect of PIM1 phosphorylation of AR on gene transcription we conducted luciferase 

assays using the AR reporter gene ARR3-luciferase (28) in the presence of either WT AR or 

AR S213A. As shown in Figure 6A, co-expression of WT AR and PIM1 repressed AR 

mediated transcription in a dose dependent manner. In contrast, PIM1 co-expression with 

AR S213A had no effect on the same reporter gene (Figure 6B). The effect of PIM1 

overexpression on AR WT and AR S213A transcriptional activity is not due to AR protein 

levels, as AR levels are equivalent or increased slightly in the presence of PIM1 and 24 

hours exposure to R1881 (Figure 6A and 6B, insets). In support of these studies, 

examination of increased PIM1 expression in VCaP and LNCaP cells with endogenous 

levels of AR showed diminished luciferase reporter gene activity in the presence of PIM1 

(Figure 6C and D). In LNCaP cells stably expressing vector only or PIM1, we next 

examined androgen mediated transcription of endogenous target genes PSA and Nkx3.1. 

Androgen treatment increased mRNA transcript levels of PSA and Nkx3.1 in the vector only 

cells as expected. However, in cells overexpressing PIM1, levels of PSA and Nkx3.1 mRNA 

were reduced 1.9 to 3.7 fold (Figure 6E). Repression of androgen mediated transcription of 

PSA and Nkx3.1 was not due to decreased levels of AR protein. Figure 6F shows that AR 

protein levels were equivalent between vector only and PIM1 expressing cells and as 

expected AR levels were increased in the presence of androgen. Thus, PIM1 appears to 

decrease androgen mediated transcription of PSA and Nkx3.1, genes expressed by 

differentiated prostate epithelial cells.

We also examined the impact of PIM1 expression on genes selected from the RT2 Profiler 

PCR Array, representing 84 genes regulated in prostate cancer. Of the 84 genes, 13 were 

upregulated greater than 2 fold and 7 were downregulated greater than 1.5 fold when 

comparing PIM1 and vector only in the presence of R1881 (data not shown). IL6, cyclin A1 

(CCNA1), caveolin 2 (CAV2), and IGFBP5 were highly up- or downregulated and were 

chosen for validation based on androgen regulated expression, effect of PIM1 on 

transcription, and relevance to prostate cancer. Androgen regulated expression of IGFBP5, 

CCNA1, IL6, and CAV2 was observed (vo controls (Figure 7A)). In the presence of PIM1 

and R1881, IL6, cyclin A1, and caveolin 2 were upregulated 5, 2.2, and 4 fold, respectively 

while IGFBP5 was downregulated almost 7 fold (Figure 7A, compare black bars). In 

addition, siRNA knockdown of PIM1 in VCaP cells resulted in increased PSA and IGFBP5 

mRNA compared to non-silencing controls (Figure 7B, compare black bars). Reduced 

protein expression of PIM1 in siRNA treated cells and equivalent AR levels are shown in 

Figure 7C.
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AR S213 and PIM1 Expression in Human Prostate Cancer

To investigate the possible clinical relevance of AR S213 phosphorylation, we examined the 

expression pattern of antigen detected by antibody against P-AR S213 compared to antigen 

detected by antibody that recognizes both phosphorylated and non-phosphoryated AR (total 

AR). The studies were conducted on two different sets of tissue microarrays (TMAs) 

obtained from the New York University (NYU) Prostate Cancer Biorepository Network and 

Memorial Sloan Kettering Cancer Center (MSKCC). Disease outcome data was available 

for both tissue microarrays. Immunohistochemistry was performed on both TMAs 

examining the expression of P-ARS213 (Figure 8A, panels A–C) and AR (not shown). The 

NYU TMA was also analyzed for PIM1 expression (Figure 8A, panels D–F). Histoscore (H-

score) analysis of the TMAs indicates that nuclear P-AR S213 expression was significantly 

increased in hormone refractory cancers versus non-hormone refractory cancers (H-score of 

64.28 ± 55.59 vs 13.41 ± 35.80, p<0.0001) (Figure 8B). In addition, expression of nuclear P-

AR S213 was increased in cases with high Gleason scores (Gleason 8–10) vs low Gleason 

scores (Gleason 5–7) (H-score 43.07 ± 54.27 vs 0.90 ± 3.51, p<0.001) (Figure 8B). 

Expression of nuclear P-AR S213 and PIM1 was much more prevalent in hormone 

refractory cancer (Figure 8A, panels A–B and panels D–E) compared to non-hormone 

refractory cancer (Figures 8A, panels C and F). PIM1 was expressed in 50% (32/64) of all 

cases, of which 14 were hormone refractory. 88.9% (16/18) of hormone refractory cancers 

were positive for P-AR S213 and 72.2% (12/18) of hormone refractory cases were positive 

for P-AR S213 and PIM1.

In the MSKCC TMA, nuclear P-AR S213 expression was detected in a wide range of cases. 

A far greater proportion of biochemically recurrent cancers have an H-score >100 (62.5% 

recurrent vs 31.4% non-recurrent). If the H-score is dichotomized to 125, 40.6% of P-AR 

S213 positive cases were recurrent vs 17.1% non-recurrent. While a high P-AR S213 H-

score was twice as likely to be from recurrent cancer, the H-scores of recurrent vs non-

recurrent cancer did not reach statistical significance. Overall, P-AR S213 expression did 

not correlate to clinical parameters available with the MSKCC TMA, including PSA levels, 

Gleason score, stage, recurrence, disease free interval or capsular penetration.

While the results from the microarrays have a similar trend, differences may be ascribed to 

the tissue type represented on the TMAs. The NYU TMA consists of tissue from clinically 

advanced prostate cancer obtained from transurethral resection of the prostate (TURP). 

Samples designated as hormone refractory were from patients that had failed hormone 

ablation therapies. The MSKCC TMA consists of tissue from patients that have undergone 

radical prostatectomy. Recurrent and non-recurrent cases were determined by biochemical 

recurrence defined as three consecutive rises in PSA levels, as opposed to cancer 

progression after hormone ablation.

Interestingly, a small number of cases had cytoplasmic staining in addition to nuclear 

staining of P-AR S213 (21.5% NYU; 14.9% MSKCC). Positive P-AR S213 staining in the 

cytoplasm was associated with a shorter disease-free interval (30 months vs 55 months). All 

cases of cytoplasmic P-AR S213 in the NYU TMA were Gleason 9 and 10.
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Discussion

The AR possesses consensus sequences for the kinases Akt (RXRXXS/T) and PIM1 

(RXRHXS) that are highly similar, suggesting that either kinase may phosphorylate AR 

depending on the cellular context. Our studies indicate that in prostate epithelial cells PIM1 

robustly phosphorylates AR at S213 and AR is likely a direct substrate of PIM1. While 

overexpression of Akt does result in slightly increased AR S213 phosphorylation in 293 

cells (Figure 1) and VCaP cells (29), this more likely reflects the increase in AR protein 

levels in the presence of Akt. However, it is possible that the kinase activity of the 

myristoylated, constitutively active Akt construct used was not robust enough to elicit 

phosphorylation of AR S213 and that more than one kinase can phosphorylate AR S213 

depending on the cellular context.

Our studies indicate that AR is phosphorylated at S213 by endogenous PIM1 in VCaP cells. 

This is in contrast to LNCaP cells, where very little phosphorylation is observed in the 

absence of PIM1 overexpression. Since levels of PIM1 appear similar between all the cell 

lines, this may reflect higher catalytic activity of PIM1 in VCaP cells than LNCaP cells. 

Alternatively, it may simply be easier to detect S213 phosphorylation in VCaP cells since 

AR levels are much higher than in LNCaP cells (Figure 4A).

We observe that overexpression of PIM1 results in decreased expression of an androgen-

responsive reporter gene; consistent with a previous study that showed repression of a 

probasin-luciferase reporter gene (30). However, PIM1 expression appears to have differing 

affects on endogenous AR target gene transcription increasing proliferative and decreasing 

differentiation signals. PIM1 overexpressing cells exhibit decreased androgen mediated 

transcription of PSA, Nkx3.1, and IGFBP5 compared to vector only containing cells. 

Repression or loss of the tumor suppressor, Nkx3.1, has been reported as an early event in 

PTEN models of prostate cancer and correlates with cancer progression (31–32). Nkx3.1 

and PSA are also markers of differentiated prostate epithelium (reviewed in (33)) suggesting 

that PIM1 overexpression may cause de-differentiation of prostate tissue. IGFBP5 has also 

been shown to be downregulated in metastases (34–35). In addition to repressing some AR 

target genes, we also show that PIM1 is involved in activation of AR target genes important 

in cell proliferation and signaling such as cyclin A1, IL6, and caveolin 2. Cyclin A1 has 

been shown to be involved in prostate cancer invasion and metastasis (36–37). IL6 has been 

implicated in androgen independent activation of AR (38), is elevated in the sera of patients 

with advanced disease (39–41), and may be involved in intracrine production of androgens 

(42). CAV2 expression was demonstrated to be increased in poorly differentiated prostate 

tissues (43). We speculate that activation of PIM1 in prostate cancer cells may repress genes 

involved in tumor suppression and differentiation and activate genes important in cellular 

transformation.

While we have not demonstrated the mechanism by which PIM1 phosphorylation of AR 

S213 changes AR target gene expression, we speculate that AR phosphorylation likely alters 

interaction with chromatin, as recently demonstrated for AR S81 (44), as well as interaction 

with cofactors resulting in differential target gene expression as demonstrated for 

phosphorylated glucocorticoid receptor interaction with Mediator (MED) 14 (45). 
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Understanding the impact of AR S213 phosphorylation by PIM1 is also complicated by the 

fact that PIM1 is likely to have AR independent effects on chromatin since PIM1 

phosphorylates HP1γ (19) and histone H3 (46). These findings are consistent with the fact 

that our data demonstrates synergistic effects of PIM1 overexpression with hormone 

treatment.

Hormone refractory prostate cancer still relies on the AR, but the impact on AR-mediated 

gene transcription is pleiotropic during cancer progression. AR pathways associated with 

proliferation, de-differentiation, and decreased apoptosis are upregulated while AR 

pathways that inhibit proliferation, induce differentiation, or promote apoptosis are 

downregulated. Gene profiling of normal prostatic epithelium, low to high grade prostate 

cancers, and metastatic prostate cancers revealed that androgen receptor signaling and 

certain androgen receptor pathways that inhibit proliferation, increase apoptosis, or induce 

differentiation are downregulated in high grade prostate cancers and metastatic disease (47–

48). Consistent with PSA mRNA downregulation in metastases (48), a recent study 

demonstrated that the proportion of tumor cells expressing low amounts of PSA increase in 

high grade cancer and hormone refractory cancers (49). Thus, although the finding that PSA 

is repressed in the presence of PIM1 appears to be paradoxical considering that PSA is 

associated with tumor growth, studies have shown that the utility of PSA as a surrogate 

marker for disease progression decreases as tumors become more de-differentiated in high 

grade and hormone refractory tumors (49–50). It is possible that P-AR S213 expression 

marks cells that express low amounts of PSA and are resistant to androgen ablative 

treatments.

While PIM1 overexpression in prostate cancer (12–13, 25) is detectable by 

immunohistochemistry, there is no easy method to determine when PIM1 is active in vivo 

since its activation does not correlate with phosphorylation detectable by an antibody. While 

not predictive of disease outcome, detection of AR phosphorylated at S213 is much more 

prevalent in aggressive, hormone refractory prostate cancer (Figure 8). Our studies indicate 

that AR is a direct target of PIM1 and as such, detection of P-AR S213 can serve as an in 

vivo marker for activated PIM1. This may be important to stratify patient populations who 

might benefit from small molecule PIM1 inhibitors in development. In fact, a PIM1 inhibitor 

was in a trial for lymphoma and prostate cancer (see clinical trials.gov Identifier 

NCT00848601, Safety of SGI-1776, A PIM kinase inhibitor to treat docetaxol refractory 

prostate cancer and relapsed/refractory non Hodgkin’s lymphoma). There is also some 

evidence that PIM1 inhibitors may enhance chemotherapy because treatment of prostate 

cancer cells with PIM1 inhibitors enhances sensitivity to taxane-based chemotherapy (51). 

Thus our studies indicate that AR is a PIM1 substrate and phosphorylated AR may serve as 

a biomarker for activated PIM1.

Materials and Methods

Cell Culture and Reagents

LNCaP, VCaP, and HEK-293 cell lines were obtained and cultured as recommended by the 

ATCC (Manassas, VA) LNCaP cells used in this study were from passages 23–30. 

Androgen independent LNCaP-abl cells (gift from Z. Culig) were maintained in RPMI-1640 
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supplemented with 10% charcoal stripped serum (cFBS) (52). R1881 (methyltrienolone) 

was purchased from Perkin Elmer (Waltham, MA) and reconstituted in ethanol. PIM kinase 

inhibitors SGI-1776 and PIM1/2 kinase inhibitor V were purchased from Selleck Chemicals 

(Houston, TX) and EMD Chemicals (Gibbstown, NJ), respectively. Both inhibitors were 

reconstituted in DMSO.

PIM1 and mutant PIM1 K67M cDNA was purchased from Origene Technologies 

(Rockville, MD). The open reading frame (ORF) for the shorter, isoform 2 of PIM1 and 

mutant PIM1 K67M was subcloned into the EcoRI/ XbaI sites of pcDNA3.1(+) with a N-

terminal FLAG tag and into the HpaI site of the pLB(N)CX retroviral vector (neomycin 

resistance cassette replaced with blasticidin resistance; gift from Greg David, NYU School 

of Medicine).

LNCaP and VCaP stable cell lines expressing vector only or PIM1 were generated after 

retroviral infection with the above construct and selection in blasticidin (Invitrogen; 

Carlsbad, CA). Pools were created and screened for expression of PIM1 via Western blot.

Transient Transfections and Infections

HEK-293 cells were transiently transfected with pcDNA3-HA-AR WT or pcDNA3-HA-AR 

S213A and vector only, pCMV6-myr-Akt1-HA pcDNA3.1(+)-FLAG-PIM1 WT or 

pcDNA3.1(+)-FLAG-PIM1 K67M using Lipofectamine (Invitrogen) according to the 

manufacturer’s recommendations. VCaP cells were transfected with siRNA directed against 

PIM1 (siGENOME SMARTpool; Dharmacon, Lafayette, CO), steroid starved and treated 

with R1881 for 24 hours.

Retroviral particles were produced in the 293T/17 cell line (ATCC). LNCaP, LNCaP-abl, 

and VCaP cell lines were infected on two consecutive days with vector only or PIM1 

retroviral particles and polybrene. After the 2nd infection, cells were steroid starved 

overnight and then treated with R1881.

Protein Extraction and Western blot Analysis

Protein extraction and Western blot analysis was performed as previously described (29). 

The following antibodies were used: phospho-AR S213 (5), AR (441), PIM1 (12H8), 

ERK-1 (K-23) (Santa Cruz Biotechnology; Santa Cruz, CA); phospho-Akt S473, phospho-

Bad S112, Bad (total), phospho-GSK3 α/β S21/9, phospho-4EBP1 Thr 37/46 (Cell 

Signaling Technology; Danvers, MA); Tubulin, HA-epitope tag (Covance; Denver, PA); and 

PIM1 (Abcam; Cambridge, MA).

Lambda Phosphatase

HEK-293 cells were transiently transfected as described above with pcDNA3-HA-AR WT 

and vector only or pcDNA3.1(+)-Flag-PIM1) and assayed as previously described (53).

Kinase Reactions

pcDNA3-FLAG-AR WT was transiently transfected into HEK-293 cells as described above. 

Cells were lysed in 1X Cell Lysis Buffer (Cell Signaling Technology) and then incubated 
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with Anti-FLAG M2 Affinity Gel (Sigma-Aldrich; St. Louis, MO). Immunoprecipitates 

were extensively washed in lysis buffer and eluted from the agarose beads with 3X FLAG 

peptide (Sigma-Aldrich). Immunopurified FLAG-AR was incubated with 1 µg of 

recombinant protein GST-GSK3 (Cell Signaling), GST-PIM1, active (Millipore; Billerica, 

MA), or His-Akt, active (Millipore) in kinase buffer (Cell Signaling) supplemented with 

0.2mM ATP. The reaction proceeded for 30 minutes at 30°C. In vitro kinase reactions were 

conducted in Assay Dilution Buffer I and Magnesium/ATP cocktail (Millipore). 3µg of His-

Bad (Millipore) or GST-GSK3 and 250ng of His-Akt or GST-PIM1 kinases were incubated 

for 10 minutes at 30°C. 1µg of full length His-Androgen Receptor (Abcam) and 250ng GST-

PIM1 were incubated for 30 minutes at 30°C in the presence of 10nM R1881. Inhibition of 

phosphorylated AR in the presence of PIM kinase inhibitor was performed as previously 

described (27) with some modifications. Immunopurified FLAG-AR and 1µg of GST-PIM1 

kinase reactions proceeded in the presence and absence of 100µM Pim kinase 1/2 inhibitor 

V for 30 minutes at 30°C. Kinase reactions were terminated with the addition of 3X SDS 

sample buffer.

Sphere Formation

VCaP stables lines were plated at a low density on ultra-low attachment plates (Corning, 

Corning, NY) and cultured the absence of serum and hormone as previously described (54), 

with the addition of N2 (Invitrogen).

Quantitative RT-PCR

Total RNA was extracted and quantitative RT-PCR was performed as previously described 

for PSA, Nkx 3.1, and RPL19 (55) with the following modifications. RNA was reverse 

transcribed using First Strand cDNA Synthesis for Real-Time PCR (USB; Cleveland, OH) 

and quantitative PCR (qPCR) was performed with HotStart-IT SYBR green qPCR Master 

Mix (2X), (USB). The RT2 Profiler PCR Array (PAHS-135) and primers for CCNA1, IL6, 

and CAV2 were purchased from SABiosciences (Valencia, CA). The primers sequences 

used to quantify IGFBP5 were F 5’-ATTGTGACCGCAAAGGATTC and R 5’-

AGGTGTGGCACTGAAAGTCC.

Human Prostate Cancer Tissue Microarrays, Immunohistochemistry, and Scoring

Human prostate cancer tissue microarrays were obtained from the New York University 

(NYU) Prostate Cancer Biorepository Network and Memorial Sloan-Kettering Cancer 

Center. Tissues were acquired according to each institution’s institutional review board’s 

policies. The NYU tissue microarray contains 65 cases represented as 4 cores per case. The 

samples are designated as being either hormone refractory (n=18) or non-hormone refractory 

(n=47), which includes hormone naïve (n=18) samples. The samples range from Gleason 

score 5 through 10. The Memorial Sloan Kettering Cancer Center (MSKCC) tissue 

microarray contains 68 cases represented as 3 cores per case. The cases are designated as 

being either biochemically recurrent (n=33) or non-recurrent (n=35). The samples range 

from Gleason score 4 through 9. Other clinical parameters include PSA levels, Gleason 

score, stage, recurrence, disease free interval or capsular penetration.
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Immunohistochemistry and image acquisition was conducted as previously described (29) 

on the NYU and MSKCC tissue microarrays for P-AR S213. In addition, the NYU 

microarray was immunostained for PIM1 (Abcam). Protein expression in each core was 

assessed using the semi-quantitative weighted histoscore method, representing staining 

intensity (negative (0), weak (1), moderate (2), and strong (3) and the percentage of positive 

cells within each intensity category. The final histoscore was determined for each case by 

taking the average histoscore of all the present cores. Both TMAs were scored by two 

independent observers. Statistical significance (p<0.05) was determined by t-test.
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Figure 1. Phosphorylation of AR WT by PIM1 Kinase
A) 293 cells were transiently transfected with either AR WT or AR mutant S213A and 

vector only, PIM1, or HA-myr-Akt. Cells were steroid starved in 10% cFBS overnight and 

then treated with vehicle or 10nM R1881 for 2 hours. Total protein lysates were subjected to 

Western blots against P-AR S213, AR (total), PIM1, HA (HA-epitope tagged myristoylated 

(Myr)-Akt), and tubulin (loading control). B 293 cells were transiently transfected with AR 

and PIM1 WT or PIM1 K67M and treated as in A. Protein lysates were subjected to Western 
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blot analysis using antibodies against P-AR S213, AR, endogenous PIM1, exogenous PIM1, 

and tubulin.
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Figure 2. Lambda Phosphatase Treatment Abolishes Phosphorylation of AR by PIM1
293 cells were transiently transfected with AR and vector only or PIM1. Cells were steroid 

starved overnight and then treated with vehicle or 10nM R1881 for 2 hours. Total protein 

lysates were mock treated or lambda phosphatase treated for 30 minutes. Lanes 9–12 

(Inputs) are protein lysates prior to lambda phosphatase treatment. Protein lysates were 

subjected to Western blots against P-AR S213, AR, and ERK-1 (loading control).
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Figure 3. PIM1 Phosphorylates AR in vitro
A 293 cells were transiently transfected with FLAG-AR. Cells were steroid starved 

overnight and then treated with vehicle or 10nM R1881 for 2 hours. FLAG-AR was 

immunopurified and then subjected to kinase reactions in the presence of recombinant 

GSK3, PIM1, or Akt. The proteins were immunoblotted for P-AR S213, AR, PIM1, and P-

Akt S473. B and C Kinase reactions using recombinant His-Akt or GST-PIM1 with their 

known substrates, GSK3 and Bad, respectively. Kinase activity was detected using 

antibodies against P-GSK3α/β S21/9, P-Akt S473, and P-Bad S112. D Recombinant AR and 

PIM1 were combined in a kinase reaction in the presence of R1881. Phosphorylation was 

detected by P-AR S213 antibody. AR and PIM1 antibodies were also used as controls for 

the presence of AR and PIM1.
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Figure 4. Phosphorylation of Endogenous AR in Response to PIM1 Overexpression
A LNCaP, LNCaP-abl, and VCaP cells were transiently infected with either vector only or 

PIM1. Cells were steroid starved overnight and then treated with vehicle or 10nM R1881 for 

2 hours. Protein lysates were subjected to Western blot analysis using antibodies against P-

AR S213, AR, PIM1, and tubulin. B VCaP stable cell lines overexpressing vector only (vo) 

or PIM1 (right panel) were grown on ultra-low attachment plates. Spheres that grew in the 

anchorage independent condition were counted under a microscope. The graph represents 

three independent experiments performed in triplicate. Each point represents the number of 
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spheres in a replicate and the horizontal bar denotes the mean (vo: 245.8 ± 21.4 and PIM1: 

274.8 ± 22.0). The p-value was calculated using an unpaired t-test.
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Figure 5. PIM1/2 Inhibition Decreases P-AR S213
A) VCaP cells were steroid starved overnight then treated with 10nM R1881 and PIM 

kinase inhibitor SGI-1776 as indicated for 4 hours. Total protein lysates were analyzed by 

Western blot with antibodies against P-AR S213, AR (total), P-4EBP1 Thr 37/46, and 

tubulin. B) VCaP and LNCaP cells were transiently infected with either vector only or 

PIM1. Cells were steroid starved overnight and then treated with vehicle or 10nM R1881 in 

the presence of absence of 20µM SGI-1776 for 4 hours. Protein lysates were subjected to 

Western blot analysis using antibodies against P-AR S213, AR, PIM1, and tubulin. C) 293 
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cells were transiently transfected with FLAG-AR. Cells were steroid starved overnight and 

then treated with vehicle or 10nM R1881 for 2 hours. FLAG-AR was immunopurified and 

incubated with recombinant PIM1 in the presence and absence of PIM1/2 inhibitor V. 

Kinase reactions were subjected to Western blot analysis using antibodies against P-AR 

S213, AR, and PIM1. D) VCaP cells were steroid starved and then treated with 10 nM 

R1881 and PIM1/2 inhibitor V for 2 hours.
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Figure 6. Regulation of AR mediated Transcription by PIM1
A and B) 293 cells were transiently transfected with AR WT or AR mutant S213A, lacZ 

reporter, ARR3-Luciferase reporter, and increasing amounts of PIM1 in the presence and 

absence of 10nM R1881. Insets show AR and PIM1 protein levels for A and B. Data was 

normalized to 10 nM R1881 in the absence of PIM1 and set to 100% activity. C) VCaP cells 

were transfected with lacZ reporter, ARR3-Luciferase reporter, and increasing amounts of 

PIM1 in the presence and absence of 10nM R1881. D) LNCaP cells were transfected as 

above in the presence of 10nM R1881. E and F LNCaP cells stably expressing vector only 
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(vo), or PIM1 (pools#1 and #2) were steroid starved overnight and then treated in the 

presence and absence of 10nM R1881 for 24 hours. qPCR was performed to quantify 

transcript levels of PSA and Nkx3.1 (E) and AR and PIM1 protein expression was 

determined (F). Graphs are representative of at least three independent experiments. Error 

was calculated using the standard deviation.
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Figure 7. PIM1 Affects AR Target Gene Expression
A) LNCaP stable cell lines overexpressing vector only (vo pool #1) or PIM1 (pool #2) were 

treated as in Figure 6E and the gene expression of IGFBP5, CCNA1, IL6, and CAV2 was 

quantified by qPCR. B) VCaP cells were transfected with siRNA against PIM1 and treated 

as above. Gene expression of PSA and IGFBP5 was quantified by qPCR and protein 

expression of AR and PIM1 determined C. Graphs are representative of at least three 

independent experiments. Error was calculated using the standard deviation.
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Figure 8. Expression of Phosphorylated AR S213 in Hormone Refractory Prostate Cancers
A) Immunohistochemistry on prostate tissues using antibodies against P-AR S213 (A–C) or 

PIM1 (D–F). For P-AR S213, a separate histoscore was given for nuclear and cytoplasmic 

staining positivity while PIM1 was present only in the nucleus. The total histoscore ranges 

from 0 for a completely negative sample to a maximum score of 300. Magnification is 10X 

with insets of the same tissue at a 40X magnification. B) Histoscores (H-Scores) of hormone 

refractory (HR) vs non- hormone refractory prostate cancers and Gleason score 5–7 vs 

Gleason 8–10 were compared. The distribution of H-Scores is shown with the mean 
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(horizontal bar). The differences between the means were determined to be statistically 

significant by t-test.
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